diff options
Diffstat (limited to 'vendor/chalk-solve-0.87.0/src/infer/unify.rs')
-rw-r--r-- | vendor/chalk-solve-0.87.0/src/infer/unify.rs | 1448 |
1 files changed, 0 insertions, 1448 deletions
diff --git a/vendor/chalk-solve-0.87.0/src/infer/unify.rs b/vendor/chalk-solve-0.87.0/src/infer/unify.rs deleted file mode 100644 index 10086e651..000000000 --- a/vendor/chalk-solve-0.87.0/src/infer/unify.rs +++ /dev/null @@ -1,1448 +0,0 @@ -use super::var::*; -use super::*; -use crate::debug_span; -use chalk_ir::cast::Cast; -use chalk_ir::fold::{FallibleTypeFolder, TypeFoldable}; -use chalk_ir::interner::{HasInterner, Interner}; -use chalk_ir::zip::{Zip, Zipper}; -use chalk_ir::UnificationDatabase; -use std::fmt::Debug; -use tracing::{debug, instrument}; - -impl<I: Interner> InferenceTable<I> { - pub fn relate<T>( - &mut self, - interner: I, - db: &dyn UnificationDatabase<I>, - environment: &Environment<I>, - variance: Variance, - a: &T, - b: &T, - ) -> Fallible<RelationResult<I>> - where - T: ?Sized + Zip<I>, - { - let snapshot = self.snapshot(); - match Unifier::new(interner, db, self, environment).relate(variance, a, b) { - Ok(r) => { - self.commit(snapshot); - Ok(r) - } - Err(e) => { - self.rollback_to(snapshot); - Err(e) - } - } - } -} - -struct Unifier<'t, I: Interner> { - table: &'t mut InferenceTable<I>, - environment: &'t Environment<I>, - goals: Vec<InEnvironment<Goal<I>>>, - interner: I, - db: &'t dyn UnificationDatabase<I>, -} - -#[derive(Debug)] -pub struct RelationResult<I: Interner> { - pub goals: Vec<InEnvironment<Goal<I>>>, -} - -impl<'t, I: Interner> Unifier<'t, I> { - fn new( - interner: I, - db: &'t dyn UnificationDatabase<I>, - table: &'t mut InferenceTable<I>, - environment: &'t Environment<I>, - ) -> Self { - Unifier { - environment, - table, - goals: vec![], - interner, - db, - } - } - - /// The main entry point for the `Unifier` type and really the - /// only type meant to be called externally. Performs a - /// relation of `a` and `b` and returns the Unification Result. - #[instrument(level = "debug", skip(self))] - fn relate<T>(mut self, variance: Variance, a: &T, b: &T) -> Fallible<RelationResult<I>> - where - T: ?Sized + Zip<I>, - { - Zip::zip_with(&mut self, variance, a, b)?; - let interner = self.interner(); - let mut goals = self.goals; - let table = self.table; - // Sometimes we'll produce a lifetime outlives goal which we later solve by unification - // Technically, these *will* get canonicalized to the same bound var and so that will end up - // as a goal like `^0.0 <: ^0.0`, which is trivially true. But, we remove those *here*, which - // might help caching. - goals.retain(|g| match g.goal.data(interner) { - GoalData::SubtypeGoal(SubtypeGoal { a, b }) => { - let n_a = table.ty_root(interner, a); - let n_b = table.ty_root(interner, b); - let a = n_a.as_ref().unwrap_or(a); - let b = n_b.as_ref().unwrap_or(b); - a != b - } - _ => true, - }); - Ok(RelationResult { goals }) - } - - /// Relate `a`, `b` with the variance such that if `variance = Covariant`, `a` is - /// a subtype of `b`. - fn relate_ty_ty(&mut self, variance: Variance, a: &Ty<I>, b: &Ty<I>) -> Fallible<()> { - let interner = self.interner; - - let n_a = self.table.normalize_ty_shallow(interner, a); - let n_b = self.table.normalize_ty_shallow(interner, b); - let a = n_a.as_ref().unwrap_or(a); - let b = n_b.as_ref().unwrap_or(b); - - debug_span!("relate_ty_ty", ?variance, ?a, ?b); - - if a.kind(interner) == b.kind(interner) { - return Ok(()); - } - - match (a.kind(interner), b.kind(interner)) { - // Relating two inference variables: - // First, if either variable is a float or int kind, then we always - // unify if they match. This is because float and ints don't have - // subtype relationships. - // If both kinds are general then: - // If `Invariant`, unify them in the underlying ena table. - // If `Covariant` or `Contravariant`, push `SubtypeGoal` - (&TyKind::InferenceVar(var1, kind1), &TyKind::InferenceVar(var2, kind2)) => { - if matches!(kind1, TyVariableKind::General) - && matches!(kind2, TyVariableKind::General) - { - // Both variable kinds are general; so unify if invariant, otherwise push subtype goal - match variance { - Variance::Invariant => self.unify_var_var(var1, var2), - Variance::Covariant => { - self.push_subtype_goal(a.clone(), b.clone()); - Ok(()) - } - Variance::Contravariant => { - self.push_subtype_goal(b.clone(), a.clone()); - Ok(()) - } - } - } else if kind1 == kind2 { - // At least one kind is not general, but they match, so unify - self.unify_var_var(var1, var2) - } else if kind1 == TyVariableKind::General { - // First kind is general, second isn't, unify - self.unify_general_var_specific_ty(var1, b.clone()) - } else if kind2 == TyVariableKind::General { - // Second kind is general, first isn't, unify - self.unify_general_var_specific_ty(var2, a.clone()) - } else { - debug!( - "Tried to unify mis-matching inference variables: {:?} and {:?}", - kind1, kind2 - ); - Err(NoSolution) - } - } - - // Unifying `forall<X> { T }` with some other forall type `forall<X> { U }` - (&TyKind::Function(ref fn1), &TyKind::Function(ref fn2)) => { - if fn1.sig == fn2.sig { - Zip::zip_with( - self, - variance, - &fn1.clone().into_binders(interner), - &fn2.clone().into_binders(interner), - ) - } else { - Err(NoSolution) - } - } - - (&TyKind::Placeholder(ref p1), &TyKind::Placeholder(ref p2)) => { - Zip::zip_with(self, variance, p1, p2) - } - - // Unifying two dyn is possible if they have the same bounds. - (&TyKind::Dyn(ref qwc1), &TyKind::Dyn(ref qwc2)) => { - Zip::zip_with(self, variance, qwc1, qwc2) - } - - (TyKind::BoundVar(_), _) | (_, TyKind::BoundVar(_)) => panic!( - "unification encountered bound variable: a={:?} b={:?}", - a, b - ), - - // Unifying an alias type with some other type `U`. - (_, &TyKind::Alias(ref alias)) => self.relate_alias_ty(variance.invert(), alias, a), - (&TyKind::Alias(ref alias), _) => self.relate_alias_ty(variance, alias, b), - - (&TyKind::InferenceVar(var, kind), ty_data) => { - let ty = ty_data.clone().intern(interner); - self.relate_var_ty(variance, var, kind, &ty) - } - (ty_data, &TyKind::InferenceVar(var, kind)) => { - // We need to invert the variance if inference var is `b` because we pass it in - // as `a` to relate_var_ty - let ty = ty_data.clone().intern(interner); - self.relate_var_ty(variance.invert(), var, kind, &ty) - } - - // This would correspond to unifying a `fn` type with a non-fn - // type in Rust; error. - (&TyKind::Function(_), _) | (_, &TyKind::Function(_)) => Err(NoSolution), - - // Cannot unify (e.g.) some struct type `Foo` and a placeholder like `T` - (_, &TyKind::Placeholder(_)) | (&TyKind::Placeholder(_), _) => Err(NoSolution), - - // Cannot unify `dyn Trait` with things like structs or placeholders - (_, &TyKind::Dyn(_)) | (&TyKind::Dyn(_), _) => Err(NoSolution), - - (TyKind::Adt(id_a, substitution_a), TyKind::Adt(id_b, substitution_b)) => { - if id_a != id_b { - return Err(NoSolution); - } - self.zip_substs( - variance, - Some(self.unification_database().adt_variance(*id_a)), - substitution_a.as_slice(interner), - substitution_b.as_slice(interner), - ) - } - ( - TyKind::AssociatedType(id_a, substitution_a), - TyKind::AssociatedType(id_b, substitution_b), - ) => { - if id_a != id_b { - return Err(NoSolution); - } - self.zip_substs( - variance, - None, // TODO: AssociatedType variances? - substitution_a.as_slice(interner), - substitution_b.as_slice(interner), - ) - } - (TyKind::Scalar(scalar_a), TyKind::Scalar(scalar_b)) => { - Zip::zip_with(self, variance, scalar_a, scalar_b) - } - (TyKind::Str, TyKind::Str) => Ok(()), - (TyKind::Tuple(arity_a, substitution_a), TyKind::Tuple(arity_b, substitution_b)) => { - if arity_a != arity_b { - return Err(NoSolution); - } - self.zip_substs( - variance, - Some(Variances::from_iter( - self.interner, - std::iter::repeat(Variance::Covariant).take(*arity_a), - )), - substitution_a.as_slice(interner), - substitution_b.as_slice(interner), - ) - } - ( - TyKind::OpaqueType(id_a, substitution_a), - TyKind::OpaqueType(id_b, substitution_b), - ) => { - if id_a != id_b { - return Err(NoSolution); - } - self.zip_substs( - variance, - None, - substitution_a.as_slice(interner), - substitution_b.as_slice(interner), - ) - } - (TyKind::Slice(ty_a), TyKind::Slice(ty_b)) => Zip::zip_with(self, variance, ty_a, ty_b), - (TyKind::FnDef(id_a, substitution_a), TyKind::FnDef(id_b, substitution_b)) => { - if id_a != id_b { - return Err(NoSolution); - } - self.zip_substs( - variance, - Some(self.unification_database().fn_def_variance(*id_a)), - substitution_a.as_slice(interner), - substitution_b.as_slice(interner), - ) - } - ( - TyKind::Ref(mutability_a, lifetime_a, ty_a), - TyKind::Ref(mutability_b, lifetime_b, ty_b), - ) => { - if mutability_a != mutability_b { - return Err(NoSolution); - } - // The lifetime is `Contravariant` - Zip::zip_with( - self, - variance.xform(Variance::Contravariant), - lifetime_a, - lifetime_b, - )?; - // The type is `Covariant` when not mut, `Invariant` otherwise - let output_variance = match mutability_a { - Mutability::Not => Variance::Covariant, - Mutability::Mut => Variance::Invariant, - }; - Zip::zip_with(self, variance.xform(output_variance), ty_a, ty_b) - } - (TyKind::Raw(mutability_a, ty_a), TyKind::Raw(mutability_b, ty_b)) => { - if mutability_a != mutability_b { - return Err(NoSolution); - } - let ty_variance = match mutability_a { - Mutability::Not => Variance::Covariant, - Mutability::Mut => Variance::Invariant, - }; - Zip::zip_with(self, variance.xform(ty_variance), ty_a, ty_b) - } - (TyKind::Never, TyKind::Never) => Ok(()), - (TyKind::Array(ty_a, const_a), TyKind::Array(ty_b, const_b)) => { - Zip::zip_with(self, variance, ty_a, ty_b)?; - Zip::zip_with(self, variance, const_a, const_b) - } - (TyKind::Closure(id_a, substitution_a), TyKind::Closure(id_b, substitution_b)) => { - if id_a != id_b { - return Err(NoSolution); - } - self.zip_substs( - variance, - None, - substitution_a.as_slice(interner), - substitution_b.as_slice(interner), - ) - } - (TyKind::Generator(id_a, substitution_a), TyKind::Generator(id_b, substitution_b)) => { - if id_a != id_b { - return Err(NoSolution); - } - self.zip_substs( - variance, - None, - substitution_a.as_slice(interner), - substitution_b.as_slice(interner), - ) - } - ( - TyKind::GeneratorWitness(id_a, substitution_a), - TyKind::GeneratorWitness(id_b, substitution_b), - ) => { - if id_a != id_b { - return Err(NoSolution); - } - self.zip_substs( - variance, - None, - substitution_a.as_slice(interner), - substitution_b.as_slice(interner), - ) - } - (TyKind::Foreign(id_a), TyKind::Foreign(id_b)) => { - Zip::zip_with(self, variance, id_a, id_b) - } - (TyKind::Error, TyKind::Error) => Ok(()), - - (_, _) => Err(NoSolution), - } - } - - /// Unify two inference variables - #[instrument(level = "debug", skip(self))] - fn unify_var_var(&mut self, a: InferenceVar, b: InferenceVar) -> Fallible<()> { - let var1 = EnaVariable::from(a); - let var2 = EnaVariable::from(b); - self.table - .unify - .unify_var_var(var1, var2) - .expect("unification of two unbound variables cannot fail"); - Ok(()) - } - - /// Unify a general inference variable with a specific inference variable - /// (type kind is not `General`). For example, unify a `TyVariableKind::General` - /// inference variable with a `TyVariableKind::Integer` variable, resulting in the - /// general inference variable narrowing to an integer variable. - - #[instrument(level = "debug", skip(self))] - fn unify_general_var_specific_ty( - &mut self, - general_var: InferenceVar, - specific_ty: Ty<I>, - ) -> Fallible<()> { - self.table - .unify - .unify_var_value( - general_var, - InferenceValue::from_ty(self.interner, specific_ty), - ) - .unwrap(); - - Ok(()) - } - - #[instrument(level = "debug", skip(self))] - fn relate_binders<'a, T>( - &mut self, - variance: Variance, - a: &Binders<T>, - b: &Binders<T>, - ) -> Fallible<()> - where - T: Clone + TypeFoldable<I> + HasInterner<Interner = I> + Zip<I>, - 't: 'a, - { - // for<'a...> T == for<'b...> U - // - // if: - // - // for<'a...> exists<'b...> T == U && - // for<'b...> exists<'a...> T == U - - // for<'a...> T <: for<'b...> U - // - // if - // - // for<'b...> exists<'a...> T <: U - - let interner = self.interner; - - if let Variance::Invariant | Variance::Contravariant = variance { - let a_universal = self - .table - .instantiate_binders_universally(interner, a.clone()); - let b_existential = self - .table - .instantiate_binders_existentially(interner, b.clone()); - Zip::zip_with(self, Variance::Contravariant, &a_universal, &b_existential)?; - } - - if let Variance::Invariant | Variance::Covariant = variance { - let b_universal = self - .table - .instantiate_binders_universally(interner, b.clone()); - let a_existential = self - .table - .instantiate_binders_existentially(interner, a.clone()); - Zip::zip_with(self, Variance::Covariant, &a_existential, &b_universal)?; - } - - Ok(()) - } - - /// Relate an alias like `<T as Trait>::Item` or `impl Trait` with some other - /// type `ty`. If the variance is `Invariant`, creates a goal like - /// - /// ```notrust - /// AliasEq(<T as Trait>::Item = U) // associated type projection - /// AliasEq(impl Trait = U) // impl trait - /// ``` - /// Otherwise, this creates a new variable `?X`, creates a goal like - /// ```notrust - /// AliasEq(Alias = ?X) - /// ``` - /// and relates `?X` and `ty`. - #[instrument(level = "debug", skip(self))] - fn relate_alias_ty( - &mut self, - variance: Variance, - alias: &AliasTy<I>, - ty: &Ty<I>, - ) -> Fallible<()> { - let interner = self.interner; - match variance { - Variance::Invariant => { - self.goals.push(InEnvironment::new( - self.environment, - AliasEq { - alias: alias.clone(), - ty: ty.clone(), - } - .cast(interner), - )); - Ok(()) - } - Variance::Covariant | Variance::Contravariant => { - let var = self - .table - .new_variable(UniverseIndex::root()) - .to_ty(interner); - self.goals.push(InEnvironment::new( - self.environment, - AliasEq { - alias: alias.clone(), - ty: var.clone(), - } - .cast(interner), - )); - self.relate_ty_ty(variance, &var, ty) - } - } - } - - #[instrument(level = "debug", skip(self))] - fn generalize_ty( - &mut self, - ty: &Ty<I>, - universe_index: UniverseIndex, - variance: Variance, - ) -> Ty<I> { - let interner = self.interner; - match ty.kind(interner) { - TyKind::Adt(id, substitution) => { - let variances = if matches!(variance, Variance::Invariant) { - None - } else { - Some(self.unification_database().adt_variance(*id)) - }; - let get_variance = |i| { - variances - .as_ref() - .map(|v| v.as_slice(interner)[i]) - .unwrap_or(Variance::Invariant) - }; - TyKind::Adt( - *id, - self.generalize_substitution(substitution, universe_index, get_variance), - ) - .intern(interner) - } - TyKind::AssociatedType(id, substitution) => TyKind::AssociatedType( - *id, - self.generalize_substitution(substitution, universe_index, |_| variance), - ) - .intern(interner), - TyKind::Scalar(scalar) => TyKind::Scalar(*scalar).intern(interner), - TyKind::Str => TyKind::Str.intern(interner), - TyKind::Tuple(arity, substitution) => TyKind::Tuple( - *arity, - self.generalize_substitution(substitution, universe_index, |_| variance), - ) - .intern(interner), - TyKind::OpaqueType(id, substitution) => TyKind::OpaqueType( - *id, - self.generalize_substitution(substitution, universe_index, |_| variance), - ) - .intern(interner), - TyKind::Slice(ty) => { - TyKind::Slice(self.generalize_ty(ty, universe_index, variance)).intern(interner) - } - TyKind::FnDef(id, substitution) => { - let variances = if matches!(variance, Variance::Invariant) { - None - } else { - Some(self.unification_database().fn_def_variance(*id)) - }; - let get_variance = |i| { - variances - .as_ref() - .map(|v| v.as_slice(interner)[i]) - .unwrap_or(Variance::Invariant) - }; - TyKind::FnDef( - *id, - self.generalize_substitution(substitution, universe_index, get_variance), - ) - .intern(interner) - } - TyKind::Ref(mutability, lifetime, ty) => { - let lifetime_variance = variance.xform(Variance::Contravariant); - let ty_variance = match mutability { - Mutability::Not => Variance::Covariant, - Mutability::Mut => Variance::Invariant, - }; - TyKind::Ref( - *mutability, - self.generalize_lifetime(lifetime, universe_index, lifetime_variance), - self.generalize_ty(ty, universe_index, ty_variance), - ) - .intern(interner) - } - TyKind::Raw(mutability, ty) => { - let ty_variance = match mutability { - Mutability::Not => Variance::Covariant, - Mutability::Mut => Variance::Invariant, - }; - TyKind::Raw( - *mutability, - self.generalize_ty(ty, universe_index, ty_variance), - ) - .intern(interner) - } - TyKind::Never => TyKind::Never.intern(interner), - TyKind::Array(ty, const_) => TyKind::Array( - self.generalize_ty(ty, universe_index, variance), - self.generalize_const(const_, universe_index), - ) - .intern(interner), - TyKind::Closure(id, substitution) => TyKind::Closure( - *id, - self.generalize_substitution(substitution, universe_index, |_| variance), - ) - .intern(interner), - TyKind::Generator(id, substitution) => TyKind::Generator( - *id, - self.generalize_substitution(substitution, universe_index, |_| variance), - ) - .intern(interner), - TyKind::GeneratorWitness(id, substitution) => TyKind::GeneratorWitness( - *id, - self.generalize_substitution(substitution, universe_index, |_| variance), - ) - .intern(interner), - TyKind::Foreign(id) => TyKind::Foreign(*id).intern(interner), - TyKind::Error => TyKind::Error.intern(interner), - TyKind::Dyn(dyn_ty) => { - let DynTy { bounds, lifetime } = dyn_ty; - let lifetime = self.generalize_lifetime( - lifetime, - universe_index, - variance.xform(Variance::Contravariant), - ); - - let bounds = bounds.map_ref(|value| { - let iter = value.iter(interner).map(|sub_var| { - sub_var.map_ref(|clause| { - match clause { - WhereClause::Implemented(trait_ref) => { - let TraitRef { - ref substitution, - trait_id, - } = *trait_ref; - let substitution = self.generalize_substitution_skip_self( - substitution, - universe_index, - |_| Some(variance), - ); - WhereClause::Implemented(TraitRef { - substitution, - trait_id, - }) - } - WhereClause::AliasEq(alias_eq) => { - let AliasEq { alias, ty: _ } = alias_eq; - let alias = match alias { - AliasTy::Opaque(opaque_ty) => { - let OpaqueTy { - ref substitution, - opaque_ty_id, - } = *opaque_ty; - let substitution = self.generalize_substitution( - substitution, - universe_index, - |_| variance, - ); - AliasTy::Opaque(OpaqueTy { - substitution, - opaque_ty_id, - }) - } - AliasTy::Projection(projection_ty) => { - let ProjectionTy { - ref substitution, - associated_ty_id, - } = *projection_ty; - // TODO: We should be skipping "self", which - // would be the first element of - // "trait_params" if we had a - // `RustIrDatabase` to call - // `split_projection` on... - // let (assoc_ty_datum, trait_params, assoc_type_params) = s.db().split_projection(&self); - let substitution = self.generalize_substitution( - substitution, - universe_index, - |_| variance, - ); - AliasTy::Projection(ProjectionTy { - substitution, - associated_ty_id, - }) - } - }; - let ty = - self.table.new_variable(universe_index).to_ty(interner); - WhereClause::AliasEq(AliasEq { alias, ty }) - } - WhereClause::TypeOutlives(_) => { - let lifetime_var = self.table.new_variable(universe_index); - let lifetime = lifetime_var.to_lifetime(interner); - let ty_var = self.table.new_variable(universe_index); - let ty = ty_var.to_ty(interner); - WhereClause::TypeOutlives(TypeOutlives { ty, lifetime }) - } - WhereClause::LifetimeOutlives(_) => { - unreachable!("dyn Trait never contains LifetimeOutlive bounds") - } - } - }) - }); - QuantifiedWhereClauses::from_iter(interner, iter) - }); - - TyKind::Dyn(DynTy { bounds, lifetime }).intern(interner) - } - TyKind::Function(fn_ptr) => { - let FnPointer { - num_binders, - sig, - ref substitution, - } = *fn_ptr; - - let len = substitution.0.len(interner); - let vars = substitution.0.iter(interner).enumerate().map(|(i, var)| { - if i < len - 1 { - self.generalize_generic_var( - var, - universe_index, - variance.xform(Variance::Contravariant), - ) - } else { - self.generalize_generic_var( - substitution.0.as_slice(interner).last().unwrap(), - universe_index, - variance, - ) - } - }); - - let substitution = FnSubst(Substitution::from_iter(interner, vars)); - - TyKind::Function(FnPointer { - num_binders, - sig, - substitution, - }) - .intern(interner) - } - TyKind::Placeholder(_) | TyKind::BoundVar(_) => { - debug!("just generalizing to the ty itself: {:?}", ty); - // BoundVar and PlaceHolder have no internal values to be - // generic over, so we just relate directly to it - ty.clone() - } - TyKind::Alias(_) => { - let ena_var = self.table.new_variable(universe_index); - ena_var.to_ty(interner) - } - TyKind::InferenceVar(_var, kind) => { - if matches!(kind, TyVariableKind::Integer | TyVariableKind::Float) { - ty.clone() - } else if let Some(ty) = self.table.normalize_ty_shallow(interner, ty) { - self.generalize_ty(&ty, universe_index, variance) - } else if matches!(variance, Variance::Invariant) { - ty.clone() - } else { - let ena_var = self.table.new_variable(universe_index); - ena_var.to_ty(interner) - } - } - } - } - - #[instrument(level = "debug", skip(self))] - fn generalize_lifetime( - &mut self, - lifetime: &Lifetime<I>, - universe_index: UniverseIndex, - variance: Variance, - ) -> Lifetime<I> { - if matches!(lifetime.data(self.interner), LifetimeData::BoundVar(_)) - || matches!(variance, Variance::Invariant) - { - lifetime.clone() - } else { - self.table - .new_variable(universe_index) - .to_lifetime(self.interner) - } - } - - #[instrument(level = "debug", skip(self))] - fn generalize_const(&mut self, const_: &Const<I>, universe_index: UniverseIndex) -> Const<I> { - let data = const_.data(self.interner); - if matches!(data.value, ConstValue::BoundVar(_)) { - const_.clone() - } else { - self.table - .new_variable(universe_index) - .to_const(self.interner, data.ty.clone()) - } - } - - fn generalize_generic_var( - &mut self, - sub_var: &GenericArg<I>, - universe_index: UniverseIndex, - variance: Variance, - ) -> GenericArg<I> { - let interner = self.interner; - (match sub_var.data(interner) { - GenericArgData::Ty(ty) => { - GenericArgData::Ty(self.generalize_ty(ty, universe_index, variance)) - } - GenericArgData::Lifetime(lifetime) => GenericArgData::Lifetime( - self.generalize_lifetime(lifetime, universe_index, variance), - ), - GenericArgData::Const(const_value) => { - GenericArgData::Const(self.generalize_const(const_value, universe_index)) - } - }) - .intern(interner) - } - - /// Generalizes all but the first - #[instrument(level = "debug", skip(self, get_variance))] - fn generalize_substitution_skip_self<F: Fn(usize) -> Option<Variance>>( - &mut self, - substitution: &Substitution<I>, - universe_index: UniverseIndex, - get_variance: F, - ) -> Substitution<I> { - let interner = self.interner; - let vars = substitution.iter(interner).enumerate().map(|(i, sub_var)| { - if i == 0 { - sub_var.clone() - } else { - let variance = get_variance(i).unwrap_or(Variance::Invariant); - self.generalize_generic_var(sub_var, universe_index, variance) - } - }); - Substitution::from_iter(interner, vars) - } - - #[instrument(level = "debug", skip(self, get_variance))] - fn generalize_substitution<F: Fn(usize) -> Variance>( - &mut self, - substitution: &Substitution<I>, - universe_index: UniverseIndex, - get_variance: F, - ) -> Substitution<I> { - let interner = self.interner; - let vars = substitution.iter(interner).enumerate().map(|(i, sub_var)| { - let variance = get_variance(i); - self.generalize_generic_var(sub_var, universe_index, variance) - }); - - Substitution::from_iter(interner, vars) - } - - /// Unify an inference variable `var` with some non-inference - /// variable `ty`, just bind `var` to `ty`. But we must enforce two conditions: - /// - /// - `var` does not appear inside of `ty` (the standard `OccursCheck`) - /// - `ty` does not reference anything in a lifetime that could not be named in `var` - /// (the extended `OccursCheck` created to handle universes) - #[instrument(level = "debug", skip(self))] - fn relate_var_ty( - &mut self, - variance: Variance, - var: InferenceVar, - var_kind: TyVariableKind, - ty: &Ty<I>, - ) -> Fallible<()> { - let interner = self.interner; - - match (var_kind, ty.is_integer(interner), ty.is_float(interner)) { - // General inference variables can unify with any type - (TyVariableKind::General, _, _) - // Integer inference variables can only unify with integer types - | (TyVariableKind::Integer, true, _) - // Float inference variables can only unify with float types - | (TyVariableKind::Float, _, true) => { - }, - _ => return Err(NoSolution), - } - - let var = EnaVariable::from(var); - - // Determine the universe index associated with this - // variable. This is basically a count of the number of - // `forall` binders that had been introduced at the point - // this variable was created -- though it may change over time - // as the variable is unified. - let universe_index = self.table.universe_of_unbound_var(var); - // let universe_index = self.table.max_universe(); - - debug!("relate_var_ty: universe index of var: {:?}", universe_index); - - debug!("trying fold_with on {:?}", ty); - let ty1 = ty - .clone() - .try_fold_with( - &mut OccursCheck::new(self, var, universe_index), - DebruijnIndex::INNERMOST, - ) - .map_err(|e| { - debug!("failed to fold {:?}", ty); - e - })?; - - // "Generalize" types. This ensures that we aren't accidentally forcing - // too much onto `var`. Instead of directly setting `var` equal to `ty`, - // we just take the outermost structure we _know_ `var` holds, and then - // apply that to `ty`. This involves creating new inference vars for - // everything inside `var`, then calling `relate_ty_ty` to relate those - // inference vars to the things they generalized with the correct - // variance. - - // The main problem this solves is that lifetime relationships are - // relationships, not just eq ones. So when solving &'a u32 <: U, - // generalizing we would end up with U = &'a u32. Instead, we want - // U = &'b u32, with a lifetime constraint 'a <: 'b. This matters - // especially when solving multiple constraints - for example, &'a u32 - // <: U, &'b u32 <: U (where without generalizing, we'd end up with 'a - // <: 'b, where we really want 'a <: 'c, 'b <: 'c for some 'c). - - // Example operation: consider `ty` as `&'x SomeType`. To generalize - // this, we create two new vars `'0` and `1`. Then we relate `var` with - // `&'0 1` and `&'0 1` with `&'x SomeType`. The second relation will - // recurse, and we'll end up relating `'0` with `'x` and `1` with `SomeType`. - let generalized_val = self.generalize_ty(&ty1, universe_index, variance); - - debug!("var {:?} generalized to {:?}", var, generalized_val); - - self.table - .unify - .unify_var_value( - var, - InferenceValue::from_ty(interner, generalized_val.clone()), - ) - .unwrap(); - debug!("var {:?} set to {:?}", var, generalized_val); - - self.relate_ty_ty(variance, &generalized_val, &ty1)?; - - debug!( - "generalized version {:?} related to original {:?}", - generalized_val, ty1 - ); - - Ok(()) - } - - fn relate_lifetime_lifetime( - &mut self, - variance: Variance, - a: &Lifetime<I>, - b: &Lifetime<I>, - ) -> Fallible<()> { - let interner = self.interner; - - let n_a = self.table.normalize_lifetime_shallow(interner, a); - let n_b = self.table.normalize_lifetime_shallow(interner, b); - let a = n_a.as_ref().unwrap_or(a); - let b = n_b.as_ref().unwrap_or(b); - - debug_span!("relate_lifetime_lifetime", ?variance, ?a, ?b); - - match (a.data(interner), b.data(interner)) { - (&LifetimeData::InferenceVar(var_a), &LifetimeData::InferenceVar(var_b)) => { - let var_a = EnaVariable::from(var_a); - let var_b = EnaVariable::from(var_b); - debug!(?var_a, ?var_b); - self.table.unify.unify_var_var(var_a, var_b).unwrap(); - Ok(()) - } - - ( - &LifetimeData::InferenceVar(a_var), - &LifetimeData::Placeholder(PlaceholderIndex { ui, .. }), - ) => self.unify_lifetime_var(variance, a_var, b, ui), - - ( - &LifetimeData::Placeholder(PlaceholderIndex { ui, .. }), - &LifetimeData::InferenceVar(b_var), - ) => self.unify_lifetime_var(variance.invert(), b_var, a, ui), - - (&LifetimeData::InferenceVar(a_var), &LifetimeData::Erased) - | (&LifetimeData::InferenceVar(a_var), &LifetimeData::Static) => { - self.unify_lifetime_var(variance, a_var, b, UniverseIndex::root()) - } - - (&LifetimeData::Erased, &LifetimeData::InferenceVar(b_var)) - | (&LifetimeData::Static, &LifetimeData::InferenceVar(b_var)) => { - self.unify_lifetime_var(variance.invert(), b_var, a, UniverseIndex::root()) - } - - (&LifetimeData::Static, &LifetimeData::Static) - | (&LifetimeData::Erased, &LifetimeData::Erased) => Ok(()), - - (&LifetimeData::Static, &LifetimeData::Placeholder(_)) - | (&LifetimeData::Static, &LifetimeData::Erased) - | (&LifetimeData::Placeholder(_), &LifetimeData::Static) - | (&LifetimeData::Placeholder(_), &LifetimeData::Placeholder(_)) - | (&LifetimeData::Placeholder(_), &LifetimeData::Erased) - | (&LifetimeData::Erased, &LifetimeData::Static) - | (&LifetimeData::Erased, &LifetimeData::Placeholder(_)) => { - if a != b { - self.push_lifetime_outlives_goals(variance, a.clone(), b.clone()); - Ok(()) - } else { - Ok(()) - } - } - - (LifetimeData::BoundVar(_), _) | (_, LifetimeData::BoundVar(_)) => panic!( - "unification encountered bound variable: a={:?} b={:?}", - a, b - ), - - (LifetimeData::Phantom(..), _) | (_, LifetimeData::Phantom(..)) => unreachable!(), - } - } - - #[instrument(level = "debug", skip(self))] - fn unify_lifetime_var( - &mut self, - variance: Variance, - var: InferenceVar, - value: &Lifetime<I>, - value_ui: UniverseIndex, - ) -> Fallible<()> { - let var = EnaVariable::from(var); - let var_ui = self.table.universe_of_unbound_var(var); - if var_ui.can_see(value_ui) && matches!(variance, Variance::Invariant) { - debug!("{:?} in {:?} can see {:?}; unifying", var, var_ui, value_ui); - self.table - .unify - .unify_var_value( - var, - InferenceValue::from_lifetime(self.interner, value.clone()), - ) - .unwrap(); - Ok(()) - } else { - debug!( - "{:?} in {:?} cannot see {:?}; pushing constraint", - var, var_ui, value_ui - ); - self.push_lifetime_outlives_goals( - variance, - var.to_lifetime(self.interner), - value.clone(), - ); - Ok(()) - } - } - - fn relate_const_const<'a>( - &mut self, - variance: Variance, - a: &'a Const<I>, - b: &'a Const<I>, - ) -> Fallible<()> { - let interner = self.interner; - - let n_a = self.table.normalize_const_shallow(interner, a); - let n_b = self.table.normalize_const_shallow(interner, b); - let a = n_a.as_ref().unwrap_or(a); - let b = n_b.as_ref().unwrap_or(b); - - debug_span!("relate_const_const", ?variance, ?a, ?b); - - let ConstData { - ty: a_ty, - value: a_val, - } = a.data(interner); - let ConstData { - ty: b_ty, - value: b_val, - } = b.data(interner); - - self.relate_ty_ty(variance, a_ty, b_ty)?; - - match (a_val, b_val) { - // Unifying two inference variables: unify them in the underlying - // ena table. - (&ConstValue::InferenceVar(var1), &ConstValue::InferenceVar(var2)) => { - debug!(?var1, ?var2, "relate_ty_ty"); - let var1 = EnaVariable::from(var1); - let var2 = EnaVariable::from(var2); - self.table - .unify - .unify_var_var(var1, var2) - .expect("unification of two unbound variables cannot fail"); - Ok(()) - } - - // Unifying an inference variables with a non-inference variable. - (&ConstValue::InferenceVar(var), &ConstValue::Concrete(_)) - | (&ConstValue::InferenceVar(var), &ConstValue::Placeholder(_)) => { - debug!(?var, ty=?b, "unify_var_ty"); - self.unify_var_const(var, b) - } - - (&ConstValue::Concrete(_), &ConstValue::InferenceVar(var)) - | (&ConstValue::Placeholder(_), &ConstValue::InferenceVar(var)) => { - debug!(?var, ty=?a, "unify_var_ty"); - self.unify_var_const(var, a) - } - - (&ConstValue::Placeholder(p1), &ConstValue::Placeholder(p2)) => { - Zip::zip_with(self, variance, &p1, &p2) - } - - (&ConstValue::Concrete(ref ev1), &ConstValue::Concrete(ref ev2)) => { - if ev1.const_eq(a_ty, ev2, interner) { - Ok(()) - } else { - Err(NoSolution) - } - } - - (&ConstValue::Concrete(_), &ConstValue::Placeholder(_)) - | (&ConstValue::Placeholder(_), &ConstValue::Concrete(_)) => Err(NoSolution), - - (ConstValue::BoundVar(_), _) | (_, ConstValue::BoundVar(_)) => panic!( - "unification encountered bound variable: a={:?} b={:?}", - a, b - ), - } - } - - #[instrument(level = "debug", skip(self))] - fn unify_var_const(&mut self, var: InferenceVar, c: &Const<I>) -> Fallible<()> { - let interner = self.interner; - let var = EnaVariable::from(var); - - // Determine the universe index associated with this - // variable. This is basically a count of the number of - // `forall` binders that had been introduced at the point - // this variable was created -- though it may change over time - // as the variable is unified. - let universe_index = self.table.universe_of_unbound_var(var); - - let c1 = c.clone().try_fold_with( - &mut OccursCheck::new(self, var, universe_index), - DebruijnIndex::INNERMOST, - )?; - - debug!("unify_var_const: var {:?} set to {:?}", var, c1); - self.table - .unify - .unify_var_value(var, InferenceValue::from_const(interner, c1)) - .unwrap(); - - Ok(()) - } - - /// Relate `a`, `b` such that if `variance = Covariant`, `a` is a subtype of - /// `b` and thus `a` must outlive `b`. - fn push_lifetime_outlives_goals(&mut self, variance: Variance, a: Lifetime<I>, b: Lifetime<I>) { - debug!( - "pushing lifetime outlives goals for a={:?} b={:?} with variance {:?}", - a, b, variance - ); - if matches!(variance, Variance::Invariant | Variance::Contravariant) { - self.goals.push(InEnvironment::new( - self.environment, - WhereClause::LifetimeOutlives(LifetimeOutlives { - a: a.clone(), - b: b.clone(), - }) - .cast(self.interner), - )); - } - if matches!(variance, Variance::Invariant | Variance::Covariant) { - self.goals.push(InEnvironment::new( - self.environment, - WhereClause::LifetimeOutlives(LifetimeOutlives { a: b, b: a }).cast(self.interner), - )); - } - } - - /// Pushes a goal of `a` being a subtype of `b`. - fn push_subtype_goal(&mut self, a: Ty<I>, b: Ty<I>) { - let subtype_goal = GoalData::SubtypeGoal(SubtypeGoal { a, b }).intern(self.interner()); - self.goals - .push(InEnvironment::new(self.environment, subtype_goal)); - } -} - -impl<'i, I: Interner> Zipper<I> for Unifier<'i, I> { - fn zip_tys(&mut self, variance: Variance, a: &Ty<I>, b: &Ty<I>) -> Fallible<()> { - debug!("zip_tys {:?}, {:?}, {:?}", variance, a, b); - self.relate_ty_ty(variance, a, b) - } - - fn zip_lifetimes( - &mut self, - variance: Variance, - a: &Lifetime<I>, - b: &Lifetime<I>, - ) -> Fallible<()> { - self.relate_lifetime_lifetime(variance, a, b) - } - - fn zip_consts(&mut self, variance: Variance, a: &Const<I>, b: &Const<I>) -> Fallible<()> { - self.relate_const_const(variance, a, b) - } - - fn zip_binders<T>(&mut self, variance: Variance, a: &Binders<T>, b: &Binders<T>) -> Fallible<()> - where - T: Clone + HasInterner<Interner = I> + Zip<I> + TypeFoldable<I>, - { - // The binders that appear in types (apart from quantified types, which are - // handled in `unify_ty`) appear as part of `dyn Trait` and `impl Trait` types. - // - // They come in two varieties: - // - // * The existential binder from `dyn Trait` / `impl Trait` - // (representing the hidden "self" type) - // * The `for<..>` binders from higher-ranked traits. - // - // In both cases we can use the same `relate_binders` routine. - - self.relate_binders(variance, a, b) - } - - fn interner(&self) -> I { - self.interner - } - - fn unification_database(&self) -> &dyn UnificationDatabase<I> { - self.db - } -} - -struct OccursCheck<'u, 't, I: Interner> { - unifier: &'u mut Unifier<'t, I>, - var: EnaVariable<I>, - universe_index: UniverseIndex, -} - -impl<'u, 't, I: Interner> OccursCheck<'u, 't, I> { - fn new( - unifier: &'u mut Unifier<'t, I>, - var: EnaVariable<I>, - universe_index: UniverseIndex, - ) -> Self { - OccursCheck { - unifier, - var, - universe_index, - } - } -} - -impl<'i, I: Interner> FallibleTypeFolder<I> for OccursCheck<'_, 'i, I> { - type Error = NoSolution; - - fn as_dyn(&mut self) -> &mut dyn FallibleTypeFolder<I, Error = Self::Error> { - self - } - - fn try_fold_free_placeholder_ty( - &mut self, - universe: PlaceholderIndex, - _outer_binder: DebruijnIndex, - ) -> Fallible<Ty<I>> { - let interner = self.interner(); - if self.universe_index < universe.ui { - debug!( - "OccursCheck aborting because self.universe_index ({:?}) < universe.ui ({:?})", - self.universe_index, universe.ui - ); - Err(NoSolution) - } else { - Ok(universe.to_ty(interner)) // no need to shift, not relative to depth - } - } - - fn try_fold_free_placeholder_const( - &mut self, - ty: Ty<I>, - universe: PlaceholderIndex, - _outer_binder: DebruijnIndex, - ) -> Fallible<Const<I>> { - let interner = self.interner(); - if self.universe_index < universe.ui { - Err(NoSolution) - } else { - Ok(universe.to_const(interner, ty)) // no need to shift, not relative to depth - } - } - - #[instrument(level = "debug", skip(self))] - fn try_fold_free_placeholder_lifetime( - &mut self, - ui: PlaceholderIndex, - _outer_binder: DebruijnIndex, - ) -> Fallible<Lifetime<I>> { - let interner = self.interner(); - if self.universe_index < ui.ui { - // Scenario is like: - // - // exists<T> forall<'b> ?T = Foo<'b> - // - // unlike with a type variable, this **might** be - // ok. Ultimately it depends on whether the - // `forall` also introduced relations to lifetimes - // nameable in T. To handle that, we introduce a - // fresh region variable `'x` in same universe as `T` - // and add a side-constraint that `'x = 'b`: - // - // exists<'x> forall<'b> ?T = Foo<'x>, where 'x = 'b - - let tick_x = self.unifier.table.new_variable(self.universe_index); - self.unifier.push_lifetime_outlives_goals( - Variance::Invariant, - tick_x.to_lifetime(interner), - ui.to_lifetime(interner), - ); - Ok(tick_x.to_lifetime(interner)) - } else { - // If the `ui` is higher than `self.universe_index`, then we can name - // this lifetime, no problem. - Ok(ui.to_lifetime(interner)) // no need to shift, not relative to depth - } - } - - fn try_fold_inference_ty( - &mut self, - var: InferenceVar, - kind: TyVariableKind, - _outer_binder: DebruijnIndex, - ) -> Fallible<Ty<I>> { - let interner = self.interner(); - let var = EnaVariable::from(var); - match self.unifier.table.unify.probe_value(var) { - // If this variable already has a value, fold over that value instead. - InferenceValue::Bound(normalized_ty) => { - let normalized_ty = normalized_ty.assert_ty_ref(interner); - let normalized_ty = normalized_ty - .clone() - .try_fold_with(self, DebruijnIndex::INNERMOST)?; - assert!(!normalized_ty.needs_shift(interner)); - Ok(normalized_ty) - } - - // Otherwise, check the universe of the variable, and also - // check for cycles with `self.var` (which this will soon - // become the value of). - InferenceValue::Unbound(ui) => { - if self.unifier.table.unify.unioned(var, self.var) { - debug!( - "OccursCheck aborting because {:?} unioned with {:?}", - var, self.var, - ); - return Err(NoSolution); - } - - if self.universe_index < ui { - // Scenario is like: - // - // ?A = foo(?B) - // - // where ?A is in universe 0 and ?B is in universe 1. - // This is OK, if ?B is promoted to universe 0. - self.unifier - .table - .unify - .unify_var_value(var, InferenceValue::Unbound(self.universe_index)) - .unwrap(); - } - - Ok(var.to_ty_with_kind(interner, kind)) - } - } - } - - fn try_fold_inference_const( - &mut self, - ty: Ty<I>, - var: InferenceVar, - _outer_binder: DebruijnIndex, - ) -> Fallible<Const<I>> { - let interner = self.interner(); - let var = EnaVariable::from(var); - match self.unifier.table.unify.probe_value(var) { - // If this variable already has a value, fold over that value instead. - InferenceValue::Bound(normalized_const) => { - let normalized_const = normalized_const.assert_const_ref(interner); - let normalized_const = normalized_const - .clone() - .try_fold_with(self, DebruijnIndex::INNERMOST)?; - assert!(!normalized_const.needs_shift(interner)); - Ok(normalized_const) - } - - // Otherwise, check the universe of the variable, and also - // check for cycles with `self.var` (which this will soon - // become the value of). - InferenceValue::Unbound(ui) => { - if self.unifier.table.unify.unioned(var, self.var) { - return Err(NoSolution); - } - - if self.universe_index < ui { - // Scenario is like: - // - // forall<const A> exists<const B> ?C = Foo<B> - // - // where A is in universe 0 and B is in universe 1. - // This is OK, if B is promoted to universe 0. - self.unifier - .table - .unify - .unify_var_value(var, InferenceValue::Unbound(self.universe_index)) - .unwrap(); - } - - Ok(var.to_const(interner, ty)) - } - } - } - - fn try_fold_inference_lifetime( - &mut self, - var: InferenceVar, - outer_binder: DebruijnIndex, - ) -> Fallible<Lifetime<I>> { - // a free existentially bound region; find the - // inference variable it corresponds to - let interner = self.interner(); - let var = EnaVariable::from(var); - match self.unifier.table.unify.probe_value(var) { - InferenceValue::Unbound(ui) => { - if self.universe_index < ui { - // Scenario is like: - // - // exists<T> forall<'b> exists<'a> ?T = Foo<'a> - // - // where ?A is in universe 0 and `'b` is in universe 1. - // This is OK, if `'b` is promoted to universe 0. - self.unifier - .table - .unify - .unify_var_value(var, InferenceValue::Unbound(self.universe_index)) - .unwrap(); - } - Ok(var.to_lifetime(interner)) - } - - InferenceValue::Bound(l) => { - let l = l.assert_lifetime_ref(interner); - let l = l.clone().try_fold_with(self, outer_binder)?; - assert!(!l.needs_shift(interner)); - Ok(l) - } - } - } - - fn forbid_free_vars(&self) -> bool { - true - } - - fn interner(&self) -> I { - self.unifier.interner - } -} |