summaryrefslogtreecommitdiffstats
path: root/vendor/libm/src/math/log1p.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/libm/src/math/log1p.rs')
-rw-r--r--vendor/libm/src/math/log1p.rs144
1 files changed, 144 insertions, 0 deletions
diff --git a/vendor/libm/src/math/log1p.rs b/vendor/libm/src/math/log1p.rs
new file mode 100644
index 000000000..cd7045ac9
--- /dev/null
+++ b/vendor/libm/src/math/log1p.rs
@@ -0,0 +1,144 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* double log1p(double x)
+ * Return the natural logarithm of 1+x.
+ *
+ * Method :
+ * 1. Argument Reduction: find k and f such that
+ * 1+x = 2^k * (1+f),
+ * where sqrt(2)/2 < 1+f < sqrt(2) .
+ *
+ * Note. If k=0, then f=x is exact. However, if k!=0, then f
+ * may not be representable exactly. In that case, a correction
+ * term is need. Let u=1+x rounded. Let c = (1+x)-u, then
+ * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
+ * and add back the correction term c/u.
+ * (Note: when x > 2**53, one can simply return log(x))
+ *
+ * 2. Approximation of log(1+f): See log.c
+ *
+ * 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c
+ *
+ * Special cases:
+ * log1p(x) is NaN with signal if x < -1 (including -INF) ;
+ * log1p(+INF) is +INF; log1p(-1) is -INF with signal;
+ * log1p(NaN) is that NaN with no signal.
+ *
+ * Accuracy:
+ * according to an error analysis, the error is always less than
+ * 1 ulp (unit in the last place).
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ *
+ * Note: Assuming log() return accurate answer, the following
+ * algorithm can be used to compute log1p(x) to within a few ULP:
+ *
+ * u = 1+x;
+ * if(u==1.0) return x ; else
+ * return log(u)*(x/(u-1.0));
+ *
+ * See HP-15C Advanced Functions Handbook, p.193.
+ */
+
+use core::f64;
+
+const LN2_HI: f64 = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */
+const LN2_LO: f64 = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */
+const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */
+const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */
+const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */
+const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */
+const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */
+const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */
+const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
+
+#[inline]
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn log1p(x: f64) -> f64 {
+ let mut ui: u64 = x.to_bits();
+ let hfsq: f64;
+ let mut f: f64 = 0.;
+ let mut c: f64 = 0.;
+ let s: f64;
+ let z: f64;
+ let r: f64;
+ let w: f64;
+ let t1: f64;
+ let t2: f64;
+ let dk: f64;
+ let hx: u32;
+ let mut hu: u32;
+ let mut k: i32;
+
+ hx = (ui >> 32) as u32;
+ k = 1;
+ if hx < 0x3fda827a || (hx >> 31) > 0 {
+ /* 1+x < sqrt(2)+ */
+ if hx >= 0xbff00000 {
+ /* x <= -1.0 */
+ if x == -1. {
+ return x / 0.0; /* log1p(-1) = -inf */
+ }
+ return (x - x) / 0.0; /* log1p(x<-1) = NaN */
+ }
+ if hx << 1 < 0x3ca00000 << 1 {
+ /* |x| < 2**-53 */
+ /* underflow if subnormal */
+ if (hx & 0x7ff00000) == 0 {
+ force_eval!(x as f32);
+ }
+ return x;
+ }
+ if hx <= 0xbfd2bec4 {
+ /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
+ k = 0;
+ c = 0.;
+ f = x;
+ }
+ } else if hx >= 0x7ff00000 {
+ return x;
+ }
+ if k > 0 {
+ ui = (1. + x).to_bits();
+ hu = (ui >> 32) as u32;
+ hu += 0x3ff00000 - 0x3fe6a09e;
+ k = (hu >> 20) as i32 - 0x3ff;
+ /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
+ if k < 54 {
+ c = if k >= 2 {
+ 1. - (f64::from_bits(ui) - x)
+ } else {
+ x - (f64::from_bits(ui) - 1.)
+ };
+ c /= f64::from_bits(ui);
+ } else {
+ c = 0.;
+ }
+ /* reduce u into [sqrt(2)/2, sqrt(2)] */
+ hu = (hu & 0x000fffff) + 0x3fe6a09e;
+ ui = (hu as u64) << 32 | (ui & 0xffffffff);
+ f = f64::from_bits(ui) - 1.;
+ }
+ hfsq = 0.5 * f * f;
+ s = f / (2.0 + f);
+ z = s * s;
+ w = z * z;
+ t1 = w * (LG2 + w * (LG4 + w * LG6));
+ t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
+ r = t2 + t1;
+ dk = k as f64;
+ s * (hfsq + r) + (dk * LN2_LO + c) - hfsq + f + dk * LN2_HI
+}