summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_trait_selection/src/solve/assembly.rs
blob: 31c1bc9ecc062c7870242474521939b59e2279ee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
//! Code shared by trait and projection goals for candidate assembly.

use super::infcx_ext::InferCtxtExt;
use super::{CanonicalResponse, Certainty, EvalCtxt, Goal, MaybeCause, QueryResult};
use rustc_hir::def_id::DefId;
use rustc_infer::traits::query::NoSolution;
use rustc_infer::traits::util::elaborate_predicates;
use rustc_middle::ty::TypeFoldable;
use rustc_middle::ty::{self, Ty, TyCtxt};
use std::fmt::Debug;

/// A candidate is a possible way to prove a goal.
///
/// It consists of both the `source`, which describes how that goal would be proven,
/// and the `result` when using the given `source`.
#[derive(Debug, Clone)]
pub(super) struct Candidate<'tcx> {
    pub(super) source: CandidateSource,
    pub(super) result: CanonicalResponse<'tcx>,
}

/// Possible ways the given goal can be proven.
#[derive(Debug, Clone, Copy)]
pub(super) enum CandidateSource {
    /// A user written impl.
    ///
    /// ## Examples
    ///
    /// ```rust
    /// fn main() {
    ///     let x: Vec<u32> = Vec::new();
    ///     // This uses the impl from the standard library to prove `Vec<T>: Clone`.
    ///     let y = x.clone();
    /// }
    /// ```
    Impl(DefId),
    /// A builtin impl generated by the compiler. When adding a new special
    /// trait, try to use actual impls whenever possible. Builtin impls should
    /// only be used in cases where the impl cannot be manually be written.
    ///
    /// Notable examples are auto traits, `Sized`, and `DiscriminantKind`.
    /// For a list of all traits with builtin impls, check out the
    /// [`EvalCtxt::assemble_builtin_impl_candidates`] method. Not
    BuiltinImpl,
    /// An assumption from the environment.
    ///
    /// More precicely we've used the `n-th` assumption in the `param_env`.
    ///
    /// ## Examples
    ///
    /// ```rust
    /// fn is_clone<T: Clone>(x: T) -> (T, T) {
    ///     // This uses the assumption `T: Clone` from the `where`-bounds
    ///     // to prove `T: Clone`.
    ///     (x.clone(), x)
    /// }
    /// ```
    ParamEnv(usize),
    /// If the self type is an alias type, e.g. an opaque type or a projection,
    /// we know the bounds on that alias to hold even without knowing its concrete
    /// underlying type.
    ///
    /// More precisely this candidate is using the `n-th` bound in the `item_bounds` of
    /// the self type.
    ///
    /// ## Examples
    ///
    /// ```rust
    /// trait Trait {
    ///     type Assoc: Clone;
    /// }
    ///
    /// fn foo<T: Trait>(x: <T as Trait>::Assoc) {
    ///     // We prove `<T as Trait>::Assoc` by looking at the bounds on `Assoc` in
    ///     // in the trait definition.
    ///     let _y = x.clone();
    /// }
    /// ```
    AliasBound(usize),
}

pub(super) trait GoalKind<'tcx>: TypeFoldable<'tcx> + Copy + Eq {
    fn self_ty(self) -> Ty<'tcx>;

    fn with_self_ty(self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> Self;

    fn trait_def_id(self, tcx: TyCtxt<'tcx>) -> DefId;

    fn consider_impl_candidate(
        ecx: &mut EvalCtxt<'_, 'tcx>,
        goal: Goal<'tcx, Self>,
        impl_def_id: DefId,
    ) -> QueryResult<'tcx>;

    fn consider_assumption(
        ecx: &mut EvalCtxt<'_, 'tcx>,
        goal: Goal<'tcx, Self>,
        assumption: ty::Predicate<'tcx>,
    ) -> QueryResult<'tcx>;

    fn consider_auto_trait_candidate(
        ecx: &mut EvalCtxt<'_, 'tcx>,
        goal: Goal<'tcx, Self>,
    ) -> QueryResult<'tcx>;

    fn consider_trait_alias_candidate(
        ecx: &mut EvalCtxt<'_, 'tcx>,
        goal: Goal<'tcx, Self>,
    ) -> QueryResult<'tcx>;

    fn consider_builtin_sized_candidate(
        ecx: &mut EvalCtxt<'_, 'tcx>,
        goal: Goal<'tcx, Self>,
    ) -> QueryResult<'tcx>;

    fn consider_builtin_copy_clone_candidate(
        ecx: &mut EvalCtxt<'_, 'tcx>,
        goal: Goal<'tcx, Self>,
    ) -> QueryResult<'tcx>;

    fn consider_builtin_pointer_sized_candidate(
        ecx: &mut EvalCtxt<'_, 'tcx>,
        goal: Goal<'tcx, Self>,
    ) -> QueryResult<'tcx>;

    fn consider_builtin_fn_trait_candidates(
        ecx: &mut EvalCtxt<'_, 'tcx>,
        goal: Goal<'tcx, Self>,
        kind: ty::ClosureKind,
    ) -> QueryResult<'tcx>;

    fn consider_builtin_tuple_candidate(
        ecx: &mut EvalCtxt<'_, 'tcx>,
        goal: Goal<'tcx, Self>,
    ) -> QueryResult<'tcx>;
}

impl<'tcx> EvalCtxt<'_, 'tcx> {
    pub(super) fn assemble_and_evaluate_candidates<G: GoalKind<'tcx>>(
        &mut self,
        goal: Goal<'tcx, G>,
    ) -> Vec<Candidate<'tcx>> {
        debug_assert_eq!(goal, self.infcx.resolve_vars_if_possible(goal));

        // HACK: `_: Trait` is ambiguous, because it may be satisfied via a builtin rule,
        // object bound, alias bound, etc. We are unable to determine this until we can at
        // least structually resolve the type one layer.
        if goal.predicate.self_ty().is_ty_var() {
            return vec![Candidate {
                source: CandidateSource::BuiltinImpl,
                result: self
                    .make_canonical_response(Certainty::Maybe(MaybeCause::Ambiguity))
                    .unwrap(),
            }];
        }

        let mut candidates = Vec::new();

        self.assemble_candidates_after_normalizing_self_ty(goal, &mut candidates);

        self.assemble_impl_candidates(goal, &mut candidates);

        self.assemble_builtin_impl_candidates(goal, &mut candidates);

        self.assemble_param_env_candidates(goal, &mut candidates);

        self.assemble_alias_bound_candidates(goal, &mut candidates);

        self.assemble_object_bound_candidates(goal, &mut candidates);

        candidates
    }

    /// If the self type of a goal is a projection, computing the relevant candidates is difficult.
    ///
    /// To deal with this, we first try to normalize the self type and add the candidates for the normalized
    /// self type to the list of candidates in case that succeeds. Note that we can't just eagerly return in
    /// this case as projections as self types add `
    fn assemble_candidates_after_normalizing_self_ty<G: GoalKind<'tcx>>(
        &mut self,
        goal: Goal<'tcx, G>,
        candidates: &mut Vec<Candidate<'tcx>>,
    ) {
        let tcx = self.tcx();
        // FIXME: We also have to normalize opaque types, not sure where to best fit that in.
        let &ty::Alias(ty::Projection, projection_ty) = goal.predicate.self_ty().kind() else {
            return
        };
        self.infcx.probe(|_| {
            let normalized_ty = self.infcx.next_ty_infer();
            let normalizes_to_goal = goal.with(
                tcx,
                ty::Binder::dummy(ty::ProjectionPredicate {
                    projection_ty,
                    term: normalized_ty.into(),
                }),
            );
            let normalization_certainty = match self.evaluate_goal(normalizes_to_goal) {
                Ok((_, certainty)) => certainty,
                Err(NoSolution) => return,
            };
            let normalized_ty = self.infcx.resolve_vars_if_possible(normalized_ty);

            // NOTE: Alternatively we could call `evaluate_goal` here and only have a `Normalized` candidate.
            // This doesn't work as long as we use `CandidateSource` in winnowing.
            let goal = goal.with(tcx, goal.predicate.with_self_ty(tcx, normalized_ty));
            // FIXME: This is broken if we care about the `usize` of `AliasBound` because the self type
            // could be normalized to yet another projection with different item bounds.
            let normalized_candidates = self.assemble_and_evaluate_candidates(goal);
            for mut normalized_candidate in normalized_candidates {
                normalized_candidate.result =
                    normalized_candidate.result.unchecked_map(|mut response| {
                        // FIXME: This currently hides overflow in the normalization step of the self type
                        // which is probably wrong. Maybe `unify_and` should actually keep overflow as
                        // we treat it as non-fatal anyways.
                        response.certainty = response.certainty.unify_and(normalization_certainty);
                        response
                    });
                candidates.push(normalized_candidate);
            }
        })
    }

    fn assemble_impl_candidates<G: GoalKind<'tcx>>(
        &mut self,
        goal: Goal<'tcx, G>,
        candidates: &mut Vec<Candidate<'tcx>>,
    ) {
        let tcx = self.tcx();
        tcx.for_each_relevant_impl(
            goal.predicate.trait_def_id(tcx),
            goal.predicate.self_ty(),
            |impl_def_id| match G::consider_impl_candidate(self, goal, impl_def_id) {
                Ok(result) => candidates
                    .push(Candidate { source: CandidateSource::Impl(impl_def_id), result }),
                Err(NoSolution) => (),
            },
        );
    }

    fn assemble_builtin_impl_candidates<G: GoalKind<'tcx>>(
        &mut self,
        goal: Goal<'tcx, G>,
        candidates: &mut Vec<Candidate<'tcx>>,
    ) {
        let lang_items = self.tcx().lang_items();
        let trait_def_id = goal.predicate.trait_def_id(self.tcx());
        let result = if self.tcx().trait_is_auto(trait_def_id) {
            G::consider_auto_trait_candidate(self, goal)
        } else if self.tcx().trait_is_alias(trait_def_id) {
            G::consider_trait_alias_candidate(self, goal)
        } else if lang_items.sized_trait() == Some(trait_def_id) {
            G::consider_builtin_sized_candidate(self, goal)
        } else if lang_items.copy_trait() == Some(trait_def_id)
            || lang_items.clone_trait() == Some(trait_def_id)
        {
            G::consider_builtin_copy_clone_candidate(self, goal)
        } else if lang_items.pointer_sized() == Some(trait_def_id) {
            G::consider_builtin_pointer_sized_candidate(self, goal)
        } else if let Some(kind) = self.tcx().fn_trait_kind_from_def_id(trait_def_id) {
            G::consider_builtin_fn_trait_candidates(self, goal, kind)
        } else if lang_items.tuple_trait() == Some(trait_def_id) {
            G::consider_builtin_tuple_candidate(self, goal)
        } else {
            Err(NoSolution)
        };

        match result {
            Ok(result) => {
                candidates.push(Candidate { source: CandidateSource::BuiltinImpl, result })
            }
            Err(NoSolution) => (),
        }
    }

    fn assemble_param_env_candidates<G: GoalKind<'tcx>>(
        &mut self,
        goal: Goal<'tcx, G>,
        candidates: &mut Vec<Candidate<'tcx>>,
    ) {
        for (i, assumption) in goal.param_env.caller_bounds().iter().enumerate() {
            match G::consider_assumption(self, goal, assumption) {
                Ok(result) => {
                    candidates.push(Candidate { source: CandidateSource::ParamEnv(i), result })
                }
                Err(NoSolution) => (),
            }
        }
    }

    fn assemble_alias_bound_candidates<G: GoalKind<'tcx>>(
        &mut self,
        goal: Goal<'tcx, G>,
        candidates: &mut Vec<Candidate<'tcx>>,
    ) {
        let alias_ty = match goal.predicate.self_ty().kind() {
            ty::Bool
            | ty::Char
            | ty::Int(_)
            | ty::Uint(_)
            | ty::Float(_)
            | ty::Adt(_, _)
            | ty::Foreign(_)
            | ty::Str
            | ty::Array(_, _)
            | ty::Slice(_)
            | ty::RawPtr(_)
            | ty::Ref(_, _, _)
            | ty::FnDef(_, _)
            | ty::FnPtr(_)
            | ty::Dynamic(..)
            | ty::Closure(..)
            | ty::Generator(..)
            | ty::GeneratorWitness(_)
            | ty::Never
            | ty::Tuple(_)
            | ty::Param(_)
            | ty::Placeholder(..)
            | ty::Infer(_)
            | ty::Error(_) => return,
            ty::Bound(..) => bug!("unexpected bound type: {goal:?}"),
            ty::Alias(_, alias_ty) => alias_ty,
        };

        for (i, (assumption, _)) in self
            .tcx()
            .bound_explicit_item_bounds(alias_ty.def_id)
            .subst_iter_copied(self.tcx(), alias_ty.substs)
            .enumerate()
        {
            match G::consider_assumption(self, goal, assumption) {
                Ok(result) => {
                    candidates.push(Candidate { source: CandidateSource::AliasBound(i), result })
                }
                Err(NoSolution) => (),
            }
        }
    }

    fn assemble_object_bound_candidates<G: GoalKind<'tcx>>(
        &mut self,
        goal: Goal<'tcx, G>,
        candidates: &mut Vec<Candidate<'tcx>>,
    ) {
        let self_ty = goal.predicate.self_ty();
        let bounds = match *self_ty.kind() {
            ty::Bool
            | ty::Char
            | ty::Int(_)
            | ty::Uint(_)
            | ty::Float(_)
            | ty::Adt(_, _)
            | ty::Foreign(_)
            | ty::Str
            | ty::Array(_, _)
            | ty::Slice(_)
            | ty::RawPtr(_)
            | ty::Ref(_, _, _)
            | ty::FnDef(_, _)
            | ty::FnPtr(_)
            | ty::Alias(..)
            | ty::Closure(..)
            | ty::Generator(..)
            | ty::GeneratorWitness(_)
            | ty::Never
            | ty::Tuple(_)
            | ty::Param(_)
            | ty::Placeholder(..)
            | ty::Infer(_)
            | ty::Error(_) => return,
            ty::Bound(..) => bug!("unexpected bound type: {goal:?}"),
            ty::Dynamic(bounds, ..) => bounds,
        };

        let tcx = self.tcx();
        for assumption in
            elaborate_predicates(tcx, bounds.iter().map(|bound| bound.with_self_ty(tcx, self_ty)))
        {
            match G::consider_assumption(self, goal, assumption.predicate) {
                Ok(result) => {
                    candidates.push(Candidate { source: CandidateSource::BuiltinImpl, result })
                }
                Err(NoSolution) => (),
            }
        }
    }
}