diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-21 11:44:51 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-21 11:44:51 +0000 |
commit | 9e3c08db40b8916968b9f30096c7be3f00ce9647 (patch) | |
tree | a68f146d7fa01f0134297619fbe7e33db084e0aa /third_party/highway/hwy/contrib | |
parent | Initial commit. (diff) | |
download | thunderbird-9e3c08db40b8916968b9f30096c7be3f00ce9647.tar.xz thunderbird-9e3c08db40b8916968b9f30096c7be3f00ce9647.zip |
Adding upstream version 1:115.7.0.upstream/1%115.7.0upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/highway/hwy/contrib')
52 files changed, 14020 insertions, 0 deletions
diff --git a/third_party/highway/hwy/contrib/algo/copy-inl.h b/third_party/highway/hwy/contrib/algo/copy-inl.h new file mode 100644 index 0000000000..033cf8a626 --- /dev/null +++ b/third_party/highway/hwy/contrib/algo/copy-inl.h @@ -0,0 +1,136 @@ +// Copyright 2022 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +// Per-target include guard +#if defined(HIGHWAY_HWY_CONTRIB_ALGO_COPY_INL_H_) == \ + defined(HWY_TARGET_TOGGLE) +#ifdef HIGHWAY_HWY_CONTRIB_ALGO_COPY_INL_H_ +#undef HIGHWAY_HWY_CONTRIB_ALGO_COPY_INL_H_ +#else +#define HIGHWAY_HWY_CONTRIB_ALGO_COPY_INL_H_ +#endif + +#include "hwy/highway.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +// These functions avoid having to write a loop plus remainder handling in the +// (unfortunately still common) case where arrays are not aligned/padded. If the +// inputs are known to be aligned/padded, it is more efficient to write a single +// loop using Load(). We do not provide a CopyAlignedPadded because it +// would be more verbose than such a loop. + +// Fills `to`[0, `count`) with `value`. +template <class D, typename T = TFromD<D>> +void Fill(D d, T value, size_t count, T* HWY_RESTRICT to) { + const size_t N = Lanes(d); + const Vec<D> v = Set(d, value); + + size_t idx = 0; + for (; idx + N <= count; idx += N) { + StoreU(v, d, to + idx); + } + + // `count` was a multiple of the vector length `N`: already done. + if (HWY_UNLIKELY(idx == count)) return; + + const size_t remaining = count - idx; + HWY_DASSERT(0 != remaining && remaining < N); + SafeFillN(remaining, value, d, to + idx); +} + +// Copies `from`[0, `count`) to `to`, which must not overlap `from`. +template <class D, typename T = TFromD<D>> +void Copy(D d, const T* HWY_RESTRICT from, size_t count, T* HWY_RESTRICT to) { + const size_t N = Lanes(d); + + size_t idx = 0; + for (; idx + N <= count; idx += N) { + const Vec<D> v = LoadU(d, from + idx); + StoreU(v, d, to + idx); + } + + // `count` was a multiple of the vector length `N`: already done. + if (HWY_UNLIKELY(idx == count)) return; + + const size_t remaining = count - idx; + HWY_DASSERT(0 != remaining && remaining < N); + SafeCopyN(remaining, d, from + idx, to + idx); +} + +// For idx in [0, count) in ascending order, appends `from[idx]` to `to` if the +// corresponding mask element of `func(d, v)` is true. Returns the STL-style end +// of the newly written elements in `to`. +// +// `func` is either a functor with a templated operator()(d, v) returning a +// mask, or a generic lambda if using C++14. Due to apparent limitations of +// Clang on Windows, it is currently necessary to add HWY_ATTR before the +// opening { of the lambda to avoid errors about "function .. requires target". +// +// NOTE: this is only supported for 16-, 32- or 64-bit types. +// NOTE: Func may be called a second time for elements it has already seen, but +// these elements will not be written to `to` again. +template <class D, class Func, typename T = TFromD<D>> +T* CopyIf(D d, const T* HWY_RESTRICT from, size_t count, T* HWY_RESTRICT to, + const Func& func) { + const size_t N = Lanes(d); + + size_t idx = 0; + for (; idx + N <= count; idx += N) { + const Vec<D> v = LoadU(d, from + idx); + to += CompressBlendedStore(v, func(d, v), d, to); + } + + // `count` was a multiple of the vector length `N`: already done. + if (HWY_UNLIKELY(idx == count)) return to; + +#if HWY_MEM_OPS_MIGHT_FAULT + // Proceed one by one. + const CappedTag<T, 1> d1; + for (; idx < count; ++idx) { + using V1 = Vec<decltype(d1)>; + // Workaround for -Waggressive-loop-optimizations on GCC 8 + // (iteration 2305843009213693951 invokes undefined behavior for T=i64) + const uintptr_t addr = reinterpret_cast<uintptr_t>(from); + const T* HWY_RESTRICT from_idx = + reinterpret_cast<const T * HWY_RESTRICT>(addr + (idx * sizeof(T))); + const V1 v = LoadU(d1, from_idx); + // Avoid storing to `to` unless we know it should be kept - otherwise, we + // might overrun the end if it was allocated for the exact count. + if (CountTrue(d1, func(d1, v)) == 0) continue; + StoreU(v, d1, to); + to += 1; + } +#else + // Start index of the last unaligned whole vector, ending at the array end. + const size_t last = count - N; + // Number of elements before `from` or already written. + const size_t invalid = idx - last; + HWY_DASSERT(0 != invalid && invalid < N); + const Mask<D> mask = Not(FirstN(d, invalid)); + const Vec<D> v = MaskedLoad(mask, d, from + last); + to += CompressBlendedStore(v, And(mask, func(d, v)), d, to); +#endif + return to; +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#endif // HIGHWAY_HWY_CONTRIB_ALGO_COPY_INL_H_ diff --git a/third_party/highway/hwy/contrib/algo/copy_test.cc b/third_party/highway/hwy/contrib/algo/copy_test.cc new file mode 100644 index 0000000000..e2675a39d7 --- /dev/null +++ b/third_party/highway/hwy/contrib/algo/copy_test.cc @@ -0,0 +1,199 @@ +// Copyright 2022 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "hwy/aligned_allocator.h" + +// clang-format off +#undef HWY_TARGET_INCLUDE +#define HWY_TARGET_INCLUDE "hwy/contrib/algo/copy_test.cc" +#include "hwy/foreach_target.h" // IWYU pragma: keep + +#include "hwy/contrib/algo/copy-inl.h" +#include "hwy/tests/test_util-inl.h" +// clang-format on + +// If your project requires C++14 or later, you can ignore this and pass lambdas +// directly to Transform, without requiring an lvalue as we do here for C++11. +#if __cplusplus < 201402L +#define HWY_GENERIC_LAMBDA 0 +#else +#define HWY_GENERIC_LAMBDA 1 +#endif + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +// Returns random integer in [0, 128), which fits in any lane type. +template <typename T> +T Random7Bit(RandomState& rng) { + return static_cast<T>(Random32(&rng) & 127); +} + +// In C++14, we can instead define these as generic lambdas next to where they +// are invoked. +#if !HWY_GENERIC_LAMBDA + +struct IsOdd { + template <class D, class V> + Mask<D> operator()(D d, V v) const { + return TestBit(v, Set(d, TFromD<D>{1})); + } +}; + +#endif // !HWY_GENERIC_LAMBDA + +// Invokes Test (e.g. TestCopyIf) with all arg combinations. T comes from +// ForFloatTypes. +template <class Test> +struct ForeachCountAndMisalign { + template <typename T, class D> + HWY_NOINLINE void operator()(T /*unused*/, D d) const { + RandomState rng; + const size_t N = Lanes(d); + const size_t misalignments[3] = {0, N / 4, 3 * N / 5}; + + for (size_t count = 0; count < 2 * N; ++count) { + for (size_t ma : misalignments) { + for (size_t mb : misalignments) { + Test()(d, count, ma, mb, rng); + } + } + } + } +}; + +struct TestFill { + template <class D> + void operator()(D d, size_t count, size_t misalign_a, size_t misalign_b, + RandomState& rng) { + using T = TFromD<D>; + // HWY_MAX prevents error when misalign == count == 0. + AlignedFreeUniquePtr<T[]> pa = + AllocateAligned<T>(HWY_MAX(1, misalign_a + count)); + T* expected = pa.get() + misalign_a; + const T value = Random7Bit<T>(rng); + for (size_t i = 0; i < count; ++i) { + expected[i] = value; + } + AlignedFreeUniquePtr<T[]> pb = AllocateAligned<T>(misalign_b + count + 1); + T* actual = pb.get() + misalign_b; + + actual[count] = T{0}; // sentinel + Fill(d, value, count, actual); + HWY_ASSERT_EQ(T{0}, actual[count]); // did not write past end + + const auto info = hwy::detail::MakeTypeInfo<T>(); + const char* target_name = hwy::TargetName(HWY_TARGET); + hwy::detail::AssertArrayEqual(info, expected, actual, count, target_name, + __FILE__, __LINE__); + } +}; + +void TestAllFill() { + ForAllTypes(ForPartialVectors<ForeachCountAndMisalign<TestFill>>()); +} + +struct TestCopy { + template <class D> + void operator()(D d, size_t count, size_t misalign_a, size_t misalign_b, + RandomState& rng) { + using T = TFromD<D>; + // Prevents error if size to allocate is zero. + AlignedFreeUniquePtr<T[]> pa = + AllocateAligned<T>(HWY_MAX(1, misalign_a + count)); + T* a = pa.get() + misalign_a; + for (size_t i = 0; i < count; ++i) { + a[i] = Random7Bit<T>(rng); + } + AlignedFreeUniquePtr<T[]> pb = + AllocateAligned<T>(HWY_MAX(1, misalign_b + count)); + T* b = pb.get() + misalign_b; + + Copy(d, a, count, b); + + const auto info = hwy::detail::MakeTypeInfo<T>(); + const char* target_name = hwy::TargetName(HWY_TARGET); + hwy::detail::AssertArrayEqual(info, a, b, count, target_name, __FILE__, + __LINE__); + } +}; + +void TestAllCopy() { + ForAllTypes(ForPartialVectors<ForeachCountAndMisalign<TestCopy>>()); +} + +struct TestCopyIf { + template <class D> + void operator()(D d, size_t count, size_t misalign_a, size_t misalign_b, + RandomState& rng) { + using T = TFromD<D>; + // Prevents error if size to allocate is zero. + AlignedFreeUniquePtr<T[]> pa = + AllocateAligned<T>(HWY_MAX(1, misalign_a + count)); + T* a = pa.get() + misalign_a; + for (size_t i = 0; i < count; ++i) { + a[i] = Random7Bit<T>(rng); + } + const size_t padding = Lanes(ScalableTag<T>()); + AlignedFreeUniquePtr<T[]> pb = + AllocateAligned<T>(HWY_MAX(1, misalign_b + count + padding)); + T* b = pb.get() + misalign_b; + + AlignedFreeUniquePtr<T[]> expected = AllocateAligned<T>(HWY_MAX(1, count)); + size_t num_odd = 0; + for (size_t i = 0; i < count; ++i) { + if (a[i] & 1) { + expected[num_odd++] = a[i]; + } + } + +#if HWY_GENERIC_LAMBDA + const auto is_odd = [](const auto d, const auto v) HWY_ATTR { + return TestBit(v, Set(d, TFromD<decltype(d)>{1})); + }; +#else + const IsOdd is_odd; +#endif + T* end = CopyIf(d, a, count, b, is_odd); + const size_t num_written = static_cast<size_t>(end - b); + HWY_ASSERT_EQ(num_odd, num_written); + + const auto info = hwy::detail::MakeTypeInfo<T>(); + const char* target_name = hwy::TargetName(HWY_TARGET); + hwy::detail::AssertArrayEqual(info, expected.get(), b, num_odd, target_name, + __FILE__, __LINE__); + } +}; + +void TestAllCopyIf() { + ForUI163264(ForPartialVectors<ForeachCountAndMisalign<TestCopyIf>>()); +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE + +namespace hwy { +HWY_BEFORE_TEST(CopyTest); +HWY_EXPORT_AND_TEST_P(CopyTest, TestAllFill); +HWY_EXPORT_AND_TEST_P(CopyTest, TestAllCopy); +HWY_EXPORT_AND_TEST_P(CopyTest, TestAllCopyIf); +} // namespace hwy + +#endif diff --git a/third_party/highway/hwy/contrib/algo/find-inl.h b/third_party/highway/hwy/contrib/algo/find-inl.h new file mode 100644 index 0000000000..388842e988 --- /dev/null +++ b/third_party/highway/hwy/contrib/algo/find-inl.h @@ -0,0 +1,109 @@ +// Copyright 2022 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +// Per-target include guard +#if defined(HIGHWAY_HWY_CONTRIB_ALGO_FIND_INL_H_) == \ + defined(HWY_TARGET_TOGGLE) +#ifdef HIGHWAY_HWY_CONTRIB_ALGO_FIND_INL_H_ +#undef HIGHWAY_HWY_CONTRIB_ALGO_FIND_INL_H_ +#else +#define HIGHWAY_HWY_CONTRIB_ALGO_FIND_INL_H_ +#endif + +#include "hwy/highway.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +// Returns index of the first element equal to `value` in `in[0, count)`, or +// `count` if not found. +template <class D, typename T = TFromD<D>> +size_t Find(D d, T value, const T* HWY_RESTRICT in, size_t count) { + const size_t N = Lanes(d); + const Vec<D> broadcasted = Set(d, value); + + size_t i = 0; + for (; i + N <= count; i += N) { + const intptr_t pos = FindFirstTrue(d, Eq(broadcasted, LoadU(d, in + i))); + if (pos >= 0) return i + static_cast<size_t>(pos); + } + + if (i != count) { +#if HWY_MEM_OPS_MIGHT_FAULT + // Scan single elements. + const CappedTag<T, 1> d1; + using V1 = Vec<decltype(d1)>; + const V1 broadcasted1 = Set(d1, GetLane(broadcasted)); + for (; i < count; ++i) { + if (AllTrue(d1, Eq(broadcasted1, LoadU(d1, in + i)))) { + return i; + } + } +#else + const size_t remaining = count - i; + HWY_DASSERT(0 != remaining && remaining < N); + const Mask<D> mask = FirstN(d, remaining); + const Vec<D> v = MaskedLoad(mask, d, in + i); + // Apply mask so that we don't 'find' the zero-padding from MaskedLoad. + const intptr_t pos = FindFirstTrue(d, And(Eq(broadcasted, v), mask)); + if (pos >= 0) return i + static_cast<size_t>(pos); +#endif // HWY_MEM_OPS_MIGHT_FAULT + } + + return count; // not found +} + +// Returns index of the first element in `in[0, count)` for which `func(d, vec)` +// returns true, otherwise `count`. +template <class D, class Func, typename T = TFromD<D>> +size_t FindIf(D d, const T* HWY_RESTRICT in, size_t count, const Func& func) { + const size_t N = Lanes(d); + + size_t i = 0; + for (; i + N <= count; i += N) { + const intptr_t pos = FindFirstTrue(d, func(d, LoadU(d, in + i))); + if (pos >= 0) return i + static_cast<size_t>(pos); + } + + if (i != count) { +#if HWY_MEM_OPS_MIGHT_FAULT + // Scan single elements. + const CappedTag<T, 1> d1; + for (; i < count; ++i) { + if (AllTrue(d1, func(d1, LoadU(d1, in + i)))) { + return i; + } + } +#else + const size_t remaining = count - i; + HWY_DASSERT(0 != remaining && remaining < N); + const Mask<D> mask = FirstN(d, remaining); + const Vec<D> v = MaskedLoad(mask, d, in + i); + // Apply mask so that we don't 'find' the zero-padding from MaskedLoad. + const intptr_t pos = FindFirstTrue(d, And(func(d, v), mask)); + if (pos >= 0) return i + static_cast<size_t>(pos); +#endif // HWY_MEM_OPS_MIGHT_FAULT + } + + return count; // not found +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#endif // HIGHWAY_HWY_CONTRIB_ALGO_FIND_INL_H_ diff --git a/third_party/highway/hwy/contrib/algo/find_test.cc b/third_party/highway/hwy/contrib/algo/find_test.cc new file mode 100644 index 0000000000..f438a18ba0 --- /dev/null +++ b/third_party/highway/hwy/contrib/algo/find_test.cc @@ -0,0 +1,219 @@ +// Copyright 2022 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include <algorithm> // std::find_if +#include <vector> + +#include "hwy/aligned_allocator.h" +#include "hwy/base.h" +#include "hwy/print.h" + +// clang-format off +#undef HWY_TARGET_INCLUDE +#define HWY_TARGET_INCLUDE "hwy/contrib/algo/find_test.cc" +#include "hwy/foreach_target.h" // IWYU pragma: keep + +#include "hwy/contrib/algo/find-inl.h" +#include "hwy/tests/test_util-inl.h" +// clang-format on + +// If your project requires C++14 or later, you can ignore this and pass lambdas +// directly to FindIf, without requiring an lvalue as we do here for C++11. +#if __cplusplus < 201402L +#define HWY_GENERIC_LAMBDA 0 +#else +#define HWY_GENERIC_LAMBDA 1 +#endif + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +// Returns random number in [-8, 8) - we use knowledge of the range to Find() +// values we know are not present. +template <typename T> +T Random(RandomState& rng) { + const int32_t bits = static_cast<int32_t>(Random32(&rng)) & 1023; + const double val = (bits - 512) / 64.0; + // Clamp negative to zero for unsigned types. + return static_cast<T>(HWY_MAX(hwy::LowestValue<T>(), val)); +} + +// In C++14, we can instead define these as generic lambdas next to where they +// are invoked. +#if !HWY_GENERIC_LAMBDA + +class GreaterThan { + public: + GreaterThan(int val) : val_(val) {} + template <class D, class V> + Mask<D> operator()(D d, V v) const { + return Gt(v, Set(d, static_cast<TFromD<D>>(val_))); + } + + private: + int val_; +}; + +#endif // !HWY_GENERIC_LAMBDA + +// Invokes Test (e.g. TestFind) with all arg combinations. +template <class Test> +struct ForeachCountAndMisalign { + template <typename T, class D> + HWY_NOINLINE void operator()(T /*unused*/, D d) const { + RandomState rng; + const size_t N = Lanes(d); + const size_t misalignments[3] = {0, N / 4, 3 * N / 5}; + + // Find() checks 8 vectors at a time, so we want to cover a fairly large + // range without oversampling (checking every possible count). + std::vector<size_t> counts(AdjustedReps(512)); + for (size_t& count : counts) { + count = static_cast<size_t>(rng()) % (16 * N + 1); + } + counts[0] = 0; // ensure we test count=0. + + for (size_t count : counts) { + for (size_t m : misalignments) { + Test()(d, count, m, rng); + } + } + } +}; + +struct TestFind { + template <class D> + void operator()(D d, size_t count, size_t misalign, RandomState& rng) { + using T = TFromD<D>; + // Must allocate at least one even if count is zero. + AlignedFreeUniquePtr<T[]> storage = + AllocateAligned<T>(HWY_MAX(1, misalign + count)); + T* in = storage.get() + misalign; + for (size_t i = 0; i < count; ++i) { + in[i] = Random<T>(rng); + } + + // For each position, search for that element (which we know is there) + for (size_t pos = 0; pos < count; ++pos) { + const size_t actual = Find(d, in[pos], in, count); + + // We may have found an earlier occurrence of the same value; ensure the + // value is the same, and that it is the first. + if (!IsEqual(in[pos], in[actual])) { + fprintf(stderr, "%s count %d, found %.15f at %d but wanted %.15f\n", + hwy::TypeName(T(), Lanes(d)).c_str(), static_cast<int>(count), + static_cast<double>(in[actual]), static_cast<int>(actual), + static_cast<double>(in[pos])); + HWY_ASSERT(false); + } + for (size_t i = 0; i < actual; ++i) { + if (IsEqual(in[i], in[pos])) { + fprintf(stderr, "%s count %d, found %f at %d but Find returned %d\n", + hwy::TypeName(T(), Lanes(d)).c_str(), static_cast<int>(count), + static_cast<double>(in[i]), static_cast<int>(i), + static_cast<int>(actual)); + HWY_ASSERT(false); + } + } + } + + // Also search for values we know not to be present (out of range) + HWY_ASSERT_EQ(count, Find(d, T{9}, in, count)); + HWY_ASSERT_EQ(count, Find(d, static_cast<T>(-9), in, count)); + } +}; + +void TestAllFind() { + ForAllTypes(ForPartialVectors<ForeachCountAndMisalign<TestFind>>()); +} + +struct TestFindIf { + template <class D> + void operator()(D d, size_t count, size_t misalign, RandomState& rng) { + using T = TFromD<D>; + using TI = MakeSigned<T>; + // Must allocate at least one even if count is zero. + AlignedFreeUniquePtr<T[]> storage = + AllocateAligned<T>(HWY_MAX(1, misalign + count)); + T* in = storage.get() + misalign; + for (size_t i = 0; i < count; ++i) { + in[i] = Random<T>(rng); + HWY_ASSERT(in[i] < 8); + HWY_ASSERT(!hwy::IsSigned<T>() || static_cast<TI>(in[i]) >= -8); + } + + bool found_any = false; + bool not_found_any = false; + + // unsigned T would be promoted to signed and compare greater than any + // negative val, whereas Set() would just cast to an unsigned value and the + // comparison remains unsigned, so avoid negative numbers there. + const int min_val = IsSigned<T>() ? -9 : 0; + // Includes out-of-range value 9 to test the not-found path. + for (int val = min_val; val <= 9; ++val) { +#if HWY_GENERIC_LAMBDA + const auto greater = [val](const auto d, const auto v) HWY_ATTR { + return Gt(v, Set(d, static_cast<T>(val))); + }; +#else + const GreaterThan greater(val); +#endif + const size_t actual = FindIf(d, in, count, greater); + found_any |= actual < count; + not_found_any |= actual == count; + + const auto pos = std::find_if( + in, in + count, [val](T x) { return x > static_cast<T>(val); }); + // Convert returned iterator to index. + const size_t expected = static_cast<size_t>(pos - in); + if (expected != actual) { + fprintf(stderr, "%s count %d val %d, expected %d actual %d\n", + hwy::TypeName(T(), Lanes(d)).c_str(), static_cast<int>(count), + val, static_cast<int>(expected), static_cast<int>(actual)); + hwy::detail::PrintArray(hwy::detail::MakeTypeInfo<T>(), "in", in, count, + 0, count); + HWY_ASSERT(false); + } + } + + // We will always not-find something due to val=9. + HWY_ASSERT(not_found_any); + // We'll find something unless the input is empty or {0} - because 0 > i + // is false for all i=[0,9]. + if (count != 0 && in[0] != 0) { + HWY_ASSERT(found_any); + } + } +}; + +void TestAllFindIf() { + ForAllTypes(ForPartialVectors<ForeachCountAndMisalign<TestFindIf>>()); +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE + +namespace hwy { +HWY_BEFORE_TEST(FindTest); +HWY_EXPORT_AND_TEST_P(FindTest, TestAllFind); +HWY_EXPORT_AND_TEST_P(FindTest, TestAllFindIf); +} // namespace hwy + +#endif diff --git a/third_party/highway/hwy/contrib/algo/transform-inl.h b/third_party/highway/hwy/contrib/algo/transform-inl.h new file mode 100644 index 0000000000..3e830acb47 --- /dev/null +++ b/third_party/highway/hwy/contrib/algo/transform-inl.h @@ -0,0 +1,262 @@ +// Copyright 2022 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +// Per-target include guard +#if defined(HIGHWAY_HWY_CONTRIB_ALGO_TRANSFORM_INL_H_) == \ + defined(HWY_TARGET_TOGGLE) +#ifdef HIGHWAY_HWY_CONTRIB_ALGO_TRANSFORM_INL_H_ +#undef HIGHWAY_HWY_CONTRIB_ALGO_TRANSFORM_INL_H_ +#else +#define HIGHWAY_HWY_CONTRIB_ALGO_TRANSFORM_INL_H_ +#endif + +#include "hwy/highway.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +// These functions avoid having to write a loop plus remainder handling in the +// (unfortunately still common) case where arrays are not aligned/padded. If the +// inputs are known to be aligned/padded, it is more efficient to write a single +// loop using Load(). We do not provide a TransformAlignedPadded because it +// would be more verbose than such a loop. +// +// Func is either a functor with a templated operator()(d, v[, v1[, v2]]), or a +// generic lambda if using C++14. Due to apparent limitations of Clang on +// Windows, it is currently necessary to add HWY_ATTR before the opening { of +// the lambda to avoid errors about "always_inline function .. requires target". +// +// If HWY_MEM_OPS_MIGHT_FAULT, we use scalar code instead of masking. Otherwise, +// we used `MaskedLoad` and `BlendedStore` to read/write the final partial +// vector. + +// Fills `out[0, count)` with the vectors returned by `func(d, index_vec)`, +// where `index_vec` is `Vec<RebindToUnsigned<D>>`. On the first call to `func`, +// the value of its lane i is i, and increases by `Lanes(d)` after every call. +// Note that some of these indices may be `>= count`, but the elements that +// `func` returns in those lanes will not be written to `out`. +template <class D, class Func, typename T = TFromD<D>> +void Generate(D d, T* HWY_RESTRICT out, size_t count, const Func& func) { + const RebindToUnsigned<D> du; + using TU = TFromD<decltype(du)>; + const size_t N = Lanes(d); + + size_t idx = 0; + Vec<decltype(du)> vidx = Iota(du, 0); + for (; idx + N <= count; idx += N) { + StoreU(func(d, vidx), d, out + idx); + vidx = Add(vidx, Set(du, static_cast<TU>(N))); + } + + // `count` was a multiple of the vector length `N`: already done. + if (HWY_UNLIKELY(idx == count)) return; + +#if HWY_MEM_OPS_MIGHT_FAULT + // Proceed one by one. + const CappedTag<T, 1> d1; + const RebindToUnsigned<decltype(d1)> du1; + for (; idx < count; ++idx) { + StoreU(func(d1, Set(du1, static_cast<TU>(idx))), d1, out + idx); + } +#else + const size_t remaining = count - idx; + HWY_DASSERT(0 != remaining && remaining < N); + const Mask<D> mask = FirstN(d, remaining); + BlendedStore(func(d, vidx), mask, d, out + idx); +#endif +} + +// Replaces `inout[idx]` with `func(d, inout[idx])`. Example usage: multiplying +// array elements by a constant. +template <class D, class Func, typename T = TFromD<D>> +void Transform(D d, T* HWY_RESTRICT inout, size_t count, const Func& func) { + const size_t N = Lanes(d); + + size_t idx = 0; + for (; idx + N <= count; idx += N) { + const Vec<D> v = LoadU(d, inout + idx); + StoreU(func(d, v), d, inout + idx); + } + + // `count` was a multiple of the vector length `N`: already done. + if (HWY_UNLIKELY(idx == count)) return; + +#if HWY_MEM_OPS_MIGHT_FAULT + // Proceed one by one. + const CappedTag<T, 1> d1; + for (; idx < count; ++idx) { + using V1 = Vec<decltype(d1)>; + const V1 v = LoadU(d1, inout + idx); + StoreU(func(d1, v), d1, inout + idx); + } +#else + const size_t remaining = count - idx; + HWY_DASSERT(0 != remaining && remaining < N); + const Mask<D> mask = FirstN(d, remaining); + const Vec<D> v = MaskedLoad(mask, d, inout + idx); + BlendedStore(func(d, v), mask, d, inout + idx); +#endif +} + +// Replaces `inout[idx]` with `func(d, inout[idx], in1[idx])`. Example usage: +// multiplying array elements by those of another array. +template <class D, class Func, typename T = TFromD<D>> +void Transform1(D d, T* HWY_RESTRICT inout, size_t count, + const T* HWY_RESTRICT in1, const Func& func) { + const size_t N = Lanes(d); + + size_t idx = 0; + for (; idx + N <= count; idx += N) { + const Vec<D> v = LoadU(d, inout + idx); + const Vec<D> v1 = LoadU(d, in1 + idx); + StoreU(func(d, v, v1), d, inout + idx); + } + + // `count` was a multiple of the vector length `N`: already done. + if (HWY_UNLIKELY(idx == count)) return; + +#if HWY_MEM_OPS_MIGHT_FAULT + // Proceed one by one. + const CappedTag<T, 1> d1; + for (; idx < count; ++idx) { + using V1 = Vec<decltype(d1)>; + const V1 v = LoadU(d1, inout + idx); + const V1 v1 = LoadU(d1, in1 + idx); + StoreU(func(d1, v, v1), d1, inout + idx); + } +#else + const size_t remaining = count - idx; + HWY_DASSERT(0 != remaining && remaining < N); + const Mask<D> mask = FirstN(d, remaining); + const Vec<D> v = MaskedLoad(mask, d, inout + idx); + const Vec<D> v1 = MaskedLoad(mask, d, in1 + idx); + BlendedStore(func(d, v, v1), mask, d, inout + idx); +#endif +} + +// Replaces `inout[idx]` with `func(d, inout[idx], in1[idx], in2[idx])`. Example +// usage: FMA of elements from three arrays, stored into the first array. +template <class D, class Func, typename T = TFromD<D>> +void Transform2(D d, T* HWY_RESTRICT inout, size_t count, + const T* HWY_RESTRICT in1, const T* HWY_RESTRICT in2, + const Func& func) { + const size_t N = Lanes(d); + + size_t idx = 0; + for (; idx + N <= count; idx += N) { + const Vec<D> v = LoadU(d, inout + idx); + const Vec<D> v1 = LoadU(d, in1 + idx); + const Vec<D> v2 = LoadU(d, in2 + idx); + StoreU(func(d, v, v1, v2), d, inout + idx); + } + + // `count` was a multiple of the vector length `N`: already done. + if (HWY_UNLIKELY(idx == count)) return; + +#if HWY_MEM_OPS_MIGHT_FAULT + // Proceed one by one. + const CappedTag<T, 1> d1; + for (; idx < count; ++idx) { + using V1 = Vec<decltype(d1)>; + const V1 v = LoadU(d1, inout + idx); + const V1 v1 = LoadU(d1, in1 + idx); + const V1 v2 = LoadU(d1, in2 + idx); + StoreU(func(d1, v, v1, v2), d1, inout + idx); + } +#else + const size_t remaining = count - idx; + HWY_DASSERT(0 != remaining && remaining < N); + const Mask<D> mask = FirstN(d, remaining); + const Vec<D> v = MaskedLoad(mask, d, inout + idx); + const Vec<D> v1 = MaskedLoad(mask, d, in1 + idx); + const Vec<D> v2 = MaskedLoad(mask, d, in2 + idx); + BlendedStore(func(d, v, v1, v2), mask, d, inout + idx); +#endif +} + +template <class D, typename T = TFromD<D>> +void Replace(D d, T* HWY_RESTRICT inout, size_t count, T new_t, T old_t) { + const size_t N = Lanes(d); + const Vec<D> old_v = Set(d, old_t); + const Vec<D> new_v = Set(d, new_t); + + size_t idx = 0; + for (; idx + N <= count; idx += N) { + Vec<D> v = LoadU(d, inout + idx); + StoreU(IfThenElse(Eq(v, old_v), new_v, v), d, inout + idx); + } + + // `count` was a multiple of the vector length `N`: already done. + if (HWY_UNLIKELY(idx == count)) return; + +#if HWY_MEM_OPS_MIGHT_FAULT + // Proceed one by one. + const CappedTag<T, 1> d1; + const Vec<decltype(d1)> old_v1 = Set(d1, old_t); + const Vec<decltype(d1)> new_v1 = Set(d1, new_t); + for (; idx < count; ++idx) { + using V1 = Vec<decltype(d1)>; + const V1 v1 = LoadU(d1, inout + idx); + StoreU(IfThenElse(Eq(v1, old_v1), new_v1, v1), d1, inout + idx); + } +#else + const size_t remaining = count - idx; + HWY_DASSERT(0 != remaining && remaining < N); + const Mask<D> mask = FirstN(d, remaining); + const Vec<D> v = MaskedLoad(mask, d, inout + idx); + BlendedStore(IfThenElse(Eq(v, old_v), new_v, v), mask, d, inout + idx); +#endif +} + +template <class D, class Func, typename T = TFromD<D>> +void ReplaceIf(D d, T* HWY_RESTRICT inout, size_t count, T new_t, + const Func& func) { + const size_t N = Lanes(d); + const Vec<D> new_v = Set(d, new_t); + + size_t idx = 0; + for (; idx + N <= count; idx += N) { + Vec<D> v = LoadU(d, inout + idx); + StoreU(IfThenElse(func(d, v), new_v, v), d, inout + idx); + } + + // `count` was a multiple of the vector length `N`: already done. + if (HWY_UNLIKELY(idx == count)) return; + +#if HWY_MEM_OPS_MIGHT_FAULT + // Proceed one by one. + const CappedTag<T, 1> d1; + const Vec<decltype(d1)> new_v1 = Set(d1, new_t); + for (; idx < count; ++idx) { + using V1 = Vec<decltype(d1)>; + const V1 v = LoadU(d1, inout + idx); + StoreU(IfThenElse(func(d1, v), new_v1, v), d1, inout + idx); + } +#else + const size_t remaining = count - idx; + HWY_DASSERT(0 != remaining && remaining < N); + const Mask<D> mask = FirstN(d, remaining); + const Vec<D> v = MaskedLoad(mask, d, inout + idx); + BlendedStore(IfThenElse(func(d, v), new_v, v), mask, d, inout + idx); +#endif +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#endif // HIGHWAY_HWY_CONTRIB_ALGO_TRANSFORM_INL_H_ diff --git a/third_party/highway/hwy/contrib/algo/transform_test.cc b/third_party/highway/hwy/contrib/algo/transform_test.cc new file mode 100644 index 0000000000..335607ccfb --- /dev/null +++ b/third_party/highway/hwy/contrib/algo/transform_test.cc @@ -0,0 +1,372 @@ +// Copyright 2022 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include <string.h> // memcpy + +#include "hwy/aligned_allocator.h" + +// clang-format off +#undef HWY_TARGET_INCLUDE +#define HWY_TARGET_INCLUDE "hwy/contrib/algo/transform_test.cc" //NOLINT +#include "hwy/foreach_target.h" // IWYU pragma: keep + +#include "hwy/contrib/algo/transform-inl.h" +#include "hwy/tests/test_util-inl.h" +// clang-format on + +// If your project requires C++14 or later, you can ignore this and pass lambdas +// directly to Transform, without requiring an lvalue as we do here for C++11. +#if __cplusplus < 201402L +#define HWY_GENERIC_LAMBDA 0 +#else +#define HWY_GENERIC_LAMBDA 1 +#endif + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +template <typename T> +T Alpha() { + return static_cast<T>(1.5); // arbitrary scalar +} + +// Returns random floating-point number in [-8, 8) to ensure computations do +// not exceed float32 precision. +template <typename T> +T Random(RandomState& rng) { + const int32_t bits = static_cast<int32_t>(Random32(&rng)) & 1023; + const double val = (bits - 512) / 64.0; + // Clamp negative to zero for unsigned types. + return static_cast<T>(HWY_MAX(hwy::LowestValue<T>(), val)); +} + +// SCAL, AXPY names are from BLAS. +template <typename T> +HWY_NOINLINE void SimpleSCAL(const T* x, T* out, size_t count) { + for (size_t i = 0; i < count; ++i) { + out[i] = Alpha<T>() * x[i]; + } +} + +template <typename T> +HWY_NOINLINE void SimpleAXPY(const T* x, const T* y, T* out, size_t count) { + for (size_t i = 0; i < count; ++i) { + out[i] = Alpha<T>() * x[i] + y[i]; + } +} + +template <typename T> +HWY_NOINLINE void SimpleFMA4(const T* x, const T* y, const T* z, T* out, + size_t count) { + for (size_t i = 0; i < count; ++i) { + out[i] = x[i] * y[i] + z[i]; + } +} + +// In C++14, we can instead define these as generic lambdas next to where they +// are invoked. +#if !HWY_GENERIC_LAMBDA + +// Generator that returns even numbers by doubling the output indices. +struct Gen2 { + template <class D, class VU> + Vec<D> operator()(D d, VU vidx) const { + return BitCast(d, Add(vidx, vidx)); + } +}; + +struct SCAL { + template <class D, class V> + Vec<D> operator()(D d, V v) const { + using T = TFromD<D>; + return Mul(Set(d, Alpha<T>()), v); + } +}; + +struct AXPY { + template <class D, class V> + Vec<D> operator()(D d, V v, V v1) const { + using T = TFromD<D>; + return MulAdd(Set(d, Alpha<T>()), v, v1); + } +}; + +struct FMA4 { + template <class D, class V> + Vec<D> operator()(D /*d*/, V v, V v1, V v2) const { + return MulAdd(v, v1, v2); + } +}; + +#endif // !HWY_GENERIC_LAMBDA + +// Invokes Test (e.g. TestTransform1) with all arg combinations. T comes from +// ForFloatTypes. +template <class Test> +struct ForeachCountAndMisalign { + template <typename T, class D> + HWY_NOINLINE void operator()(T /*unused*/, D d) const { + RandomState rng; + const size_t N = Lanes(d); + const size_t misalignments[3] = {0, N / 4, 3 * N / 5}; + + for (size_t count = 0; count < 2 * N; ++count) { + for (size_t ma : misalignments) { + for (size_t mb : misalignments) { + Test()(d, count, ma, mb, rng); + } + } + } + } +}; + +// Output-only, no loads +struct TestGenerate { + template <class D> + void operator()(D d, size_t count, size_t misalign_a, size_t /*misalign_b*/, + RandomState& /*rng*/) { + using T = TFromD<D>; + AlignedFreeUniquePtr<T[]> pa = AllocateAligned<T>(misalign_a + count + 1); + T* actual = pa.get() + misalign_a; + + AlignedFreeUniquePtr<T[]> expected = AllocateAligned<T>(HWY_MAX(1, count)); + for (size_t i = 0; i < count; ++i) { + expected[i] = static_cast<T>(2 * i); + } + + // TODO(janwas): can we update the apply_to in HWY_PUSH_ATTRIBUTES so that + // the attribute also applies to lambdas? If so, remove HWY_ATTR. +#if HWY_GENERIC_LAMBDA + const auto gen2 = [](const auto d, const auto vidx) + HWY_ATTR { return BitCast(d, Add(vidx, vidx)); }; +#else + const Gen2 gen2; +#endif + actual[count] = T{0}; // sentinel + Generate(d, actual, count, gen2); + HWY_ASSERT_EQ(T{0}, actual[count]); // did not write past end + + const auto info = hwy::detail::MakeTypeInfo<T>(); + const char* target_name = hwy::TargetName(HWY_TARGET); + hwy::detail::AssertArrayEqual(info, expected.get(), actual, count, + target_name, __FILE__, __LINE__); + } +}; + +// Zero extra input arrays +struct TestTransform { + template <class D> + void operator()(D d, size_t count, size_t misalign_a, size_t misalign_b, + RandomState& rng) { + if (misalign_b != 0) return; + using T = TFromD<D>; + // Prevents error if size to allocate is zero. + AlignedFreeUniquePtr<T[]> pa = + AllocateAligned<T>(HWY_MAX(1, misalign_a + count)); + T* a = pa.get() + misalign_a; + for (size_t i = 0; i < count; ++i) { + a[i] = Random<T>(rng); + } + + AlignedFreeUniquePtr<T[]> expected = AllocateAligned<T>(HWY_MAX(1, count)); + SimpleSCAL(a, expected.get(), count); + + // TODO(janwas): can we update the apply_to in HWY_PUSH_ATTRIBUTES so that + // the attribute also applies to lambdas? If so, remove HWY_ATTR. +#if HWY_GENERIC_LAMBDA + const auto scal = [](const auto d, const auto v) + HWY_ATTR { return Mul(Set(d, Alpha<T>()), v); }; +#else + const SCAL scal; +#endif + Transform(d, a, count, scal); + + const auto info = hwy::detail::MakeTypeInfo<T>(); + const char* target_name = hwy::TargetName(HWY_TARGET); + hwy::detail::AssertArrayEqual(info, expected.get(), a, count, target_name, + __FILE__, __LINE__); + } +}; + +// One extra input array +struct TestTransform1 { + template <class D> + void operator()(D d, size_t count, size_t misalign_a, size_t misalign_b, + RandomState& rng) { + using T = TFromD<D>; + // Prevents error if size to allocate is zero. + AlignedFreeUniquePtr<T[]> pa = + AllocateAligned<T>(HWY_MAX(1, misalign_a + count)); + AlignedFreeUniquePtr<T[]> pb = + AllocateAligned<T>(HWY_MAX(1, misalign_b + count)); + T* a = pa.get() + misalign_a; + T* b = pb.get() + misalign_b; + for (size_t i = 0; i < count; ++i) { + a[i] = Random<T>(rng); + b[i] = Random<T>(rng); + } + + AlignedFreeUniquePtr<T[]> expected = AllocateAligned<T>(HWY_MAX(1, count)); + SimpleAXPY(a, b, expected.get(), count); + +#if HWY_GENERIC_LAMBDA + const auto axpy = [](const auto d, const auto v, const auto v1) HWY_ATTR { + return MulAdd(Set(d, Alpha<T>()), v, v1); + }; +#else + const AXPY axpy; +#endif + Transform1(d, a, count, b, axpy); + + const auto info = hwy::detail::MakeTypeInfo<T>(); + const char* target_name = hwy::TargetName(HWY_TARGET); + hwy::detail::AssertArrayEqual(info, expected.get(), a, count, target_name, + __FILE__, __LINE__); + } +}; + +// Two extra input arrays +struct TestTransform2 { + template <class D> + void operator()(D d, size_t count, size_t misalign_a, size_t misalign_b, + RandomState& rng) { + using T = TFromD<D>; + // Prevents error if size to allocate is zero. + AlignedFreeUniquePtr<T[]> pa = + AllocateAligned<T>(HWY_MAX(1, misalign_a + count)); + AlignedFreeUniquePtr<T[]> pb = + AllocateAligned<T>(HWY_MAX(1, misalign_b + count)); + AlignedFreeUniquePtr<T[]> pc = + AllocateAligned<T>(HWY_MAX(1, misalign_a + count)); + T* a = pa.get() + misalign_a; + T* b = pb.get() + misalign_b; + T* c = pc.get() + misalign_a; + for (size_t i = 0; i < count; ++i) { + a[i] = Random<T>(rng); + b[i] = Random<T>(rng); + c[i] = Random<T>(rng); + } + + AlignedFreeUniquePtr<T[]> expected = AllocateAligned<T>(HWY_MAX(1, count)); + SimpleFMA4(a, b, c, expected.get(), count); + +#if HWY_GENERIC_LAMBDA + const auto fma4 = [](auto /*d*/, auto v, auto v1, auto v2) + HWY_ATTR { return MulAdd(v, v1, v2); }; +#else + const FMA4 fma4; +#endif + Transform2(d, a, count, b, c, fma4); + + const auto info = hwy::detail::MakeTypeInfo<T>(); + const char* target_name = hwy::TargetName(HWY_TARGET); + hwy::detail::AssertArrayEqual(info, expected.get(), a, count, target_name, + __FILE__, __LINE__); + } +}; + +template <typename T> +class IfEq { + public: + IfEq(T val) : val_(val) {} + + template <class D, class V> + Mask<D> operator()(D d, V v) const { + return Eq(v, Set(d, val_)); + } + + private: + T val_; +}; + +struct TestReplace { + template <class D> + void operator()(D d, size_t count, size_t misalign_a, size_t misalign_b, + RandomState& rng) { + if (misalign_b != 0) return; + if (count == 0) return; + using T = TFromD<D>; + AlignedFreeUniquePtr<T[]> pa = AllocateAligned<T>(misalign_a + count); + T* a = pa.get() + misalign_a; + for (size_t i = 0; i < count; ++i) { + a[i] = Random<T>(rng); + } + AlignedFreeUniquePtr<T[]> pb = AllocateAligned<T>(count); + + AlignedFreeUniquePtr<T[]> expected = AllocateAligned<T>(count); + + std::vector<size_t> positions(AdjustedReps(count)); + for (size_t& pos : positions) { + pos = static_cast<size_t>(rng()) % count; + } + + for (size_t pos = 0; pos < count; ++pos) { + const T old_t = a[pos]; + const T new_t = Random<T>(rng); + for (size_t i = 0; i < count; ++i) { + expected[i] = IsEqual(a[i], old_t) ? new_t : a[i]; + } + + // Copy so ReplaceIf gets the same input (and thus also outputs expected) + memcpy(pb.get(), a, count * sizeof(T)); + + Replace(d, a, count, new_t, old_t); + HWY_ASSERT_ARRAY_EQ(expected.get(), a, count); + + ReplaceIf(d, pb.get(), count, new_t, IfEq<T>(old_t)); + HWY_ASSERT_ARRAY_EQ(expected.get(), pb.get(), count); + } + } +}; + +void TestAllGenerate() { + // The test BitCast-s the indices, which does not work for floats. + ForIntegerTypes(ForPartialVectors<ForeachCountAndMisalign<TestGenerate>>()); +} + +void TestAllTransform() { + ForFloatTypes(ForPartialVectors<ForeachCountAndMisalign<TestTransform>>()); +} + +void TestAllTransform1() { + ForFloatTypes(ForPartialVectors<ForeachCountAndMisalign<TestTransform1>>()); +} + +void TestAllTransform2() { + ForFloatTypes(ForPartialVectors<ForeachCountAndMisalign<TestTransform2>>()); +} + +void TestAllReplace() { + ForFloatTypes(ForPartialVectors<ForeachCountAndMisalign<TestReplace>>()); +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE + +namespace hwy { +HWY_BEFORE_TEST(TransformTest); +HWY_EXPORT_AND_TEST_P(TransformTest, TestAllGenerate); +HWY_EXPORT_AND_TEST_P(TransformTest, TestAllTransform); +HWY_EXPORT_AND_TEST_P(TransformTest, TestAllTransform1); +HWY_EXPORT_AND_TEST_P(TransformTest, TestAllTransform2); +HWY_EXPORT_AND_TEST_P(TransformTest, TestAllReplace); +} // namespace hwy + +#endif diff --git a/third_party/highway/hwy/contrib/bit_pack/bit_pack-inl.h b/third_party/highway/hwy/contrib/bit_pack/bit_pack-inl.h new file mode 100644 index 0000000000..04d015453b --- /dev/null +++ b/third_party/highway/hwy/contrib/bit_pack/bit_pack-inl.h @@ -0,0 +1,2599 @@ +// Copyright 2022 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +// Per-target include guard +#if defined(HIGHWAY_HWY_CONTRIB_BIT_PACK_INL_H_) == \ + defined(HWY_TARGET_TOGGLE) +#ifdef HIGHWAY_HWY_CONTRIB_BIT_PACK_INL_H_ +#undef HIGHWAY_HWY_CONTRIB_BIT_PACK_INL_H_ +#else +#define HIGHWAY_HWY_CONTRIB_BIT_PACK_INL_H_ +#endif + +#include "hwy/highway.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +// The entry points are class templates specialized below for each number of +// bits. Each provides Pack and Unpack member functions which load (Pack) or +// store (Unpack) B raw vectors, and store (Pack) or load (Unpack) a number of +// packed vectors equal to kBits. B denotes the bits per lane: 8 for Pack8, 16 +// for Pack16, which is also the upper bound for kBits. +template <size_t kBits> // <= 8 +struct Pack8 {}; +template <size_t kBits> // <= 16 +struct Pack16 {}; + +template <> +struct Pack8<1> { + template <class D8> + HWY_INLINE void Pack(D8 d8, const uint8_t* HWY_RESTRICT raw, + uint8_t* HWY_RESTRICT packed_out) const { + const RepartitionToWide<decltype(d8)> d16; + using VU16 = Vec<decltype(d16)>; + const size_t N8 = Lanes(d8); + // 16-bit shifts avoid masking (bits will not cross 8-bit lanes). + const VU16 raw0 = BitCast(d16, LoadU(d8, raw + 0 * N8)); + const VU16 raw1 = BitCast(d16, LoadU(d8, raw + 1 * N8)); + const VU16 raw2 = BitCast(d16, LoadU(d8, raw + 2 * N8)); + const VU16 raw3 = BitCast(d16, LoadU(d8, raw + 3 * N8)); + const VU16 raw4 = BitCast(d16, LoadU(d8, raw + 4 * N8)); + const VU16 raw5 = BitCast(d16, LoadU(d8, raw + 5 * N8)); + const VU16 raw6 = BitCast(d16, LoadU(d8, raw + 6 * N8)); + const VU16 raw7 = BitCast(d16, LoadU(d8, raw + 7 * N8)); + + const VU16 packed = + Xor3(Or(ShiftLeft<7>(raw7), ShiftLeft<6>(raw6)), + Xor3(ShiftLeft<5>(raw5), ShiftLeft<4>(raw4), ShiftLeft<3>(raw3)), + Xor3(ShiftLeft<2>(raw2), ShiftLeft<1>(raw1), raw0)); + StoreU(BitCast(d8, packed), d8, packed_out); + } + + template <class D8> + HWY_INLINE void Unpack(D8 d8, const uint8_t* HWY_RESTRICT packed_in, + uint8_t* HWY_RESTRICT raw) const { + const RepartitionToWide<decltype(d8)> d16; + using VU16 = Vec<decltype(d16)>; + const size_t N8 = Lanes(d8); + const VU16 mask = Set(d16, 0x0101u); // LSB in each byte + + const VU16 packed = BitCast(d16, LoadU(d8, packed_in)); + + const VU16 raw0 = And(packed, mask); + StoreU(BitCast(d8, raw0), d8, raw + 0 * N8); + + const VU16 raw1 = And(ShiftRight<1>(packed), mask); + StoreU(BitCast(d8, raw1), d8, raw + 1 * N8); + + const VU16 raw2 = And(ShiftRight<2>(packed), mask); + StoreU(BitCast(d8, raw2), d8, raw + 2 * N8); + + const VU16 raw3 = And(ShiftRight<3>(packed), mask); + StoreU(BitCast(d8, raw3), d8, raw + 3 * N8); + + const VU16 raw4 = And(ShiftRight<4>(packed), mask); + StoreU(BitCast(d8, raw4), d8, raw + 4 * N8); + + const VU16 raw5 = And(ShiftRight<5>(packed), mask); + StoreU(BitCast(d8, raw5), d8, raw + 5 * N8); + + const VU16 raw6 = And(ShiftRight<6>(packed), mask); + StoreU(BitCast(d8, raw6), d8, raw + 6 * N8); + + const VU16 raw7 = And(ShiftRight<7>(packed), mask); + StoreU(BitCast(d8, raw7), d8, raw + 7 * N8); + } +}; // Pack8<1> + +template <> +struct Pack8<2> { + template <class D8> + HWY_INLINE void Pack(D8 d8, const uint8_t* HWY_RESTRICT raw, + uint8_t* HWY_RESTRICT packed_out) const { + const RepartitionToWide<decltype(d8)> d16; + using VU16 = Vec<decltype(d16)>; + const size_t N8 = Lanes(d8); + // 16-bit shifts avoid masking (bits will not cross 8-bit lanes). + const VU16 raw0 = BitCast(d16, LoadU(d8, raw + 0 * N8)); + const VU16 raw1 = BitCast(d16, LoadU(d8, raw + 1 * N8)); + const VU16 raw2 = BitCast(d16, LoadU(d8, raw + 2 * N8)); + const VU16 raw3 = BitCast(d16, LoadU(d8, raw + 3 * N8)); + const VU16 raw4 = BitCast(d16, LoadU(d8, raw + 4 * N8)); + const VU16 raw5 = BitCast(d16, LoadU(d8, raw + 5 * N8)); + const VU16 raw6 = BitCast(d16, LoadU(d8, raw + 6 * N8)); + const VU16 raw7 = BitCast(d16, LoadU(d8, raw + 7 * N8)); + + const VU16 packed0 = Xor3(ShiftLeft<6>(raw6), ShiftLeft<4>(raw4), + Or(ShiftLeft<2>(raw2), raw0)); + const VU16 packed1 = Xor3(ShiftLeft<6>(raw7), ShiftLeft<4>(raw5), + Or(ShiftLeft<2>(raw3), raw1)); + StoreU(BitCast(d8, packed0), d8, packed_out + 0 * N8); + StoreU(BitCast(d8, packed1), d8, packed_out + 1 * N8); + } + + template <class D8> + HWY_INLINE void Unpack(D8 d8, const uint8_t* HWY_RESTRICT packed_in, + uint8_t* HWY_RESTRICT raw) const { + const RepartitionToWide<decltype(d8)> d16; + using VU16 = Vec<decltype(d16)>; + const size_t N8 = Lanes(d8); + const VU16 mask = Set(d16, 0x0303u); // Lowest 2 bits per byte + + const VU16 packed0 = BitCast(d16, LoadU(d8, packed_in + 0 * N8)); + const VU16 packed1 = BitCast(d16, LoadU(d8, packed_in + 1 * N8)); + + const VU16 raw0 = And(packed0, mask); + StoreU(BitCast(d8, raw0), d8, raw + 0 * N8); + + const VU16 raw1 = And(packed1, mask); + StoreU(BitCast(d8, raw1), d8, raw + 1 * N8); + + const VU16 raw2 = And(ShiftRight<2>(packed0), mask); + StoreU(BitCast(d8, raw2), d8, raw + 2 * N8); + + const VU16 raw3 = And(ShiftRight<2>(packed1), mask); + StoreU(BitCast(d8, raw3), d8, raw + 3 * N8); + + const VU16 raw4 = And(ShiftRight<4>(packed0), mask); + StoreU(BitCast(d8, raw4), d8, raw + 4 * N8); + + const VU16 raw5 = And(ShiftRight<4>(packed1), mask); + StoreU(BitCast(d8, raw5), d8, raw + 5 * N8); + + const VU16 raw6 = And(ShiftRight<6>(packed0), mask); + StoreU(BitCast(d8, raw6), d8, raw + 6 * N8); + + const VU16 raw7 = And(ShiftRight<6>(packed1), mask); + StoreU(BitCast(d8, raw7), d8, raw + 7 * N8); + } +}; // Pack8<2> + +template <> +struct Pack8<3> { + template <class D8> + HWY_INLINE void Pack(D8 d8, const uint8_t* HWY_RESTRICT raw, + uint8_t* HWY_RESTRICT packed_out) const { + const RepartitionToWide<decltype(d8)> d16; + using VU16 = Vec<decltype(d16)>; + const size_t N8 = Lanes(d8); + const VU16 raw0 = BitCast(d16, LoadU(d8, raw + 0 * N8)); + const VU16 raw1 = BitCast(d16, LoadU(d8, raw + 1 * N8)); + const VU16 raw2 = BitCast(d16, LoadU(d8, raw + 2 * N8)); + const VU16 raw3 = BitCast(d16, LoadU(d8, raw + 3 * N8)); + const VU16 raw4 = BitCast(d16, LoadU(d8, raw + 4 * N8)); + const VU16 raw5 = BitCast(d16, LoadU(d8, raw + 5 * N8)); + const VU16 raw6 = BitCast(d16, LoadU(d8, raw + 6 * N8)); + const VU16 raw7 = BitCast(d16, LoadU(d8, raw + 7 * N8)); + + // The upper two bits of these three will be filled with packed3 (6 bits). + VU16 packed0 = Or(ShiftLeft<3>(raw4), raw0); + VU16 packed1 = Or(ShiftLeft<3>(raw5), raw1); + VU16 packed2 = Or(ShiftLeft<3>(raw6), raw2); + const VU16 packed3 = Or(ShiftLeft<3>(raw7), raw3); + + const VU16 hi2 = Set(d16, 0xC0C0u); + packed0 = OrAnd(packed0, ShiftLeft<2>(packed3), hi2); + packed1 = OrAnd(packed1, ShiftLeft<4>(packed3), hi2); + packed2 = OrAnd(packed2, ShiftLeft<6>(packed3), hi2); + StoreU(BitCast(d8, packed0), d8, packed_out + 0 * N8); + StoreU(BitCast(d8, packed1), d8, packed_out + 1 * N8); + StoreU(BitCast(d8, packed2), d8, packed_out + 2 * N8); + } + + template <class D8> + HWY_INLINE void Unpack(D8 d8, const uint8_t* HWY_RESTRICT packed_in, + uint8_t* HWY_RESTRICT raw) const { + const RepartitionToWide<decltype(d8)> d16; + using VU16 = Vec<decltype(d16)>; + const size_t N8 = Lanes(d8); + const VU16 mask = Set(d16, 0x0707u); // Lowest 3 bits per byte + + const VU16 packed0 = BitCast(d16, LoadU(d8, packed_in + 0 * N8)); + const VU16 packed1 = BitCast(d16, LoadU(d8, packed_in + 1 * N8)); + const VU16 packed2 = BitCast(d16, LoadU(d8, packed_in + 2 * N8)); + + const VU16 raw0 = And(packed0, mask); + StoreU(BitCast(d8, raw0), d8, raw + 0 * N8); + + const VU16 raw1 = And(packed1, mask); + StoreU(BitCast(d8, raw1), d8, raw + 1 * N8); + + const VU16 raw2 = And(packed2, mask); + StoreU(BitCast(d8, raw2), d8, raw + 2 * N8); + + const VU16 raw4 = And(ShiftRight<3>(packed0), mask); + StoreU(BitCast(d8, raw4), d8, raw + 4 * N8); + + const VU16 raw5 = And(ShiftRight<3>(packed1), mask); + StoreU(BitCast(d8, raw5), d8, raw + 5 * N8); + + const VU16 raw6 = And(ShiftRight<3>(packed2), mask); + StoreU(BitCast(d8, raw6), d8, raw + 6 * N8); + + // raw73 is the concatenation of the upper two bits in packed0..2. + const VU16 hi2 = Set(d16, 0xC0C0u); + const VU16 raw73 = Xor3(ShiftRight<6>(And(packed2, hi2)), // + ShiftRight<4>(And(packed1, hi2)), + ShiftRight<2>(And(packed0, hi2))); + + const VU16 raw3 = And(mask, raw73); + StoreU(BitCast(d8, raw3), d8, raw + 3 * N8); + + const VU16 raw7 = And(mask, ShiftRight<3>(raw73)); + StoreU(BitCast(d8, raw7), d8, raw + 7 * N8); + } +}; // Pack8<3> + +template <> +struct Pack8<4> { + template <class D8> + HWY_INLINE void Pack(D8 d8, const uint8_t* HWY_RESTRICT raw, + uint8_t* HWY_RESTRICT packed_out) const { + const RepartitionToWide<decltype(d8)> d16; + using VU16 = Vec<decltype(d16)>; + const size_t N8 = Lanes(d8); + // 16-bit shifts avoid masking (bits will not cross 8-bit lanes). + const VU16 raw0 = BitCast(d16, LoadU(d8, raw + 0 * N8)); + const VU16 raw1 = BitCast(d16, LoadU(d8, raw + 1 * N8)); + const VU16 raw2 = BitCast(d16, LoadU(d8, raw + 2 * N8)); + const VU16 raw3 = BitCast(d16, LoadU(d8, raw + 3 * N8)); + const VU16 raw4 = BitCast(d16, LoadU(d8, raw + 4 * N8)); + const VU16 raw5 = BitCast(d16, LoadU(d8, raw + 5 * N8)); + const VU16 raw6 = BitCast(d16, LoadU(d8, raw + 6 * N8)); + const VU16 raw7 = BitCast(d16, LoadU(d8, raw + 7 * N8)); + + const VU16 packed0 = Or(ShiftLeft<4>(raw2), raw0); + const VU16 packed1 = Or(ShiftLeft<4>(raw3), raw1); + const VU16 packed2 = Or(ShiftLeft<4>(raw6), raw4); + const VU16 packed3 = Or(ShiftLeft<4>(raw7), raw5); + + StoreU(BitCast(d8, packed0), d8, packed_out + 0 * N8); + StoreU(BitCast(d8, packed1), d8, packed_out + 1 * N8); + StoreU(BitCast(d8, packed2), d8, packed_out + 2 * N8); + StoreU(BitCast(d8, packed3), d8, packed_out + 3 * N8); + } + + template <class D8> + HWY_INLINE void Unpack(D8 d8, const uint8_t* HWY_RESTRICT packed_in, + uint8_t* HWY_RESTRICT raw) const { + const RepartitionToWide<decltype(d8)> d16; + using VU16 = Vec<decltype(d16)>; + const size_t N8 = Lanes(d8); + const VU16 mask = Set(d16, 0x0F0Fu); // Lowest 4 bits per byte + + const VU16 packed0 = BitCast(d16, LoadU(d8, packed_in + 0 * N8)); + const VU16 packed1 = BitCast(d16, LoadU(d8, packed_in + 1 * N8)); + const VU16 packed2 = BitCast(d16, LoadU(d8, packed_in + 2 * N8)); + const VU16 packed3 = BitCast(d16, LoadU(d8, packed_in + 3 * N8)); + + const VU16 raw0 = And(packed0, mask); + StoreU(BitCast(d8, raw0), d8, raw + 0 * N8); + + const VU16 raw1 = And(packed1, mask); + StoreU(BitCast(d8, raw1), d8, raw + 1 * N8); + + const VU16 raw2 = And(ShiftRight<4>(packed0), mask); + StoreU(BitCast(d8, raw2), d8, raw + 2 * N8); + + const VU16 raw3 = And(ShiftRight<4>(packed1), mask); + StoreU(BitCast(d8, raw3), d8, raw + 3 * N8); + + const VU16 raw4 = And(packed2, mask); + StoreU(BitCast(d8, raw4), d8, raw + 4 * N8); + + const VU16 raw5 = And(packed3, mask); + StoreU(BitCast(d8, raw5), d8, raw + 5 * N8); + + const VU16 raw6 = And(ShiftRight<4>(packed2), mask); + StoreU(BitCast(d8, raw6), d8, raw + 6 * N8); + + const VU16 raw7 = And(ShiftRight<4>(packed3), mask); + StoreU(BitCast(d8, raw7), d8, raw + 7 * N8); + } +}; // Pack8<4> + +template <> +struct Pack8<5> { + template <class D8> + HWY_INLINE void Pack(D8 d8, const uint8_t* HWY_RESTRICT raw, + uint8_t* HWY_RESTRICT packed_out) const { + const RepartitionToWide<decltype(d8)> d16; + using VU16 = Vec<decltype(d16)>; + const size_t N8 = Lanes(d8); + const VU16 raw0 = BitCast(d16, LoadU(d8, raw + 0 * N8)); + const VU16 raw1 = BitCast(d16, LoadU(d8, raw + 1 * N8)); + const VU16 raw2 = BitCast(d16, LoadU(d8, raw + 2 * N8)); + const VU16 raw3 = BitCast(d16, LoadU(d8, raw + 3 * N8)); + const VU16 raw4 = BitCast(d16, LoadU(d8, raw + 4 * N8)); + const VU16 raw5 = BitCast(d16, LoadU(d8, raw + 5 * N8)); + const VU16 raw6 = BitCast(d16, LoadU(d8, raw + 6 * N8)); + const VU16 raw7 = BitCast(d16, LoadU(d8, raw + 7 * N8)); + + // Fill upper three bits with upper bits from raw4..7. + const VU16 hi3 = Set(d16, 0xE0E0u); + const VU16 packed0 = OrAnd(raw0, ShiftLeft<3>(raw4), hi3); + const VU16 packed1 = OrAnd(raw1, ShiftLeft<3>(raw5), hi3); + const VU16 packed2 = OrAnd(raw2, ShiftLeft<3>(raw6), hi3); + const VU16 packed3 = OrAnd(raw3, ShiftLeft<3>(raw7), hi3); + + StoreU(BitCast(d8, packed0), d8, packed_out + 0 * N8); + StoreU(BitCast(d8, packed1), d8, packed_out + 1 * N8); + StoreU(BitCast(d8, packed2), d8, packed_out + 2 * N8); + StoreU(BitCast(d8, packed3), d8, packed_out + 3 * N8); + + // Combine lower two bits of raw4..7 into packed4. + const VU16 lo2 = Set(d16, 0x0303u); + const VU16 packed4 = Or(And(raw4, lo2), Xor3(ShiftLeft<2>(And(raw5, lo2)), + ShiftLeft<4>(And(raw6, lo2)), + ShiftLeft<6>(And(raw7, lo2)))); + StoreU(BitCast(d8, packed4), d8, packed_out + 4 * N8); + } + + template <class D8> + HWY_INLINE void Unpack(D8 d8, const uint8_t* HWY_RESTRICT packed_in, + uint8_t* HWY_RESTRICT raw) const { + const RepartitionToWide<decltype(d8)> d16; + using VU16 = Vec<decltype(d16)>; + const size_t N8 = Lanes(d8); + + const VU16 packed0 = BitCast(d16, LoadU(d8, packed_in + 0 * N8)); + const VU16 packed1 = BitCast(d16, LoadU(d8, packed_in + 1 * N8)); + const VU16 packed2 = BitCast(d16, LoadU(d8, packed_in + 2 * N8)); + const VU16 packed3 = BitCast(d16, LoadU(d8, packed_in + 3 * N8)); + const VU16 packed4 = BitCast(d16, LoadU(d8, packed_in + 4 * N8)); + + const VU16 mask = Set(d16, 0x1F1Fu); // Lowest 5 bits per byte + + const VU16 raw0 = And(packed0, mask); + StoreU(BitCast(d8, raw0), d8, raw + 0 * N8); + + const VU16 raw1 = And(packed1, mask); + StoreU(BitCast(d8, raw1), d8, raw + 1 * N8); + + const VU16 raw2 = And(packed2, mask); + StoreU(BitCast(d8, raw2), d8, raw + 2 * N8); + + const VU16 raw3 = And(packed3, mask); + StoreU(BitCast(d8, raw3), d8, raw + 3 * N8); + + // The upper bits are the top 3 bits shifted right by three. + const VU16 top4 = ShiftRight<3>(AndNot(mask, packed0)); + const VU16 top5 = ShiftRight<3>(AndNot(mask, packed1)); + const VU16 top6 = ShiftRight<3>(AndNot(mask, packed2)); + const VU16 top7 = ShiftRight<3>(AndNot(mask, packed3)); + + // Insert the lower 2 bits, which were concatenated into a byte. + const VU16 lo2 = Set(d16, 0x0303u); + const VU16 raw4 = OrAnd(top4, lo2, packed4); + const VU16 raw5 = OrAnd(top5, lo2, ShiftRight<2>(packed4)); + const VU16 raw6 = OrAnd(top6, lo2, ShiftRight<4>(packed4)); + const VU16 raw7 = OrAnd(top7, lo2, ShiftRight<6>(packed4)); + + StoreU(BitCast(d8, raw4), d8, raw + 4 * N8); + StoreU(BitCast(d8, raw5), d8, raw + 5 * N8); + StoreU(BitCast(d8, raw6), d8, raw + 6 * N8); + StoreU(BitCast(d8, raw7), d8, raw + 7 * N8); + } +}; // Pack8<5> + +template <> +struct Pack8<6> { + template <class D8> + HWY_INLINE void Pack(D8 d8, const uint8_t* HWY_RESTRICT raw, + uint8_t* HWY_RESTRICT packed_out) const { + const RepartitionToWide<decltype(d8)> d16; + using VU16 = Vec<decltype(d16)>; + const size_t N8 = Lanes(d8); + const VU16 raw0 = BitCast(d16, LoadU(d8, raw + 0 * N8)); + const VU16 raw1 = BitCast(d16, LoadU(d8, raw + 1 * N8)); + const VU16 raw2 = BitCast(d16, LoadU(d8, raw + 2 * N8)); + const VU16 raw3 = BitCast(d16, LoadU(d8, raw + 3 * N8)); + const VU16 raw4 = BitCast(d16, LoadU(d8, raw + 4 * N8)); + const VU16 raw5 = BitCast(d16, LoadU(d8, raw + 5 * N8)); + const VU16 raw6 = BitCast(d16, LoadU(d8, raw + 6 * N8)); + const VU16 raw7 = BitCast(d16, LoadU(d8, raw + 7 * N8)); + + const VU16 hi2 = Set(d16, 0xC0C0u); + // Each triplet of these stores raw3/raw7 (6 bits) in the upper 2 bits. + const VU16 packed0 = OrAnd(raw0, ShiftLeft<2>(raw3), hi2); + const VU16 packed1 = OrAnd(raw1, ShiftLeft<4>(raw3), hi2); + const VU16 packed2 = OrAnd(raw2, ShiftLeft<6>(raw3), hi2); + const VU16 packed3 = OrAnd(raw4, ShiftLeft<2>(raw7), hi2); + const VU16 packed4 = OrAnd(raw5, ShiftLeft<4>(raw7), hi2); + const VU16 packed5 = OrAnd(raw6, ShiftLeft<6>(raw7), hi2); + + StoreU(BitCast(d8, packed0), d8, packed_out + 0 * N8); + StoreU(BitCast(d8, packed1), d8, packed_out + 1 * N8); + StoreU(BitCast(d8, packed2), d8, packed_out + 2 * N8); + StoreU(BitCast(d8, packed3), d8, packed_out + 3 * N8); + StoreU(BitCast(d8, packed4), d8, packed_out + 4 * N8); + StoreU(BitCast(d8, packed5), d8, packed_out + 5 * N8); + } + + template <class D8> + HWY_INLINE void Unpack(D8 d8, const uint8_t* HWY_RESTRICT packed_in, + uint8_t* HWY_RESTRICT raw) const { + const RepartitionToWide<decltype(d8)> d16; + using VU16 = Vec<decltype(d16)>; + const size_t N8 = Lanes(d8); + const VU16 mask = Set(d16, 0x3F3Fu); // Lowest 6 bits per byte + + const VU16 packed0 = BitCast(d16, LoadU(d8, packed_in + 0 * N8)); + const VU16 packed1 = BitCast(d16, LoadU(d8, packed_in + 1 * N8)); + const VU16 packed2 = BitCast(d16, LoadU(d8, packed_in + 2 * N8)); + const VU16 packed3 = BitCast(d16, LoadU(d8, packed_in + 3 * N8)); + const VU16 packed4 = BitCast(d16, LoadU(d8, packed_in + 4 * N8)); + const VU16 packed5 = BitCast(d16, LoadU(d8, packed_in + 5 * N8)); + + const VU16 raw0 = And(packed0, mask); + StoreU(BitCast(d8, raw0), d8, raw + 0 * N8); + + const VU16 raw1 = And(packed1, mask); + StoreU(BitCast(d8, raw1), d8, raw + 1 * N8); + + const VU16 raw2 = And(packed2, mask); + StoreU(BitCast(d8, raw2), d8, raw + 2 * N8); + + const VU16 raw4 = And(packed3, mask); + StoreU(BitCast(d8, raw4), d8, raw + 4 * N8); + + const VU16 raw5 = And(packed4, mask); + StoreU(BitCast(d8, raw5), d8, raw + 5 * N8); + + const VU16 raw6 = And(packed5, mask); + StoreU(BitCast(d8, raw6), d8, raw + 6 * N8); + + // raw3/7 are the concatenation of the upper two bits in packed0..2. + const VU16 raw3 = Xor3(ShiftRight<6>(AndNot(mask, packed2)), + ShiftRight<4>(AndNot(mask, packed1)), + ShiftRight<2>(AndNot(mask, packed0))); + const VU16 raw7 = Xor3(ShiftRight<6>(AndNot(mask, packed5)), + ShiftRight<4>(AndNot(mask, packed4)), + ShiftRight<2>(AndNot(mask, packed3))); + StoreU(BitCast(d8, raw3), d8, raw + 3 * N8); + StoreU(BitCast(d8, raw7), d8, raw + 7 * N8); + } +}; // Pack8<6> + +template <> +struct Pack8<7> { + template <class D8> + HWY_INLINE void Pack(D8 d8, const uint8_t* HWY_RESTRICT raw, + uint8_t* HWY_RESTRICT packed_out) const { + const RepartitionToWide<decltype(d8)> d16; + using VU16 = Vec<decltype(d16)>; + const size_t N8 = Lanes(d8); + const VU16 raw0 = BitCast(d16, LoadU(d8, raw + 0 * N8)); + const VU16 raw1 = BitCast(d16, LoadU(d8, raw + 1 * N8)); + const VU16 raw2 = BitCast(d16, LoadU(d8, raw + 2 * N8)); + const VU16 raw3 = BitCast(d16, LoadU(d8, raw + 3 * N8)); + const VU16 raw4 = BitCast(d16, LoadU(d8, raw + 4 * N8)); + const VU16 raw5 = BitCast(d16, LoadU(d8, raw + 5 * N8)); + const VU16 raw6 = BitCast(d16, LoadU(d8, raw + 6 * N8)); + // Inserted into top bit of packed0..6. + const VU16 raw7 = BitCast(d16, LoadU(d8, raw + 7 * N8)); + + const VU16 hi1 = Set(d16, 0x8080u); + const VU16 packed0 = OrAnd(raw0, Add(raw7, raw7), hi1); + const VU16 packed1 = OrAnd(raw1, ShiftLeft<2>(raw7), hi1); + const VU16 packed2 = OrAnd(raw2, ShiftLeft<3>(raw7), hi1); + const VU16 packed3 = OrAnd(raw3, ShiftLeft<4>(raw7), hi1); + const VU16 packed4 = OrAnd(raw4, ShiftLeft<5>(raw7), hi1); + const VU16 packed5 = OrAnd(raw5, ShiftLeft<6>(raw7), hi1); + const VU16 packed6 = OrAnd(raw6, ShiftLeft<7>(raw7), hi1); + + StoreU(BitCast(d8, packed0), d8, packed_out + 0 * N8); + StoreU(BitCast(d8, packed1), d8, packed_out + 1 * N8); + StoreU(BitCast(d8, packed2), d8, packed_out + 2 * N8); + StoreU(BitCast(d8, packed3), d8, packed_out + 3 * N8); + StoreU(BitCast(d8, packed4), d8, packed_out + 4 * N8); + StoreU(BitCast(d8, packed5), d8, packed_out + 5 * N8); + StoreU(BitCast(d8, packed6), d8, packed_out + 6 * N8); + } + + template <class D8> + HWY_INLINE void Unpack(D8 d8, const uint8_t* HWY_RESTRICT packed_in, + uint8_t* HWY_RESTRICT raw) const { + const RepartitionToWide<decltype(d8)> d16; + using VU16 = Vec<decltype(d16)>; + const size_t N8 = Lanes(d8); + + const VU16 packed0 = BitCast(d16, LoadU(d8, packed_in + 0 * N8)); + const VU16 packed1 = BitCast(d16, LoadU(d8, packed_in + 1 * N8)); + const VU16 packed2 = BitCast(d16, LoadU(d8, packed_in + 2 * N8)); + const VU16 packed3 = BitCast(d16, LoadU(d8, packed_in + 3 * N8)); + const VU16 packed4 = BitCast(d16, LoadU(d8, packed_in + 4 * N8)); + const VU16 packed5 = BitCast(d16, LoadU(d8, packed_in + 5 * N8)); + const VU16 packed6 = BitCast(d16, LoadU(d8, packed_in + 6 * N8)); + + const VU16 mask = Set(d16, 0x7F7Fu); // Lowest 7 bits per byte + + const VU16 raw0 = And(packed0, mask); + StoreU(BitCast(d8, raw0), d8, raw + 0 * N8); + + const VU16 raw1 = And(packed1, mask); + StoreU(BitCast(d8, raw1), d8, raw + 1 * N8); + + const VU16 raw2 = And(packed2, mask); + StoreU(BitCast(d8, raw2), d8, raw + 2 * N8); + + const VU16 raw3 = And(packed3, mask); + StoreU(BitCast(d8, raw3), d8, raw + 3 * N8); + + const VU16 raw4 = And(packed4, mask); + StoreU(BitCast(d8, raw4), d8, raw + 4 * N8); + + const VU16 raw5 = And(packed5, mask); + StoreU(BitCast(d8, raw5), d8, raw + 5 * N8); + + const VU16 raw6 = And(packed6, mask); + StoreU(BitCast(d8, raw6), d8, raw + 6 * N8); + + const VU16 p0 = Xor3(ShiftRight<7>(AndNot(mask, packed6)), + ShiftRight<6>(AndNot(mask, packed5)), + ShiftRight<5>(AndNot(mask, packed4))); + const VU16 p1 = Xor3(ShiftRight<4>(AndNot(mask, packed3)), + ShiftRight<3>(AndNot(mask, packed2)), + ShiftRight<2>(AndNot(mask, packed1))); + const VU16 raw7 = Xor3(ShiftRight<1>(AndNot(mask, packed0)), p0, p1); + StoreU(BitCast(d8, raw7), d8, raw + 7 * N8); + } +}; // Pack8<7> + +template <> +struct Pack8<8> { + template <class D8> + HWY_INLINE void Pack(D8 d8, const uint8_t* HWY_RESTRICT raw, + uint8_t* HWY_RESTRICT packed_out) const { + using VU8 = Vec<decltype(d8)>; + const size_t N8 = Lanes(d8); + const VU8 raw0 = LoadU(d8, raw + 0 * N8); + const VU8 raw1 = LoadU(d8, raw + 1 * N8); + const VU8 raw2 = LoadU(d8, raw + 2 * N8); + const VU8 raw3 = LoadU(d8, raw + 3 * N8); + const VU8 raw4 = LoadU(d8, raw + 4 * N8); + const VU8 raw5 = LoadU(d8, raw + 5 * N8); + const VU8 raw6 = LoadU(d8, raw + 6 * N8); + const VU8 raw7 = LoadU(d8, raw + 7 * N8); + + StoreU(raw0, d8, packed_out + 0 * N8); + StoreU(raw1, d8, packed_out + 1 * N8); + StoreU(raw2, d8, packed_out + 2 * N8); + StoreU(raw3, d8, packed_out + 3 * N8); + StoreU(raw4, d8, packed_out + 4 * N8); + StoreU(raw5, d8, packed_out + 5 * N8); + StoreU(raw6, d8, packed_out + 6 * N8); + StoreU(raw7, d8, packed_out + 7 * N8); + } + + template <class D8> + HWY_INLINE void Unpack(D8 d8, const uint8_t* HWY_RESTRICT packed_in, + uint8_t* HWY_RESTRICT raw) const { + using VU8 = Vec<decltype(d8)>; + const size_t N8 = Lanes(d8); + const VU8 raw0 = LoadU(d8, packed_in + 0 * N8); + const VU8 raw1 = LoadU(d8, packed_in + 1 * N8); + const VU8 raw2 = LoadU(d8, packed_in + 2 * N8); + const VU8 raw3 = LoadU(d8, packed_in + 3 * N8); + const VU8 raw4 = LoadU(d8, packed_in + 4 * N8); + const VU8 raw5 = LoadU(d8, packed_in + 5 * N8); + const VU8 raw6 = LoadU(d8, packed_in + 6 * N8); + const VU8 raw7 = LoadU(d8, packed_in + 7 * N8); + + StoreU(raw0, d8, raw + 0 * N8); + StoreU(raw1, d8, raw + 1 * N8); + StoreU(raw2, d8, raw + 2 * N8); + StoreU(raw3, d8, raw + 3 * N8); + StoreU(raw4, d8, raw + 4 * N8); + StoreU(raw5, d8, raw + 5 * N8); + StoreU(raw6, d8, raw + 6 * N8); + StoreU(raw7, d8, raw + 7 * N8); + } +}; // Pack8<8> + +template <> +struct Pack16<1> { + template <class D> + HWY_INLINE void Pack(D d, const uint16_t* HWY_RESTRICT raw, + uint16_t* HWY_RESTRICT packed_out) const { + using VU16 = Vec<decltype(d)>; + const size_t N = Lanes(d); + const VU16 raw0 = LoadU(d, raw + 0 * N); + const VU16 raw1 = LoadU(d, raw + 1 * N); + const VU16 raw2 = LoadU(d, raw + 2 * N); + const VU16 raw3 = LoadU(d, raw + 3 * N); + const VU16 raw4 = LoadU(d, raw + 4 * N); + const VU16 raw5 = LoadU(d, raw + 5 * N); + const VU16 raw6 = LoadU(d, raw + 6 * N); + const VU16 raw7 = LoadU(d, raw + 7 * N); + const VU16 raw8 = LoadU(d, raw + 8 * N); + const VU16 raw9 = LoadU(d, raw + 9 * N); + const VU16 rawA = LoadU(d, raw + 0xA * N); + const VU16 rawB = LoadU(d, raw + 0xB * N); + const VU16 rawC = LoadU(d, raw + 0xC * N); + const VU16 rawD = LoadU(d, raw + 0xD * N); + const VU16 rawE = LoadU(d, raw + 0xE * N); + const VU16 rawF = LoadU(d, raw + 0xF * N); + + const VU16 p0 = Xor3(ShiftLeft<2>(raw2), Add(raw1, raw1), raw0); + const VU16 p1 = + Xor3(ShiftLeft<5>(raw5), ShiftLeft<4>(raw4), ShiftLeft<3>(raw3)); + const VU16 p2 = + Xor3(ShiftLeft<8>(raw8), ShiftLeft<7>(raw7), ShiftLeft<6>(raw6)); + const VU16 p3 = + Xor3(ShiftLeft<0xB>(rawB), ShiftLeft<0xA>(rawA), ShiftLeft<9>(raw9)); + const VU16 p4 = + Xor3(ShiftLeft<0xE>(rawE), ShiftLeft<0xD>(rawD), ShiftLeft<0xC>(rawC)); + const VU16 packed = + Or(Xor3(ShiftLeft<0xF>(rawF), p0, p1), Xor3(p2, p3, p4)); + StoreU(packed, d, packed_out); + } + + template <class D> + HWY_INLINE void Unpack(D d, const uint16_t* HWY_RESTRICT packed_in, + uint16_t* HWY_RESTRICT raw) const { + using VU16 = Vec<decltype(d)>; + const size_t N = Lanes(d); + const VU16 mask = Set(d, 1u); // Lowest bit + + const VU16 packed = LoadU(d, packed_in); + + const VU16 raw0 = And(packed, mask); + StoreU(raw0, d, raw + 0 * N); + + const VU16 raw1 = And(ShiftRight<1>(packed), mask); + StoreU(raw1, d, raw + 1 * N); + + const VU16 raw2 = And(ShiftRight<2>(packed), mask); + StoreU(raw2, d, raw + 2 * N); + + const VU16 raw3 = And(ShiftRight<3>(packed), mask); + StoreU(raw3, d, raw + 3 * N); + + const VU16 raw4 = And(ShiftRight<4>(packed), mask); + StoreU(raw4, d, raw + 4 * N); + + const VU16 raw5 = And(ShiftRight<5>(packed), mask); + StoreU(raw5, d, raw + 5 * N); + + const VU16 raw6 = And(ShiftRight<6>(packed), mask); + StoreU(raw6, d, raw + 6 * N); + + const VU16 raw7 = And(ShiftRight<7>(packed), mask); + StoreU(raw7, d, raw + 7 * N); + + const VU16 raw8 = And(ShiftRight<8>(packed), mask); + StoreU(raw8, d, raw + 8 * N); + + const VU16 raw9 = And(ShiftRight<9>(packed), mask); + StoreU(raw9, d, raw + 9 * N); + + const VU16 rawA = And(ShiftRight<0xA>(packed), mask); + StoreU(rawA, d, raw + 0xA * N); + + const VU16 rawB = And(ShiftRight<0xB>(packed), mask); + StoreU(rawB, d, raw + 0xB * N); + + const VU16 rawC = And(ShiftRight<0xC>(packed), mask); + StoreU(rawC, d, raw + 0xC * N); + + const VU16 rawD = And(ShiftRight<0xD>(packed), mask); + StoreU(rawD, d, raw + 0xD * N); + + const VU16 rawE = And(ShiftRight<0xE>(packed), mask); + StoreU(rawE, d, raw + 0xE * N); + + const VU16 rawF = ShiftRight<0xF>(packed); + StoreU(rawF, d, raw + 0xF * N); + } +}; // Pack16<1> + +template <> +struct Pack16<2> { + template <class D> + HWY_INLINE void Pack(D d, const uint16_t* HWY_RESTRICT raw, + uint16_t* HWY_RESTRICT packed_out) const { + using VU16 = Vec<decltype(d)>; + const size_t N = Lanes(d); + const VU16 raw0 = LoadU(d, raw + 0 * N); + const VU16 raw1 = LoadU(d, raw + 1 * N); + const VU16 raw2 = LoadU(d, raw + 2 * N); + const VU16 raw3 = LoadU(d, raw + 3 * N); + const VU16 raw4 = LoadU(d, raw + 4 * N); + const VU16 raw5 = LoadU(d, raw + 5 * N); + const VU16 raw6 = LoadU(d, raw + 6 * N); + const VU16 raw7 = LoadU(d, raw + 7 * N); + const VU16 raw8 = LoadU(d, raw + 8 * N); + const VU16 raw9 = LoadU(d, raw + 9 * N); + const VU16 rawA = LoadU(d, raw + 0xA * N); + const VU16 rawB = LoadU(d, raw + 0xB * N); + const VU16 rawC = LoadU(d, raw + 0xC * N); + const VU16 rawD = LoadU(d, raw + 0xD * N); + const VU16 rawE = LoadU(d, raw + 0xE * N); + const VU16 rawF = LoadU(d, raw + 0xF * N); + + VU16 packed0 = Xor3(ShiftLeft<4>(raw4), ShiftLeft<2>(raw2), raw0); + VU16 packed1 = Xor3(ShiftLeft<4>(raw5), ShiftLeft<2>(raw3), raw1); + packed0 = Xor3(packed0, ShiftLeft<8>(raw8), ShiftLeft<6>(raw6)); + packed1 = Xor3(packed1, ShiftLeft<8>(raw9), ShiftLeft<6>(raw7)); + + packed0 = Xor3(packed0, ShiftLeft<12>(rawC), ShiftLeft<10>(rawA)); + packed1 = Xor3(packed1, ShiftLeft<12>(rawD), ShiftLeft<10>(rawB)); + + packed0 = Or(packed0, ShiftLeft<14>(rawE)); + packed1 = Or(packed1, ShiftLeft<14>(rawF)); + StoreU(packed0, d, packed_out + 0 * N); + StoreU(packed1, d, packed_out + 1 * N); + } + + template <class D> + HWY_INLINE void Unpack(D d, const uint16_t* HWY_RESTRICT packed_in, + uint16_t* HWY_RESTRICT raw) const { + using VU16 = Vec<decltype(d)>; + const size_t N = Lanes(d); + const VU16 mask = Set(d, 0x3u); // Lowest 2 bits + + const VU16 packed0 = LoadU(d, packed_in + 0 * N); + const VU16 packed1 = LoadU(d, packed_in + 1 * N); + + const VU16 raw0 = And(packed0, mask); + StoreU(raw0, d, raw + 0 * N); + + const VU16 raw1 = And(packed1, mask); + StoreU(raw1, d, raw + 1 * N); + + const VU16 raw2 = And(ShiftRight<2>(packed0), mask); + StoreU(raw2, d, raw + 2 * N); + + const VU16 raw3 = And(ShiftRight<2>(packed1), mask); + StoreU(raw3, d, raw + 3 * N); + + const VU16 raw4 = And(ShiftRight<4>(packed0), mask); + StoreU(raw4, d, raw + 4 * N); + + const VU16 raw5 = And(ShiftRight<4>(packed1), mask); + StoreU(raw5, d, raw + 5 * N); + + const VU16 raw6 = And(ShiftRight<6>(packed0), mask); + StoreU(raw6, d, raw + 6 * N); + + const VU16 raw7 = And(ShiftRight<6>(packed1), mask); + StoreU(raw7, d, raw + 7 * N); + + const VU16 raw8 = And(ShiftRight<8>(packed0), mask); + StoreU(raw8, d, raw + 8 * N); + + const VU16 raw9 = And(ShiftRight<8>(packed1), mask); + StoreU(raw9, d, raw + 9 * N); + + const VU16 rawA = And(ShiftRight<0xA>(packed0), mask); + StoreU(rawA, d, raw + 0xA * N); + + const VU16 rawB = And(ShiftRight<0xA>(packed1), mask); + StoreU(rawB, d, raw + 0xB * N); + + const VU16 rawC = And(ShiftRight<0xC>(packed0), mask); + StoreU(rawC, d, raw + 0xC * N); + + const VU16 rawD = And(ShiftRight<0xC>(packed1), mask); + StoreU(rawD, d, raw + 0xD * N); + + const VU16 rawE = ShiftRight<0xE>(packed0); + StoreU(rawE, d, raw + 0xE * N); + + const VU16 rawF = ShiftRight<0xE>(packed1); + StoreU(rawF, d, raw + 0xF * N); + } +}; // Pack16<2> + +template <> +struct Pack16<3> { + template <class D> + HWY_INLINE void Pack(D d, const uint16_t* HWY_RESTRICT raw, + uint16_t* HWY_RESTRICT packed_out) const { + using VU16 = Vec<decltype(d)>; + const size_t N = Lanes(d); + const VU16 raw0 = LoadU(d, raw + 0 * N); + const VU16 raw1 = LoadU(d, raw + 1 * N); + const VU16 raw2 = LoadU(d, raw + 2 * N); + const VU16 raw3 = LoadU(d, raw + 3 * N); + const VU16 raw4 = LoadU(d, raw + 4 * N); + const VU16 raw5 = LoadU(d, raw + 5 * N); + const VU16 raw6 = LoadU(d, raw + 6 * N); + const VU16 raw7 = LoadU(d, raw + 7 * N); + const VU16 raw8 = LoadU(d, raw + 8 * N); + const VU16 raw9 = LoadU(d, raw + 9 * N); + const VU16 rawA = LoadU(d, raw + 0xA * N); + const VU16 rawB = LoadU(d, raw + 0xB * N); + const VU16 rawC = LoadU(d, raw + 0xC * N); + const VU16 rawD = LoadU(d, raw + 0xD * N); + const VU16 rawE = LoadU(d, raw + 0xE * N); + const VU16 rawF = LoadU(d, raw + 0xF * N); + + // We can fit 15 raw vectors in three packed vectors (five each). + VU16 packed0 = Xor3(ShiftLeft<6>(raw6), ShiftLeft<3>(raw3), raw0); + VU16 packed1 = Xor3(ShiftLeft<6>(raw7), ShiftLeft<3>(raw4), raw1); + VU16 packed2 = Xor3(ShiftLeft<6>(raw8), ShiftLeft<3>(raw5), raw2); + + // rawF will be scattered into the upper bit of these three. + packed0 = Xor3(packed0, ShiftLeft<12>(rawC), ShiftLeft<9>(raw9)); + packed1 = Xor3(packed1, ShiftLeft<12>(rawD), ShiftLeft<9>(rawA)); + packed2 = Xor3(packed2, ShiftLeft<12>(rawE), ShiftLeft<9>(rawB)); + + const VU16 hi1 = Set(d, 0x8000u); + packed0 = Or(packed0, ShiftLeft<15>(rawF)); // MSB only, no mask + packed1 = OrAnd(packed1, ShiftLeft<14>(rawF), hi1); + packed2 = OrAnd(packed2, ShiftLeft<13>(rawF), hi1); + StoreU(packed0, d, packed_out + 0 * N); + StoreU(packed1, d, packed_out + 1 * N); + StoreU(packed2, d, packed_out + 2 * N); + } + + template <class D> + HWY_INLINE void Unpack(D d, const uint16_t* HWY_RESTRICT packed_in, + uint16_t* HWY_RESTRICT raw) const { + using VU16 = Vec<decltype(d)>; + const size_t N = Lanes(d); + const VU16 mask = Set(d, 0x7u); // Lowest 3 bits + + const VU16 packed0 = LoadU(d, packed_in + 0 * N); + const VU16 packed1 = LoadU(d, packed_in + 1 * N); + const VU16 packed2 = LoadU(d, packed_in + 2 * N); + + const VU16 raw0 = And(mask, packed0); + StoreU(raw0, d, raw + 0 * N); + + const VU16 raw1 = And(mask, packed1); + StoreU(raw1, d, raw + 1 * N); + + const VU16 raw2 = And(mask, packed2); + StoreU(raw2, d, raw + 2 * N); + + const VU16 raw3 = And(mask, ShiftRight<3>(packed0)); + StoreU(raw3, d, raw + 3 * N); + + const VU16 raw4 = And(mask, ShiftRight<3>(packed1)); + StoreU(raw4, d, raw + 4 * N); + + const VU16 raw5 = And(mask, ShiftRight<3>(packed2)); + StoreU(raw5, d, raw + 5 * N); + + const VU16 raw6 = And(mask, ShiftRight<6>(packed0)); + StoreU(raw6, d, raw + 6 * N); + + const VU16 raw7 = And(mask, ShiftRight<6>(packed1)); + StoreU(raw7, d, raw + 7 * N); + + const VU16 raw8 = And(mask, ShiftRight<6>(packed2)); + StoreU(raw8, d, raw + 8 * N); + + const VU16 raw9 = And(mask, ShiftRight<9>(packed0)); + StoreU(raw9, d, raw + 9 * N); + + const VU16 rawA = And(mask, ShiftRight<9>(packed1)); + StoreU(rawA, d, raw + 0xA * N); + + const VU16 rawB = And(mask, ShiftRight<9>(packed2)); + StoreU(rawB, d, raw + 0xB * N); + + const VU16 rawC = And(mask, ShiftRight<12>(packed0)); + StoreU(rawC, d, raw + 0xC * N); + + const VU16 rawD = And(mask, ShiftRight<12>(packed1)); + StoreU(rawD, d, raw + 0xD * N); + + const VU16 rawE = And(mask, ShiftRight<12>(packed2)); + StoreU(rawE, d, raw + 0xE * N); + + // rawF is the concatenation of the upper bit of packed0..2. + const VU16 down0 = ShiftRight<15>(packed0); + const VU16 down1 = ShiftRight<15>(packed1); + const VU16 down2 = ShiftRight<15>(packed2); + const VU16 rawF = Xor3(ShiftLeft<2>(down2), Add(down1, down1), down0); + StoreU(rawF, d, raw + 0xF * N); + } +}; // Pack16<3> + +template <> +struct Pack16<4> { + template <class D> + HWY_INLINE void Pack(D d, const uint16_t* HWY_RESTRICT raw, + uint16_t* HWY_RESTRICT packed_out) const { + using VU16 = Vec<decltype(d)>; + const size_t N = Lanes(d); + const VU16 raw0 = LoadU(d, raw + 0 * N); + const VU16 raw1 = LoadU(d, raw + 1 * N); + const VU16 raw2 = LoadU(d, raw + 2 * N); + const VU16 raw3 = LoadU(d, raw + 3 * N); + const VU16 raw4 = LoadU(d, raw + 4 * N); + const VU16 raw5 = LoadU(d, raw + 5 * N); + const VU16 raw6 = LoadU(d, raw + 6 * N); + const VU16 raw7 = LoadU(d, raw + 7 * N); + const VU16 raw8 = LoadU(d, raw + 8 * N); + const VU16 raw9 = LoadU(d, raw + 9 * N); + const VU16 rawA = LoadU(d, raw + 0xA * N); + const VU16 rawB = LoadU(d, raw + 0xB * N); + const VU16 rawC = LoadU(d, raw + 0xC * N); + const VU16 rawD = LoadU(d, raw + 0xD * N); + const VU16 rawE = LoadU(d, raw + 0xE * N); + const VU16 rawF = LoadU(d, raw + 0xF * N); + + VU16 packed0 = Xor3(ShiftLeft<8>(raw4), ShiftLeft<4>(raw2), raw0); + VU16 packed1 = Xor3(ShiftLeft<8>(raw5), ShiftLeft<4>(raw3), raw1); + packed0 = Or(packed0, ShiftLeft<12>(raw6)); + packed1 = Or(packed1, ShiftLeft<12>(raw7)); + VU16 packed2 = Xor3(ShiftLeft<8>(rawC), ShiftLeft<4>(rawA), raw8); + VU16 packed3 = Xor3(ShiftLeft<8>(rawD), ShiftLeft<4>(rawB), raw9); + packed2 = Or(packed2, ShiftLeft<12>(rawE)); + packed3 = Or(packed3, ShiftLeft<12>(rawF)); + + StoreU(packed0, d, packed_out + 0 * N); + StoreU(packed1, d, packed_out + 1 * N); + StoreU(packed2, d, packed_out + 2 * N); + StoreU(packed3, d, packed_out + 3 * N); + } + + template <class D> + HWY_INLINE void Unpack(D d, const uint16_t* HWY_RESTRICT packed_in, + uint16_t* HWY_RESTRICT raw) const { + using VU16 = Vec<decltype(d)>; + const size_t N = Lanes(d); + const VU16 mask = Set(d, 0xFu); // Lowest 4 bits + + const VU16 packed0 = LoadU(d, packed_in + 0 * N); + const VU16 packed1 = LoadU(d, packed_in + 1 * N); + const VU16 packed2 = LoadU(d, packed_in + 2 * N); + const VU16 packed3 = LoadU(d, packed_in + 3 * N); + + const VU16 raw0 = And(packed0, mask); + StoreU(raw0, d, raw + 0 * N); + + const VU16 raw1 = And(packed1, mask); + StoreU(raw1, d, raw + 1 * N); + + const VU16 raw2 = And(ShiftRight<4>(packed0), mask); + StoreU(raw2, d, raw + 2 * N); + + const VU16 raw3 = And(ShiftRight<4>(packed1), mask); + StoreU(raw3, d, raw + 3 * N); + + const VU16 raw4 = And(ShiftRight<8>(packed0), mask); + StoreU(raw4, d, raw + 4 * N); + + const VU16 raw5 = And(ShiftRight<8>(packed1), mask); + StoreU(raw5, d, raw + 5 * N); + + const VU16 raw6 = ShiftRight<12>(packed0); // no mask required + StoreU(raw6, d, raw + 6 * N); + + const VU16 raw7 = ShiftRight<12>(packed1); // no mask required + StoreU(raw7, d, raw + 7 * N); + + const VU16 raw8 = And(packed2, mask); + StoreU(raw8, d, raw + 8 * N); + + const VU16 raw9 = And(packed3, mask); + StoreU(raw9, d, raw + 9 * N); + + const VU16 rawA = And(ShiftRight<4>(packed2), mask); + StoreU(rawA, d, raw + 0xA * N); + + const VU16 rawB = And(ShiftRight<4>(packed3), mask); + StoreU(rawB, d, raw + 0xB * N); + + const VU16 rawC = And(ShiftRight<8>(packed2), mask); + StoreU(rawC, d, raw + 0xC * N); + + const VU16 rawD = And(ShiftRight<8>(packed3), mask); + StoreU(rawD, d, raw + 0xD * N); + + const VU16 rawE = ShiftRight<12>(packed2); // no mask required + StoreU(rawE, d, raw + 0xE * N); + + const VU16 rawF = ShiftRight<12>(packed3); // no mask required + StoreU(rawF, d, raw + 0xF * N); + } +}; // Pack16<4> + +template <> +struct Pack16<5> { + template <class D> + HWY_INLINE void Pack(D d, const uint16_t* HWY_RESTRICT raw, + uint16_t* HWY_RESTRICT packed_out) const { + using VU16 = Vec<decltype(d)>; + const size_t N = Lanes(d); + const VU16 raw0 = LoadU(d, raw + 0 * N); + const VU16 raw1 = LoadU(d, raw + 1 * N); + const VU16 raw2 = LoadU(d, raw + 2 * N); + const VU16 raw3 = LoadU(d, raw + 3 * N); + const VU16 raw4 = LoadU(d, raw + 4 * N); + const VU16 raw5 = LoadU(d, raw + 5 * N); + const VU16 raw6 = LoadU(d, raw + 6 * N); + const VU16 raw7 = LoadU(d, raw + 7 * N); + const VU16 raw8 = LoadU(d, raw + 8 * N); + const VU16 raw9 = LoadU(d, raw + 9 * N); + const VU16 rawA = LoadU(d, raw + 0xA * N); + const VU16 rawB = LoadU(d, raw + 0xB * N); + const VU16 rawC = LoadU(d, raw + 0xC * N); + const VU16 rawD = LoadU(d, raw + 0xD * N); + const VU16 rawE = LoadU(d, raw + 0xE * N); + const VU16 rawF = LoadU(d, raw + 0xF * N); + + // We can fit 15 raw vectors in five packed vectors (three each). + VU16 packed0 = Xor3(ShiftLeft<10>(rawA), ShiftLeft<5>(raw5), raw0); + VU16 packed1 = Xor3(ShiftLeft<10>(rawB), ShiftLeft<5>(raw6), raw1); + VU16 packed2 = Xor3(ShiftLeft<10>(rawC), ShiftLeft<5>(raw7), raw2); + VU16 packed3 = Xor3(ShiftLeft<10>(rawD), ShiftLeft<5>(raw8), raw3); + VU16 packed4 = Xor3(ShiftLeft<10>(rawE), ShiftLeft<5>(raw9), raw4); + + // rawF will be scattered into the upper bits of these five. + const VU16 hi1 = Set(d, 0x8000u); + packed0 = Or(packed0, ShiftLeft<15>(rawF)); // MSB only, no mask + packed1 = OrAnd(packed1, ShiftLeft<14>(rawF), hi1); + packed2 = OrAnd(packed2, ShiftLeft<13>(rawF), hi1); + packed3 = OrAnd(packed3, ShiftLeft<12>(rawF), hi1); + packed4 = OrAnd(packed4, ShiftLeft<11>(rawF), hi1); + + StoreU(packed0, d, packed_out + 0 * N); + StoreU(packed1, d, packed_out + 1 * N); + StoreU(packed2, d, packed_out + 2 * N); + StoreU(packed3, d, packed_out + 3 * N); + StoreU(packed4, d, packed_out + 4 * N); + } + + template <class D> + HWY_INLINE void Unpack(D d, const uint16_t* HWY_RESTRICT packed_in, + uint16_t* HWY_RESTRICT raw) const { + using VU16 = Vec<decltype(d)>; + const size_t N = Lanes(d); + + const VU16 packed0 = LoadU(d, packed_in + 0 * N); + const VU16 packed1 = LoadU(d, packed_in + 1 * N); + const VU16 packed2 = LoadU(d, packed_in + 2 * N); + const VU16 packed3 = LoadU(d, packed_in + 3 * N); + const VU16 packed4 = LoadU(d, packed_in + 4 * N); + + const VU16 mask = Set(d, 0x1Fu); // Lowest 5 bits + + const VU16 raw0 = And(packed0, mask); + StoreU(raw0, d, raw + 0 * N); + + const VU16 raw1 = And(packed1, mask); + StoreU(raw1, d, raw + 1 * N); + + const VU16 raw2 = And(packed2, mask); + StoreU(raw2, d, raw + 2 * N); + + const VU16 raw3 = And(packed3, mask); + StoreU(raw3, d, raw + 3 * N); + + const VU16 raw4 = And(packed4, mask); + StoreU(raw4, d, raw + 4 * N); + + const VU16 raw5 = And(ShiftRight<5>(packed0), mask); + StoreU(raw5, d, raw + 5 * N); + + const VU16 raw6 = And(ShiftRight<5>(packed1), mask); + StoreU(raw6, d, raw + 6 * N); + + const VU16 raw7 = And(ShiftRight<5>(packed2), mask); + StoreU(raw7, d, raw + 7 * N); + + const VU16 raw8 = And(ShiftRight<5>(packed3), mask); + StoreU(raw8, d, raw + 8 * N); + + const VU16 raw9 = And(ShiftRight<5>(packed4), mask); + StoreU(raw9, d, raw + 9 * N); + + const VU16 rawA = And(ShiftRight<10>(packed0), mask); + StoreU(rawA, d, raw + 0xA * N); + + const VU16 rawB = And(ShiftRight<10>(packed1), mask); + StoreU(rawB, d, raw + 0xB * N); + + const VU16 rawC = And(ShiftRight<10>(packed2), mask); + StoreU(rawC, d, raw + 0xC * N); + + const VU16 rawD = And(ShiftRight<10>(packed3), mask); + StoreU(rawD, d, raw + 0xD * N); + + const VU16 rawE = And(ShiftRight<10>(packed4), mask); + StoreU(rawE, d, raw + 0xE * N); + + // rawF is the concatenation of the lower bit of packed0..4. + const VU16 down0 = ShiftRight<15>(packed0); + const VU16 down1 = ShiftRight<15>(packed1); + const VU16 hi1 = Set(d, 0x8000u); + const VU16 p0 = + Xor3(ShiftRight<13>(And(packed2, hi1)), Add(down1, down1), down0); + const VU16 rawF = Xor3(ShiftRight<11>(And(packed4, hi1)), + ShiftRight<12>(And(packed3, hi1)), p0); + StoreU(rawF, d, raw + 0xF * N); + } +}; // Pack16<5> + +template <> +struct Pack16<6> { + template <class D> + HWY_INLINE void Pack(D d, const uint16_t* HWY_RESTRICT raw, + uint16_t* HWY_RESTRICT packed_out) const { + using VU16 = Vec<decltype(d)>; + const size_t N = Lanes(d); + const VU16 raw0 = LoadU(d, raw + 0 * N); + const VU16 raw1 = LoadU(d, raw + 1 * N); + const VU16 raw2 = LoadU(d, raw + 2 * N); + const VU16 raw3 = LoadU(d, raw + 3 * N); + const VU16 raw4 = LoadU(d, raw + 4 * N); + const VU16 raw5 = LoadU(d, raw + 5 * N); + const VU16 raw6 = LoadU(d, raw + 6 * N); + const VU16 raw7 = LoadU(d, raw + 7 * N); + const VU16 raw8 = LoadU(d, raw + 8 * N); + const VU16 raw9 = LoadU(d, raw + 9 * N); + const VU16 rawA = LoadU(d, raw + 0xA * N); + const VU16 rawB = LoadU(d, raw + 0xB * N); + const VU16 rawC = LoadU(d, raw + 0xC * N); + const VU16 rawD = LoadU(d, raw + 0xD * N); + const VU16 rawE = LoadU(d, raw + 0xE * N); + const VU16 rawF = LoadU(d, raw + 0xF * N); + + const VU16 packed3 = Or(ShiftLeft<6>(raw7), raw3); + const VU16 packed7 = Or(ShiftLeft<6>(rawF), rawB); + // Three vectors, two 6-bit raw each; packed3 (12 bits) is spread over the + // four remainder bits at the top of each vector. + const VU16 packed0 = Xor3(ShiftLeft<12>(packed3), ShiftLeft<6>(raw4), raw0); + VU16 packed1 = Or(ShiftLeft<6>(raw5), raw1); + VU16 packed2 = Or(ShiftLeft<6>(raw6), raw2); + const VU16 packed4 = Xor3(ShiftLeft<12>(packed7), ShiftLeft<6>(rawC), raw8); + VU16 packed5 = Or(ShiftLeft<6>(rawD), raw9); + VU16 packed6 = Or(ShiftLeft<6>(rawE), rawA); + + const VU16 hi4 = Set(d, 0xF000u); + packed1 = OrAnd(packed1, ShiftLeft<8>(packed3), hi4); + packed2 = OrAnd(packed2, ShiftLeft<4>(packed3), hi4); + packed5 = OrAnd(packed5, ShiftLeft<8>(packed7), hi4); + packed6 = OrAnd(packed6, ShiftLeft<4>(packed7), hi4); + + StoreU(packed0, d, packed_out + 0 * N); + StoreU(packed1, d, packed_out + 1 * N); + StoreU(packed2, d, packed_out + 2 * N); + StoreU(packed4, d, packed_out + 3 * N); + StoreU(packed5, d, packed_out + 4 * N); + StoreU(packed6, d, packed_out + 5 * N); + } + + template <class D> + HWY_INLINE void Unpack(D d, const uint16_t* HWY_RESTRICT packed_in, + uint16_t* HWY_RESTRICT raw) const { + using VU16 = Vec<decltype(d)>; + const size_t N = Lanes(d); + const VU16 mask = Set(d, 0x3Fu); // Lowest 6 bits + + const VU16 packed0 = LoadU(d, packed_in + 0 * N); + const VU16 packed1 = LoadU(d, packed_in + 1 * N); + const VU16 packed2 = LoadU(d, packed_in + 2 * N); + const VU16 packed4 = LoadU(d, packed_in + 3 * N); + const VU16 packed5 = LoadU(d, packed_in + 4 * N); + const VU16 packed6 = LoadU(d, packed_in + 5 * N); + + const VU16 raw0 = And(packed0, mask); + StoreU(raw0, d, raw + 0 * N); + + const VU16 raw1 = And(packed1, mask); + StoreU(raw1, d, raw + 1 * N); + + const VU16 raw2 = And(packed2, mask); + StoreU(raw2, d, raw + 2 * N); + + const VU16 raw4 = And(ShiftRight<6>(packed0), mask); + StoreU(raw4, d, raw + 4 * N); + + const VU16 raw5 = And(ShiftRight<6>(packed1), mask); + StoreU(raw5, d, raw + 5 * N); + + const VU16 raw6 = And(ShiftRight<6>(packed2), mask); + StoreU(raw6, d, raw + 6 * N); + + const VU16 raw8 = And(packed4, mask); + StoreU(raw8, d, raw + 8 * N); + + const VU16 raw9 = And(packed5, mask); + StoreU(raw9, d, raw + 9 * N); + + const VU16 rawA = And(packed6, mask); + StoreU(rawA, d, raw + 0xA * N); + + const VU16 rawC = And(ShiftRight<6>(packed4), mask); + StoreU(rawC, d, raw + 0xC * N); + + const VU16 rawD = And(ShiftRight<6>(packed5), mask); + StoreU(rawD, d, raw + 0xD * N); + + const VU16 rawE = And(ShiftRight<6>(packed6), mask); + StoreU(rawE, d, raw + 0xE * N); + + // packed3 is the concatenation of the four upper bits in packed0..2. + const VU16 down0 = ShiftRight<12>(packed0); + const VU16 down4 = ShiftRight<12>(packed4); + const VU16 hi4 = Set(d, 0xF000u); + const VU16 packed3 = Xor3(ShiftRight<4>(And(packed2, hi4)), + ShiftRight<8>(And(packed1, hi4)), down0); + const VU16 packed7 = Xor3(ShiftRight<4>(And(packed6, hi4)), + ShiftRight<8>(And(packed5, hi4)), down4); + const VU16 raw3 = And(packed3, mask); + StoreU(raw3, d, raw + 3 * N); + + const VU16 rawB = And(packed7, mask); + StoreU(rawB, d, raw + 0xB * N); + + const VU16 raw7 = ShiftRight<6>(packed3); // upper bits already zero + StoreU(raw7, d, raw + 7 * N); + + const VU16 rawF = ShiftRight<6>(packed7); // upper bits already zero + StoreU(rawF, d, raw + 0xF * N); + } +}; // Pack16<6> + +template <> +struct Pack16<7> { + template <class D> + HWY_INLINE void Pack(D d, const uint16_t* HWY_RESTRICT raw, + uint16_t* HWY_RESTRICT packed_out) const { + using VU16 = Vec<decltype(d)>; + const size_t N = Lanes(d); + const VU16 raw0 = LoadU(d, raw + 0 * N); + const VU16 raw1 = LoadU(d, raw + 1 * N); + const VU16 raw2 = LoadU(d, raw + 2 * N); + const VU16 raw3 = LoadU(d, raw + 3 * N); + const VU16 raw4 = LoadU(d, raw + 4 * N); + const VU16 raw5 = LoadU(d, raw + 5 * N); + const VU16 raw6 = LoadU(d, raw + 6 * N); + const VU16 raw7 = LoadU(d, raw + 7 * N); + const VU16 raw8 = LoadU(d, raw + 8 * N); + const VU16 raw9 = LoadU(d, raw + 9 * N); + const VU16 rawA = LoadU(d, raw + 0xA * N); + const VU16 rawB = LoadU(d, raw + 0xB * N); + const VU16 rawC = LoadU(d, raw + 0xC * N); + const VU16 rawD = LoadU(d, raw + 0xD * N); + const VU16 rawE = LoadU(d, raw + 0xE * N); + const VU16 rawF = LoadU(d, raw + 0xF * N); + + const VU16 packed7 = Or(ShiftLeft<7>(rawF), raw7); + // Seven vectors, two 7-bit raw each; packed7 (14 bits) is spread over the + // two remainder bits at the top of each vector. + const VU16 packed0 = Xor3(ShiftLeft<14>(packed7), ShiftLeft<7>(raw8), raw0); + VU16 packed1 = Or(ShiftLeft<7>(raw9), raw1); + VU16 packed2 = Or(ShiftLeft<7>(rawA), raw2); + VU16 packed3 = Or(ShiftLeft<7>(rawB), raw3); + VU16 packed4 = Or(ShiftLeft<7>(rawC), raw4); + VU16 packed5 = Or(ShiftLeft<7>(rawD), raw5); + VU16 packed6 = Or(ShiftLeft<7>(rawE), raw6); + + const VU16 hi2 = Set(d, 0xC000u); + packed1 = OrAnd(packed1, ShiftLeft<12>(packed7), hi2); + packed2 = OrAnd(packed2, ShiftLeft<10>(packed7), hi2); + packed3 = OrAnd(packed3, ShiftLeft<8>(packed7), hi2); + packed4 = OrAnd(packed4, ShiftLeft<6>(packed7), hi2); + packed5 = OrAnd(packed5, ShiftLeft<4>(packed7), hi2); + packed6 = OrAnd(packed6, ShiftLeft<2>(packed7), hi2); + + StoreU(packed0, d, packed_out + 0 * N); + StoreU(packed1, d, packed_out + 1 * N); + StoreU(packed2, d, packed_out + 2 * N); + StoreU(packed3, d, packed_out + 3 * N); + StoreU(packed4, d, packed_out + 4 * N); + StoreU(packed5, d, packed_out + 5 * N); + StoreU(packed6, d, packed_out + 6 * N); + } + + template <class D> + HWY_INLINE void Unpack(D d, const uint16_t* HWY_RESTRICT packed_in, + uint16_t* HWY_RESTRICT raw) const { + using VU16 = Vec<decltype(d)>; + const size_t N = Lanes(d); + + const VU16 packed0 = BitCast(d, LoadU(d, packed_in + 0 * N)); + const VU16 packed1 = BitCast(d, LoadU(d, packed_in + 1 * N)); + const VU16 packed2 = BitCast(d, LoadU(d, packed_in + 2 * N)); + const VU16 packed3 = BitCast(d, LoadU(d, packed_in + 3 * N)); + const VU16 packed4 = BitCast(d, LoadU(d, packed_in + 4 * N)); + const VU16 packed5 = BitCast(d, LoadU(d, packed_in + 5 * N)); + const VU16 packed6 = BitCast(d, LoadU(d, packed_in + 6 * N)); + + const VU16 mask = Set(d, 0x7Fu); // Lowest 7 bits + + const VU16 raw0 = And(packed0, mask); + StoreU(raw0, d, raw + 0 * N); + + const VU16 raw1 = And(packed1, mask); + StoreU(raw1, d, raw + 1 * N); + + const VU16 raw2 = And(packed2, mask); + StoreU(raw2, d, raw + 2 * N); + + const VU16 raw3 = And(packed3, mask); + StoreU(raw3, d, raw + 3 * N); + + const VU16 raw4 = And(packed4, mask); + StoreU(raw4, d, raw + 4 * N); + + const VU16 raw5 = And(packed5, mask); + StoreU(raw5, d, raw + 5 * N); + + const VU16 raw6 = And(packed6, mask); + StoreU(raw6, d, raw + 6 * N); + + const VU16 raw8 = And(ShiftRight<7>(packed0), mask); + StoreU(raw8, d, raw + 8 * N); + + const VU16 raw9 = And(ShiftRight<7>(packed1), mask); + StoreU(raw9, d, raw + 9 * N); + + const VU16 rawA = And(ShiftRight<7>(packed2), mask); + StoreU(rawA, d, raw + 0xA * N); + + const VU16 rawB = And(ShiftRight<7>(packed3), mask); + StoreU(rawB, d, raw + 0xB * N); + + const VU16 rawC = And(ShiftRight<7>(packed4), mask); + StoreU(rawC, d, raw + 0xC * N); + + const VU16 rawD = And(ShiftRight<7>(packed5), mask); + StoreU(rawD, d, raw + 0xD * N); + + const VU16 rawE = And(ShiftRight<7>(packed6), mask); + StoreU(rawE, d, raw + 0xE * N); + + // packed7 is the concatenation of the two upper bits in packed0..6. + const VU16 down0 = ShiftRight<14>(packed0); + const VU16 hi2 = Set(d, 0xC000u); + const VU16 p0 = Xor3(ShiftRight<12>(And(packed1, hi2)), + ShiftRight<10>(And(packed2, hi2)), down0); + const VU16 p1 = Xor3(ShiftRight<8>(And(packed3, hi2)), // + ShiftRight<6>(And(packed4, hi2)), + ShiftRight<4>(And(packed5, hi2))); + const VU16 packed7 = Xor3(ShiftRight<2>(And(packed6, hi2)), p1, p0); + + const VU16 raw7 = And(packed7, mask); + StoreU(raw7, d, raw + 7 * N); + + const VU16 rawF = ShiftRight<7>(packed7); // upper bits already zero + StoreU(rawF, d, raw + 0xF * N); + } +}; // Pack16<7> + +template <> +struct Pack16<8> { + template <class D> + HWY_INLINE void Pack(D d, const uint16_t* HWY_RESTRICT raw, + uint16_t* HWY_RESTRICT packed_out) const { + using VU16 = Vec<decltype(d)>; + const size_t N = Lanes(d); + const VU16 raw0 = LoadU(d, raw + 0 * N); + const VU16 raw1 = LoadU(d, raw + 1 * N); + const VU16 raw2 = LoadU(d, raw + 2 * N); + const VU16 raw3 = LoadU(d, raw + 3 * N); + const VU16 raw4 = LoadU(d, raw + 4 * N); + const VU16 raw5 = LoadU(d, raw + 5 * N); + const VU16 raw6 = LoadU(d, raw + 6 * N); + const VU16 raw7 = LoadU(d, raw + 7 * N); + const VU16 raw8 = LoadU(d, raw + 8 * N); + const VU16 raw9 = LoadU(d, raw + 9 * N); + const VU16 rawA = LoadU(d, raw + 0xA * N); + const VU16 rawB = LoadU(d, raw + 0xB * N); + const VU16 rawC = LoadU(d, raw + 0xC * N); + const VU16 rawD = LoadU(d, raw + 0xD * N); + const VU16 rawE = LoadU(d, raw + 0xE * N); + const VU16 rawF = LoadU(d, raw + 0xF * N); + + // This is equivalent to ConcatEven with 8-bit lanes, but much more + // efficient on RVV and slightly less efficient on SVE2. + const VU16 packed0 = Or(ShiftLeft<8>(raw2), raw0); + const VU16 packed1 = Or(ShiftLeft<8>(raw3), raw1); + const VU16 packed2 = Or(ShiftLeft<8>(raw6), raw4); + const VU16 packed3 = Or(ShiftLeft<8>(raw7), raw5); + const VU16 packed4 = Or(ShiftLeft<8>(rawA), raw8); + const VU16 packed5 = Or(ShiftLeft<8>(rawB), raw9); + const VU16 packed6 = Or(ShiftLeft<8>(rawE), rawC); + const VU16 packed7 = Or(ShiftLeft<8>(rawF), rawD); + + StoreU(packed0, d, packed_out + 0 * N); + StoreU(packed1, d, packed_out + 1 * N); + StoreU(packed2, d, packed_out + 2 * N); + StoreU(packed3, d, packed_out + 3 * N); + StoreU(packed4, d, packed_out + 4 * N); + StoreU(packed5, d, packed_out + 5 * N); + StoreU(packed6, d, packed_out + 6 * N); + StoreU(packed7, d, packed_out + 7 * N); + } + + template <class D> + HWY_INLINE void Unpack(D d, const uint16_t* HWY_RESTRICT packed_in, + uint16_t* HWY_RESTRICT raw) const { + using VU16 = Vec<decltype(d)>; + const size_t N = Lanes(d); + + const VU16 packed0 = BitCast(d, LoadU(d, packed_in + 0 * N)); + const VU16 packed1 = BitCast(d, LoadU(d, packed_in + 1 * N)); + const VU16 packed2 = BitCast(d, LoadU(d, packed_in + 2 * N)); + const VU16 packed3 = BitCast(d, LoadU(d, packed_in + 3 * N)); + const VU16 packed4 = BitCast(d, LoadU(d, packed_in + 4 * N)); + const VU16 packed5 = BitCast(d, LoadU(d, packed_in + 5 * N)); + const VU16 packed6 = BitCast(d, LoadU(d, packed_in + 6 * N)); + const VU16 packed7 = BitCast(d, LoadU(d, packed_in + 7 * N)); + const VU16 mask = Set(d, 0xFFu); // Lowest 8 bits + + const VU16 raw0 = And(packed0, mask); + StoreU(raw0, d, raw + 0 * N); + + const VU16 raw1 = And(packed1, mask); + StoreU(raw1, d, raw + 1 * N); + + const VU16 raw2 = ShiftRight<8>(packed0); // upper bits already zero + StoreU(raw2, d, raw + 2 * N); + + const VU16 raw3 = ShiftRight<8>(packed1); // upper bits already zero + StoreU(raw3, d, raw + 3 * N); + + const VU16 raw4 = And(packed2, mask); + StoreU(raw4, d, raw + 4 * N); + + const VU16 raw5 = And(packed3, mask); + StoreU(raw5, d, raw + 5 * N); + + const VU16 raw6 = ShiftRight<8>(packed2); // upper bits already zero + StoreU(raw6, d, raw + 6 * N); + + const VU16 raw7 = ShiftRight<8>(packed3); // upper bits already zero + StoreU(raw7, d, raw + 7 * N); + + const VU16 raw8 = And(packed4, mask); + StoreU(raw8, d, raw + 8 * N); + + const VU16 raw9 = And(packed5, mask); + StoreU(raw9, d, raw + 9 * N); + + const VU16 rawA = ShiftRight<8>(packed4); // upper bits already zero + StoreU(rawA, d, raw + 0xA * N); + + const VU16 rawB = ShiftRight<8>(packed5); // upper bits already zero + StoreU(rawB, d, raw + 0xB * N); + + const VU16 rawC = And(packed6, mask); + StoreU(rawC, d, raw + 0xC * N); + + const VU16 rawD = And(packed7, mask); + StoreU(rawD, d, raw + 0xD * N); + + const VU16 rawE = ShiftRight<8>(packed6); // upper bits already zero + StoreU(rawE, d, raw + 0xE * N); + + const VU16 rawF = ShiftRight<8>(packed7); // upper bits already zero + StoreU(rawF, d, raw + 0xF * N); + } +}; // Pack16<8> + +template <> +struct Pack16<9> { + template <class D> + HWY_INLINE void Pack(D d, const uint16_t* HWY_RESTRICT raw, + uint16_t* HWY_RESTRICT packed_out) const { + using VU16 = Vec<decltype(d)>; + const size_t N = Lanes(d); + const VU16 raw0 = LoadU(d, raw + 0 * N); + const VU16 raw1 = LoadU(d, raw + 1 * N); + const VU16 raw2 = LoadU(d, raw + 2 * N); + const VU16 raw3 = LoadU(d, raw + 3 * N); + const VU16 raw4 = LoadU(d, raw + 4 * N); + const VU16 raw5 = LoadU(d, raw + 5 * N); + const VU16 raw6 = LoadU(d, raw + 6 * N); + const VU16 raw7 = LoadU(d, raw + 7 * N); + const VU16 raw8 = LoadU(d, raw + 8 * N); + const VU16 raw9 = LoadU(d, raw + 9 * N); + const VU16 rawA = LoadU(d, raw + 0xA * N); + const VU16 rawB = LoadU(d, raw + 0xB * N); + const VU16 rawC = LoadU(d, raw + 0xC * N); + const VU16 rawD = LoadU(d, raw + 0xD * N); + const VU16 rawE = LoadU(d, raw + 0xE * N); + const VU16 rawF = LoadU(d, raw + 0xF * N); + // 8 vectors, each with 9+7 bits; top 2 bits are concatenated into packed8. + const VU16 packed0 = Or(ShiftLeft<9>(raw8), raw0); + const VU16 packed1 = Or(ShiftLeft<9>(raw9), raw1); + const VU16 packed2 = Or(ShiftLeft<9>(rawA), raw2); + const VU16 packed3 = Or(ShiftLeft<9>(rawB), raw3); + const VU16 packed4 = Or(ShiftLeft<9>(rawC), raw4); + const VU16 packed5 = Or(ShiftLeft<9>(rawD), raw5); + const VU16 packed6 = Or(ShiftLeft<9>(rawE), raw6); + const VU16 packed7 = Or(ShiftLeft<9>(rawF), raw7); + + // We could shift down, OR and shift up, but two shifts are typically more + // expensive than AND, shift into position, and OR (which can be further + // reduced via Xor3). + const VU16 mid2 = Set(d, 0x180u); // top 2 in lower 9 + const VU16 part8 = ShiftRight<7>(And(raw8, mid2)); + const VU16 part9 = ShiftRight<5>(And(raw9, mid2)); + const VU16 partA = ShiftRight<3>(And(rawA, mid2)); + const VU16 partB = ShiftRight<1>(And(rawB, mid2)); + const VU16 partC = ShiftLeft<1>(And(rawC, mid2)); + const VU16 partD = ShiftLeft<3>(And(rawD, mid2)); + const VU16 partE = ShiftLeft<5>(And(rawE, mid2)); + const VU16 partF = ShiftLeft<7>(And(rawF, mid2)); + const VU16 packed8 = Xor3(Xor3(part8, part9, partA), + Xor3(partB, partC, partD), Or(partE, partF)); + + StoreU(packed0, d, packed_out + 0 * N); + StoreU(packed1, d, packed_out + 1 * N); + StoreU(packed2, d, packed_out + 2 * N); + StoreU(packed3, d, packed_out + 3 * N); + StoreU(packed4, d, packed_out + 4 * N); + StoreU(packed5, d, packed_out + 5 * N); + StoreU(packed6, d, packed_out + 6 * N); + StoreU(packed7, d, packed_out + 7 * N); + StoreU(packed8, d, packed_out + 8 * N); + } + + template <class D> + HWY_INLINE void Unpack(D d, const uint16_t* HWY_RESTRICT packed_in, + uint16_t* HWY_RESTRICT raw) const { + using VU16 = Vec<decltype(d)>; + const size_t N = Lanes(d); + + const VU16 packed0 = BitCast(d, LoadU(d, packed_in + 0 * N)); + const VU16 packed1 = BitCast(d, LoadU(d, packed_in + 1 * N)); + const VU16 packed2 = BitCast(d, LoadU(d, packed_in + 2 * N)); + const VU16 packed3 = BitCast(d, LoadU(d, packed_in + 3 * N)); + const VU16 packed4 = BitCast(d, LoadU(d, packed_in + 4 * N)); + const VU16 packed5 = BitCast(d, LoadU(d, packed_in + 5 * N)); + const VU16 packed6 = BitCast(d, LoadU(d, packed_in + 6 * N)); + const VU16 packed7 = BitCast(d, LoadU(d, packed_in + 7 * N)); + const VU16 packed8 = BitCast(d, LoadU(d, packed_in + 8 * N)); + + const VU16 mask = Set(d, 0x1FFu); // Lowest 9 bits + + const VU16 raw0 = And(packed0, mask); + StoreU(raw0, d, raw + 0 * N); + + const VU16 raw1 = And(packed1, mask); + StoreU(raw1, d, raw + 1 * N); + + const VU16 raw2 = And(packed2, mask); + StoreU(raw2, d, raw + 2 * N); + + const VU16 raw3 = And(packed3, mask); + StoreU(raw3, d, raw + 3 * N); + + const VU16 raw4 = And(packed4, mask); + StoreU(raw4, d, raw + 4 * N); + + const VU16 raw5 = And(packed5, mask); + StoreU(raw5, d, raw + 5 * N); + + const VU16 raw6 = And(packed6, mask); + StoreU(raw6, d, raw + 6 * N); + + const VU16 raw7 = And(packed7, mask); + StoreU(raw7, d, raw + 7 * N); + + const VU16 mid2 = Set(d, 0x180u); // top 2 in lower 9 + const VU16 raw8 = + OrAnd(ShiftRight<9>(packed0), ShiftLeft<7>(packed8), mid2); + const VU16 raw9 = + OrAnd(ShiftRight<9>(packed1), ShiftLeft<5>(packed8), mid2); + const VU16 rawA = + OrAnd(ShiftRight<9>(packed2), ShiftLeft<3>(packed8), mid2); + const VU16 rawB = + OrAnd(ShiftRight<9>(packed3), ShiftLeft<1>(packed8), mid2); + const VU16 rawC = + OrAnd(ShiftRight<9>(packed4), ShiftRight<1>(packed8), mid2); + const VU16 rawD = + OrAnd(ShiftRight<9>(packed5), ShiftRight<3>(packed8), mid2); + const VU16 rawE = + OrAnd(ShiftRight<9>(packed6), ShiftRight<5>(packed8), mid2); + const VU16 rawF = + OrAnd(ShiftRight<9>(packed7), ShiftRight<7>(packed8), mid2); + + StoreU(raw8, d, raw + 8 * N); + StoreU(raw9, d, raw + 9 * N); + StoreU(rawA, d, raw + 0xA * N); + StoreU(rawB, d, raw + 0xB * N); + StoreU(rawC, d, raw + 0xC * N); + StoreU(rawD, d, raw + 0xD * N); + StoreU(rawE, d, raw + 0xE * N); + StoreU(rawF, d, raw + 0xF * N); + } +}; // Pack16<9> + +template <> +struct Pack16<10> { + template <class D> + HWY_INLINE void Pack(D d, const uint16_t* HWY_RESTRICT raw, + uint16_t* HWY_RESTRICT packed_out) const { + using VU16 = Vec<decltype(d)>; + const size_t N = Lanes(d); + const VU16 raw0 = LoadU(d, raw + 0 * N); + const VU16 raw1 = LoadU(d, raw + 1 * N); + const VU16 raw2 = LoadU(d, raw + 2 * N); + const VU16 raw3 = LoadU(d, raw + 3 * N); + const VU16 raw4 = LoadU(d, raw + 4 * N); + const VU16 raw5 = LoadU(d, raw + 5 * N); + const VU16 raw6 = LoadU(d, raw + 6 * N); + const VU16 raw7 = LoadU(d, raw + 7 * N); + const VU16 raw8 = LoadU(d, raw + 8 * N); + const VU16 raw9 = LoadU(d, raw + 9 * N); + const VU16 rawA = LoadU(d, raw + 0xA * N); + const VU16 rawB = LoadU(d, raw + 0xB * N); + const VU16 rawC = LoadU(d, raw + 0xC * N); + const VU16 rawD = LoadU(d, raw + 0xD * N); + const VU16 rawE = LoadU(d, raw + 0xE * N); + const VU16 rawF = LoadU(d, raw + 0xF * N); + + // 8 vectors, each with 10+6 bits; top 4 bits are concatenated into + // packed8 and packed9. + const VU16 packed0 = Or(ShiftLeft<10>(raw8), raw0); + const VU16 packed1 = Or(ShiftLeft<10>(raw9), raw1); + const VU16 packed2 = Or(ShiftLeft<10>(rawA), raw2); + const VU16 packed3 = Or(ShiftLeft<10>(rawB), raw3); + const VU16 packed4 = Or(ShiftLeft<10>(rawC), raw4); + const VU16 packed5 = Or(ShiftLeft<10>(rawD), raw5); + const VU16 packed6 = Or(ShiftLeft<10>(rawE), raw6); + const VU16 packed7 = Or(ShiftLeft<10>(rawF), raw7); + + // We could shift down, OR and shift up, but two shifts are typically more + // expensive than AND, shift into position, and OR (which can be further + // reduced via Xor3). + const VU16 mid4 = Set(d, 0x3C0u); // top 4 in lower 10 + const VU16 part8 = ShiftRight<6>(And(raw8, mid4)); + const VU16 part9 = ShiftRight<2>(And(raw9, mid4)); + const VU16 partA = ShiftLeft<2>(And(rawA, mid4)); + const VU16 partB = ShiftLeft<6>(And(rawB, mid4)); + const VU16 partC = ShiftRight<6>(And(rawC, mid4)); + const VU16 partD = ShiftRight<2>(And(rawD, mid4)); + const VU16 partE = ShiftLeft<2>(And(rawE, mid4)); + const VU16 partF = ShiftLeft<6>(And(rawF, mid4)); + const VU16 packed8 = Or(Xor3(part8, part9, partA), partB); + const VU16 packed9 = Or(Xor3(partC, partD, partE), partF); + + StoreU(packed0, d, packed_out + 0 * N); + StoreU(packed1, d, packed_out + 1 * N); + StoreU(packed2, d, packed_out + 2 * N); + StoreU(packed3, d, packed_out + 3 * N); + StoreU(packed4, d, packed_out + 4 * N); + StoreU(packed5, d, packed_out + 5 * N); + StoreU(packed6, d, packed_out + 6 * N); + StoreU(packed7, d, packed_out + 7 * N); + StoreU(packed8, d, packed_out + 8 * N); + StoreU(packed9, d, packed_out + 9 * N); + } + + template <class D> + HWY_INLINE void Unpack(D d, const uint16_t* HWY_RESTRICT packed_in, + uint16_t* HWY_RESTRICT raw) const { + using VU16 = Vec<decltype(d)>; + const size_t N = Lanes(d); + + const VU16 packed0 = BitCast(d, LoadU(d, packed_in + 0 * N)); + const VU16 packed1 = BitCast(d, LoadU(d, packed_in + 1 * N)); + const VU16 packed2 = BitCast(d, LoadU(d, packed_in + 2 * N)); + const VU16 packed3 = BitCast(d, LoadU(d, packed_in + 3 * N)); + const VU16 packed4 = BitCast(d, LoadU(d, packed_in + 4 * N)); + const VU16 packed5 = BitCast(d, LoadU(d, packed_in + 5 * N)); + const VU16 packed6 = BitCast(d, LoadU(d, packed_in + 6 * N)); + const VU16 packed7 = BitCast(d, LoadU(d, packed_in + 7 * N)); + const VU16 packed8 = BitCast(d, LoadU(d, packed_in + 8 * N)); + const VU16 packed9 = BitCast(d, LoadU(d, packed_in + 9 * N)); + + const VU16 mask = Set(d, 0x3FFu); // Lowest 10 bits + + const VU16 raw0 = And(packed0, mask); + StoreU(raw0, d, raw + 0 * N); + + const VU16 raw1 = And(packed1, mask); + StoreU(raw1, d, raw + 1 * N); + + const VU16 raw2 = And(packed2, mask); + StoreU(raw2, d, raw + 2 * N); + + const VU16 raw3 = And(packed3, mask); + StoreU(raw3, d, raw + 3 * N); + + const VU16 raw4 = And(packed4, mask); + StoreU(raw4, d, raw + 4 * N); + + const VU16 raw5 = And(packed5, mask); + StoreU(raw5, d, raw + 5 * N); + + const VU16 raw6 = And(packed6, mask); + StoreU(raw6, d, raw + 6 * N); + + const VU16 raw7 = And(packed7, mask); + StoreU(raw7, d, raw + 7 * N); + + const VU16 mid4 = Set(d, 0x3C0u); // top 4 in lower 10 + const VU16 raw8 = + OrAnd(ShiftRight<10>(packed0), ShiftLeft<6>(packed8), mid4); + const VU16 raw9 = + OrAnd(ShiftRight<10>(packed1), ShiftLeft<2>(packed8), mid4); + const VU16 rawA = + OrAnd(ShiftRight<10>(packed2), ShiftRight<2>(packed8), mid4); + const VU16 rawB = + OrAnd(ShiftRight<10>(packed3), ShiftRight<6>(packed8), mid4); + const VU16 rawC = + OrAnd(ShiftRight<10>(packed4), ShiftLeft<6>(packed9), mid4); + const VU16 rawD = + OrAnd(ShiftRight<10>(packed5), ShiftLeft<2>(packed9), mid4); + const VU16 rawE = + OrAnd(ShiftRight<10>(packed6), ShiftRight<2>(packed9), mid4); + const VU16 rawF = + OrAnd(ShiftRight<10>(packed7), ShiftRight<6>(packed9), mid4); + + StoreU(raw8, d, raw + 8 * N); + StoreU(raw9, d, raw + 9 * N); + StoreU(rawA, d, raw + 0xA * N); + StoreU(rawB, d, raw + 0xB * N); + StoreU(rawC, d, raw + 0xC * N); + StoreU(rawD, d, raw + 0xD * N); + StoreU(rawE, d, raw + 0xE * N); + StoreU(rawF, d, raw + 0xF * N); + } +}; // Pack16<10> + +template <> +struct Pack16<11> { + template <class D> + HWY_INLINE void Pack(D d, const uint16_t* HWY_RESTRICT raw, + uint16_t* HWY_RESTRICT packed_out) const { + using VU16 = Vec<decltype(d)>; + const size_t N = Lanes(d); + const VU16 raw0 = LoadU(d, raw + 0 * N); + const VU16 raw1 = LoadU(d, raw + 1 * N); + const VU16 raw2 = LoadU(d, raw + 2 * N); + const VU16 raw3 = LoadU(d, raw + 3 * N); + const VU16 raw4 = LoadU(d, raw + 4 * N); + const VU16 raw5 = LoadU(d, raw + 5 * N); + const VU16 raw6 = LoadU(d, raw + 6 * N); + const VU16 raw7 = LoadU(d, raw + 7 * N); + const VU16 raw8 = LoadU(d, raw + 8 * N); + const VU16 raw9 = LoadU(d, raw + 9 * N); + const VU16 rawA = LoadU(d, raw + 0xA * N); + const VU16 rawB = LoadU(d, raw + 0xB * N); + const VU16 rawC = LoadU(d, raw + 0xC * N); + const VU16 rawD = LoadU(d, raw + 0xD * N); + const VU16 rawE = LoadU(d, raw + 0xE * N); + const VU16 rawF = LoadU(d, raw + 0xF * N); + + // It is not obvious what the optimal partitioning looks like. To reduce the + // number of constants, we want to minimize the number of distinct bit + // lengths. 11+5 also requires 6-bit remnants with 4-bit leftovers. + // 8+3 seems better: it is easier to scatter 3 bits into the MSBs. + const VU16 lo8 = Set(d, 0xFFu); + + // Lower 8 bits of all raw + const VU16 packed0 = OrAnd(ShiftLeft<8>(raw1), raw0, lo8); + const VU16 packed1 = OrAnd(ShiftLeft<8>(raw3), raw2, lo8); + const VU16 packed2 = OrAnd(ShiftLeft<8>(raw5), raw4, lo8); + const VU16 packed3 = OrAnd(ShiftLeft<8>(raw7), raw6, lo8); + const VU16 packed4 = OrAnd(ShiftLeft<8>(raw9), raw8, lo8); + const VU16 packed5 = OrAnd(ShiftLeft<8>(rawB), rawA, lo8); + const VU16 packed6 = OrAnd(ShiftLeft<8>(rawD), rawC, lo8); + const VU16 packed7 = OrAnd(ShiftLeft<8>(rawF), rawE, lo8); + + StoreU(packed0, d, packed_out + 0 * N); + StoreU(packed1, d, packed_out + 1 * N); + StoreU(packed2, d, packed_out + 2 * N); + StoreU(packed3, d, packed_out + 3 * N); + StoreU(packed4, d, packed_out + 4 * N); + StoreU(packed5, d, packed_out + 5 * N); + StoreU(packed6, d, packed_out + 6 * N); + StoreU(packed7, d, packed_out + 7 * N); + + // Three vectors, five 3bit remnants each, plus one 3bit in their MSB. + const VU16 top0 = ShiftRight<8>(raw0); + const VU16 top1 = ShiftRight<8>(raw1); + const VU16 top2 = ShiftRight<8>(raw2); + // Insert top raw bits into 3-bit groups within packed8..A. Moving the + // mask along avoids masking each of raw0..E and enables OrAnd. + VU16 next = Set(d, 0x38u); // 0x7 << 3 + VU16 packed8 = OrAnd(top0, ShiftRight<5>(raw3), next); + VU16 packed9 = OrAnd(top1, ShiftRight<5>(raw4), next); + VU16 packedA = OrAnd(top2, ShiftRight<5>(raw5), next); + next = ShiftLeft<3>(next); + packed8 = OrAnd(packed8, ShiftRight<2>(raw6), next); + packed9 = OrAnd(packed9, ShiftRight<2>(raw7), next); + packedA = OrAnd(packedA, ShiftRight<2>(raw8), next); + next = ShiftLeft<3>(next); + packed8 = OrAnd(packed8, Add(raw9, raw9), next); + packed9 = OrAnd(packed9, Add(rawA, rawA), next); + packedA = OrAnd(packedA, Add(rawB, rawB), next); + next = ShiftLeft<3>(next); + packed8 = OrAnd(packed8, ShiftLeft<4>(rawC), next); + packed9 = OrAnd(packed9, ShiftLeft<4>(rawD), next); + packedA = OrAnd(packedA, ShiftLeft<4>(rawE), next); + + // Scatter upper 3 bits of rawF into the upper bits. + next = ShiftLeft<3>(next); // = 0x8000u + packed8 = OrAnd(packed8, ShiftLeft<7>(rawF), next); + packed9 = OrAnd(packed9, ShiftLeft<6>(rawF), next); + packedA = OrAnd(packedA, ShiftLeft<5>(rawF), next); + + StoreU(packed8, d, packed_out + 8 * N); + StoreU(packed9, d, packed_out + 9 * N); + StoreU(packedA, d, packed_out + 0xA * N); + } + + template <class D> + HWY_INLINE void Unpack(D d, const uint16_t* HWY_RESTRICT packed_in, + uint16_t* HWY_RESTRICT raw) const { + using VU16 = Vec<decltype(d)>; + const size_t N = Lanes(d); + + const VU16 packed0 = BitCast(d, LoadU(d, packed_in + 0 * N)); + const VU16 packed1 = BitCast(d, LoadU(d, packed_in + 1 * N)); + const VU16 packed2 = BitCast(d, LoadU(d, packed_in + 2 * N)); + const VU16 packed3 = BitCast(d, LoadU(d, packed_in + 3 * N)); + const VU16 packed4 = BitCast(d, LoadU(d, packed_in + 4 * N)); + const VU16 packed5 = BitCast(d, LoadU(d, packed_in + 5 * N)); + const VU16 packed6 = BitCast(d, LoadU(d, packed_in + 6 * N)); + const VU16 packed7 = BitCast(d, LoadU(d, packed_in + 7 * N)); + const VU16 packed8 = BitCast(d, LoadU(d, packed_in + 8 * N)); + const VU16 packed9 = BitCast(d, LoadU(d, packed_in + 9 * N)); + const VU16 packedA = BitCast(d, LoadU(d, packed_in + 0xA * N)); + + const VU16 mask = Set(d, 0xFFu); // Lowest 8 bits + + const VU16 down0 = And(packed0, mask); + const VU16 down1 = ShiftRight<8>(packed0); + const VU16 down2 = And(packed1, mask); + const VU16 down3 = ShiftRight<8>(packed1); + const VU16 down4 = And(packed2, mask); + const VU16 down5 = ShiftRight<8>(packed2); + const VU16 down6 = And(packed3, mask); + const VU16 down7 = ShiftRight<8>(packed3); + const VU16 down8 = And(packed4, mask); + const VU16 down9 = ShiftRight<8>(packed4); + const VU16 downA = And(packed5, mask); + const VU16 downB = ShiftRight<8>(packed5); + const VU16 downC = And(packed6, mask); + const VU16 downD = ShiftRight<8>(packed6); + const VU16 downE = And(packed7, mask); + const VU16 downF = ShiftRight<8>(packed7); + + // Three bits from packed8..A, eight bits from down0..F. + const VU16 hi3 = Set(d, 0x700u); + const VU16 raw0 = OrAnd(down0, ShiftLeft<8>(packed8), hi3); + const VU16 raw1 = OrAnd(down1, ShiftLeft<8>(packed9), hi3); + const VU16 raw2 = OrAnd(down2, ShiftLeft<8>(packedA), hi3); + + const VU16 raw3 = OrAnd(down3, ShiftLeft<5>(packed8), hi3); + const VU16 raw4 = OrAnd(down4, ShiftLeft<5>(packed9), hi3); + const VU16 raw5 = OrAnd(down5, ShiftLeft<5>(packedA), hi3); + + const VU16 raw6 = OrAnd(down6, ShiftLeft<2>(packed8), hi3); + const VU16 raw7 = OrAnd(down7, ShiftLeft<2>(packed9), hi3); + const VU16 raw8 = OrAnd(down8, ShiftLeft<2>(packedA), hi3); + + const VU16 raw9 = OrAnd(down9, ShiftRight<1>(packed8), hi3); + const VU16 rawA = OrAnd(downA, ShiftRight<1>(packed9), hi3); + const VU16 rawB = OrAnd(downB, ShiftRight<1>(packedA), hi3); + + const VU16 rawC = OrAnd(downC, ShiftRight<4>(packed8), hi3); + const VU16 rawD = OrAnd(downD, ShiftRight<4>(packed9), hi3); + const VU16 rawE = OrAnd(downE, ShiftRight<4>(packedA), hi3); + + // Shift MSB into the top 3-of-11 and mask. + const VU16 rawF = Or(downF, Xor3(And(ShiftRight<7>(packed8), hi3), + And(ShiftRight<6>(packed9), hi3), + And(ShiftRight<5>(packedA), hi3))); + + StoreU(raw0, d, raw + 0 * N); + StoreU(raw1, d, raw + 1 * N); + StoreU(raw2, d, raw + 2 * N); + StoreU(raw3, d, raw + 3 * N); + StoreU(raw4, d, raw + 4 * N); + StoreU(raw5, d, raw + 5 * N); + StoreU(raw6, d, raw + 6 * N); + StoreU(raw7, d, raw + 7 * N); + StoreU(raw8, d, raw + 8 * N); + StoreU(raw9, d, raw + 9 * N); + StoreU(rawA, d, raw + 0xA * N); + StoreU(rawB, d, raw + 0xB * N); + StoreU(rawC, d, raw + 0xC * N); + StoreU(rawD, d, raw + 0xD * N); + StoreU(rawE, d, raw + 0xE * N); + StoreU(rawF, d, raw + 0xF * N); + } +}; // Pack16<11> + +template <> +struct Pack16<12> { + template <class D> + HWY_INLINE void Pack(D d, const uint16_t* HWY_RESTRICT raw, + uint16_t* HWY_RESTRICT packed_out) const { + using VU16 = Vec<decltype(d)>; + const size_t N = Lanes(d); + const VU16 raw0 = LoadU(d, raw + 0 * N); + const VU16 raw1 = LoadU(d, raw + 1 * N); + const VU16 raw2 = LoadU(d, raw + 2 * N); + const VU16 raw3 = LoadU(d, raw + 3 * N); + const VU16 raw4 = LoadU(d, raw + 4 * N); + const VU16 raw5 = LoadU(d, raw + 5 * N); + const VU16 raw6 = LoadU(d, raw + 6 * N); + const VU16 raw7 = LoadU(d, raw + 7 * N); + const VU16 raw8 = LoadU(d, raw + 8 * N); + const VU16 raw9 = LoadU(d, raw + 9 * N); + const VU16 rawA = LoadU(d, raw + 0xA * N); + const VU16 rawB = LoadU(d, raw + 0xB * N); + const VU16 rawC = LoadU(d, raw + 0xC * N); + const VU16 rawD = LoadU(d, raw + 0xD * N); + const VU16 rawE = LoadU(d, raw + 0xE * N); + const VU16 rawF = LoadU(d, raw + 0xF * N); + + // 8 vectors, each with 12+4 bits; top 8 bits are concatenated into + // packed8 to packedB. + const VU16 packed0 = Or(ShiftLeft<12>(raw8), raw0); + const VU16 packed1 = Or(ShiftLeft<12>(raw9), raw1); + const VU16 packed2 = Or(ShiftLeft<12>(rawA), raw2); + const VU16 packed3 = Or(ShiftLeft<12>(rawB), raw3); + const VU16 packed4 = Or(ShiftLeft<12>(rawC), raw4); + const VU16 packed5 = Or(ShiftLeft<12>(rawD), raw5); + const VU16 packed6 = Or(ShiftLeft<12>(rawE), raw6); + const VU16 packed7 = Or(ShiftLeft<12>(rawF), raw7); + + // Masking after shifting left enables OrAnd. + const VU16 hi8 = Set(d, 0xFF00u); + const VU16 packed8 = OrAnd(ShiftRight<4>(raw8), ShiftLeft<4>(raw9), hi8); + const VU16 packed9 = OrAnd(ShiftRight<4>(rawA), ShiftLeft<4>(rawB), hi8); + const VU16 packedA = OrAnd(ShiftRight<4>(rawC), ShiftLeft<4>(rawD), hi8); + const VU16 packedB = OrAnd(ShiftRight<4>(rawE), ShiftLeft<4>(rawF), hi8); + StoreU(packed0, d, packed_out + 0 * N); + StoreU(packed1, d, packed_out + 1 * N); + StoreU(packed2, d, packed_out + 2 * N); + StoreU(packed3, d, packed_out + 3 * N); + StoreU(packed4, d, packed_out + 4 * N); + StoreU(packed5, d, packed_out + 5 * N); + StoreU(packed6, d, packed_out + 6 * N); + StoreU(packed7, d, packed_out + 7 * N); + StoreU(packed8, d, packed_out + 8 * N); + StoreU(packed9, d, packed_out + 9 * N); + StoreU(packedA, d, packed_out + 0xA * N); + StoreU(packedB, d, packed_out + 0xB * N); + } + + template <class D> + HWY_INLINE void Unpack(D d, const uint16_t* HWY_RESTRICT packed_in, + uint16_t* HWY_RESTRICT raw) const { + using VU16 = Vec<decltype(d)>; + const size_t N = Lanes(d); + + const VU16 packed0 = BitCast(d, LoadU(d, packed_in + 0 * N)); + const VU16 packed1 = BitCast(d, LoadU(d, packed_in + 1 * N)); + const VU16 packed2 = BitCast(d, LoadU(d, packed_in + 2 * N)); + const VU16 packed3 = BitCast(d, LoadU(d, packed_in + 3 * N)); + const VU16 packed4 = BitCast(d, LoadU(d, packed_in + 4 * N)); + const VU16 packed5 = BitCast(d, LoadU(d, packed_in + 5 * N)); + const VU16 packed6 = BitCast(d, LoadU(d, packed_in + 6 * N)); + const VU16 packed7 = BitCast(d, LoadU(d, packed_in + 7 * N)); + const VU16 packed8 = BitCast(d, LoadU(d, packed_in + 8 * N)); + const VU16 packed9 = BitCast(d, LoadU(d, packed_in + 9 * N)); + const VU16 packedA = BitCast(d, LoadU(d, packed_in + 0xA * N)); + const VU16 packedB = BitCast(d, LoadU(d, packed_in + 0xB * N)); + + const VU16 mask = Set(d, 0xFFFu); // Lowest 12 bits + + const VU16 raw0 = And(packed0, mask); + StoreU(raw0, d, raw + 0 * N); + + const VU16 raw1 = And(packed1, mask); + StoreU(raw1, d, raw + 1 * N); + + const VU16 raw2 = And(packed2, mask); + StoreU(raw2, d, raw + 2 * N); + + const VU16 raw3 = And(packed3, mask); + StoreU(raw3, d, raw + 3 * N); + + const VU16 raw4 = And(packed4, mask); + StoreU(raw4, d, raw + 4 * N); + + const VU16 raw5 = And(packed5, mask); + StoreU(raw5, d, raw + 5 * N); + + const VU16 raw6 = And(packed6, mask); + StoreU(raw6, d, raw + 6 * N); + + const VU16 raw7 = And(packed7, mask); + StoreU(raw7, d, raw + 7 * N); + + const VU16 mid8 = Set(d, 0xFF0u); // upper 8 in lower 12 + const VU16 raw8 = + OrAnd(ShiftRight<12>(packed0), ShiftLeft<4>(packed8), mid8); + const VU16 raw9 = + OrAnd(ShiftRight<12>(packed1), ShiftRight<4>(packed8), mid8); + const VU16 rawA = + OrAnd(ShiftRight<12>(packed2), ShiftLeft<4>(packed9), mid8); + const VU16 rawB = + OrAnd(ShiftRight<12>(packed3), ShiftRight<4>(packed9), mid8); + const VU16 rawC = + OrAnd(ShiftRight<12>(packed4), ShiftLeft<4>(packedA), mid8); + const VU16 rawD = + OrAnd(ShiftRight<12>(packed5), ShiftRight<4>(packedA), mid8); + const VU16 rawE = + OrAnd(ShiftRight<12>(packed6), ShiftLeft<4>(packedB), mid8); + const VU16 rawF = + OrAnd(ShiftRight<12>(packed7), ShiftRight<4>(packedB), mid8); + StoreU(raw8, d, raw + 8 * N); + StoreU(raw9, d, raw + 9 * N); + StoreU(rawA, d, raw + 0xA * N); + StoreU(rawB, d, raw + 0xB * N); + StoreU(rawC, d, raw + 0xC * N); + StoreU(rawD, d, raw + 0xD * N); + StoreU(rawE, d, raw + 0xE * N); + StoreU(rawF, d, raw + 0xF * N); + } +}; // Pack16<12> + +template <> +struct Pack16<13> { + template <class D> + HWY_INLINE void Pack(D d, const uint16_t* HWY_RESTRICT raw, + uint16_t* HWY_RESTRICT packed_out) const { + using VU16 = Vec<decltype(d)>; + const size_t N = Lanes(d); + const VU16 raw0 = LoadU(d, raw + 0 * N); + const VU16 raw1 = LoadU(d, raw + 1 * N); + const VU16 raw2 = LoadU(d, raw + 2 * N); + const VU16 raw3 = LoadU(d, raw + 3 * N); + const VU16 raw4 = LoadU(d, raw + 4 * N); + const VU16 raw5 = LoadU(d, raw + 5 * N); + const VU16 raw6 = LoadU(d, raw + 6 * N); + const VU16 raw7 = LoadU(d, raw + 7 * N); + const VU16 raw8 = LoadU(d, raw + 8 * N); + const VU16 raw9 = LoadU(d, raw + 9 * N); + const VU16 rawA = LoadU(d, raw + 0xA * N); + const VU16 rawB = LoadU(d, raw + 0xB * N); + const VU16 rawC = LoadU(d, raw + 0xC * N); + const VU16 rawD = LoadU(d, raw + 0xD * N); + const VU16 rawE = LoadU(d, raw + 0xE * N); + const VU16 rawF = LoadU(d, raw + 0xF * N); + + // As with 11 bits, it is not obvious what the optimal partitioning looks + // like. We similarly go with an 8+5 split. + const VU16 lo8 = Set(d, 0xFFu); + + // Lower 8 bits of all raw + const VU16 packed0 = OrAnd(ShiftLeft<8>(raw1), raw0, lo8); + const VU16 packed1 = OrAnd(ShiftLeft<8>(raw3), raw2, lo8); + const VU16 packed2 = OrAnd(ShiftLeft<8>(raw5), raw4, lo8); + const VU16 packed3 = OrAnd(ShiftLeft<8>(raw7), raw6, lo8); + const VU16 packed4 = OrAnd(ShiftLeft<8>(raw9), raw8, lo8); + const VU16 packed5 = OrAnd(ShiftLeft<8>(rawB), rawA, lo8); + const VU16 packed6 = OrAnd(ShiftLeft<8>(rawD), rawC, lo8); + const VU16 packed7 = OrAnd(ShiftLeft<8>(rawF), rawE, lo8); + + StoreU(packed0, d, packed_out + 0 * N); + StoreU(packed1, d, packed_out + 1 * N); + StoreU(packed2, d, packed_out + 2 * N); + StoreU(packed3, d, packed_out + 3 * N); + StoreU(packed4, d, packed_out + 4 * N); + StoreU(packed5, d, packed_out + 5 * N); + StoreU(packed6, d, packed_out + 6 * N); + StoreU(packed7, d, packed_out + 7 * N); + + // Five vectors, three 5bit remnants each, plus one 5bit in their MSB. + const VU16 top0 = ShiftRight<8>(raw0); + const VU16 top1 = ShiftRight<8>(raw1); + const VU16 top2 = ShiftRight<8>(raw2); + const VU16 top3 = ShiftRight<8>(raw3); + const VU16 top4 = ShiftRight<8>(raw4); + + // Insert top raw bits into 5-bit groups within packed8..C. Moving the + // mask along avoids masking each of raw0..E and enables OrAnd. + VU16 next = Set(d, 0x3E0u); // 0x1F << 5 + VU16 packed8 = OrAnd(top0, ShiftRight<3>(raw5), next); + VU16 packed9 = OrAnd(top1, ShiftRight<3>(raw6), next); + VU16 packedA = OrAnd(top2, ShiftRight<3>(raw7), next); + VU16 packedB = OrAnd(top3, ShiftRight<3>(raw8), next); + VU16 packedC = OrAnd(top4, ShiftRight<3>(raw9), next); + next = ShiftLeft<5>(next); + packed8 = OrAnd(packed8, ShiftLeft<2>(rawA), next); + packed9 = OrAnd(packed9, ShiftLeft<2>(rawB), next); + packedA = OrAnd(packedA, ShiftLeft<2>(rawC), next); + packedB = OrAnd(packedB, ShiftLeft<2>(rawD), next); + packedC = OrAnd(packedC, ShiftLeft<2>(rawE), next); + + // Scatter upper 5 bits of rawF into the upper bits. + next = ShiftLeft<3>(next); // = 0x8000u + packed8 = OrAnd(packed8, ShiftLeft<7>(rawF), next); + packed9 = OrAnd(packed9, ShiftLeft<6>(rawF), next); + packedA = OrAnd(packedA, ShiftLeft<5>(rawF), next); + packedB = OrAnd(packedB, ShiftLeft<4>(rawF), next); + packedC = OrAnd(packedC, ShiftLeft<3>(rawF), next); + + StoreU(packed8, d, packed_out + 8 * N); + StoreU(packed9, d, packed_out + 9 * N); + StoreU(packedA, d, packed_out + 0xA * N); + StoreU(packedB, d, packed_out + 0xB * N); + StoreU(packedC, d, packed_out + 0xC * N); + } + + template <class D> + HWY_INLINE void Unpack(D d, const uint16_t* HWY_RESTRICT packed_in, + uint16_t* HWY_RESTRICT raw) const { + using VU16 = Vec<decltype(d)>; + const size_t N = Lanes(d); + + const VU16 packed0 = BitCast(d, LoadU(d, packed_in + 0 * N)); + const VU16 packed1 = BitCast(d, LoadU(d, packed_in + 1 * N)); + const VU16 packed2 = BitCast(d, LoadU(d, packed_in + 2 * N)); + const VU16 packed3 = BitCast(d, LoadU(d, packed_in + 3 * N)); + const VU16 packed4 = BitCast(d, LoadU(d, packed_in + 4 * N)); + const VU16 packed5 = BitCast(d, LoadU(d, packed_in + 5 * N)); + const VU16 packed6 = BitCast(d, LoadU(d, packed_in + 6 * N)); + const VU16 packed7 = BitCast(d, LoadU(d, packed_in + 7 * N)); + const VU16 packed8 = BitCast(d, LoadU(d, packed_in + 8 * N)); + const VU16 packed9 = BitCast(d, LoadU(d, packed_in + 9 * N)); + const VU16 packedA = BitCast(d, LoadU(d, packed_in + 0xA * N)); + const VU16 packedB = BitCast(d, LoadU(d, packed_in + 0xB * N)); + const VU16 packedC = BitCast(d, LoadU(d, packed_in + 0xC * N)); + + const VU16 mask = Set(d, 0xFFu); // Lowest 8 bits + + const VU16 down0 = And(packed0, mask); + const VU16 down1 = ShiftRight<8>(packed0); + const VU16 down2 = And(packed1, mask); + const VU16 down3 = ShiftRight<8>(packed1); + const VU16 down4 = And(packed2, mask); + const VU16 down5 = ShiftRight<8>(packed2); + const VU16 down6 = And(packed3, mask); + const VU16 down7 = ShiftRight<8>(packed3); + const VU16 down8 = And(packed4, mask); + const VU16 down9 = ShiftRight<8>(packed4); + const VU16 downA = And(packed5, mask); + const VU16 downB = ShiftRight<8>(packed5); + const VU16 downC = And(packed6, mask); + const VU16 downD = ShiftRight<8>(packed6); + const VU16 downE = And(packed7, mask); + const VU16 downF = ShiftRight<8>(packed7); + + // Upper five bits from packed8..C, eight bits from down0..F. + const VU16 hi5 = Set(d, 0x1F00u); + const VU16 raw0 = OrAnd(down0, ShiftLeft<8>(packed8), hi5); + const VU16 raw1 = OrAnd(down1, ShiftLeft<8>(packed9), hi5); + const VU16 raw2 = OrAnd(down2, ShiftLeft<8>(packedA), hi5); + const VU16 raw3 = OrAnd(down3, ShiftLeft<8>(packedB), hi5); + const VU16 raw4 = OrAnd(down4, ShiftLeft<8>(packedC), hi5); + + const VU16 raw5 = OrAnd(down5, ShiftLeft<3>(packed8), hi5); + const VU16 raw6 = OrAnd(down6, ShiftLeft<3>(packed9), hi5); + const VU16 raw7 = OrAnd(down7, ShiftLeft<3>(packedA), hi5); + const VU16 raw8 = OrAnd(down8, ShiftLeft<3>(packed9), hi5); + const VU16 raw9 = OrAnd(down9, ShiftLeft<3>(packedA), hi5); + + const VU16 rawA = OrAnd(downA, ShiftRight<2>(packed8), hi5); + const VU16 rawB = OrAnd(downB, ShiftRight<2>(packed9), hi5); + const VU16 rawC = OrAnd(downC, ShiftRight<2>(packedA), hi5); + const VU16 rawD = OrAnd(downD, ShiftRight<2>(packed9), hi5); + const VU16 rawE = OrAnd(downE, ShiftRight<2>(packedA), hi5); + + // Shift MSB into the top 5-of-11 and mask. + const VU16 p0 = Xor3(And(ShiftRight<7>(packed8), hi5), // + And(ShiftRight<6>(packed9), hi5), + And(ShiftRight<5>(packedA), hi5)); + const VU16 p1 = Xor3(And(ShiftRight<4>(packedB), hi5), + And(ShiftRight<3>(packedC), hi5), downF); + const VU16 rawF = Or(p0, p1); + + StoreU(raw0, d, raw + 0 * N); + StoreU(raw1, d, raw + 1 * N); + StoreU(raw2, d, raw + 2 * N); + StoreU(raw3, d, raw + 3 * N); + StoreU(raw4, d, raw + 4 * N); + StoreU(raw5, d, raw + 5 * N); + StoreU(raw6, d, raw + 6 * N); + StoreU(raw7, d, raw + 7 * N); + StoreU(raw8, d, raw + 8 * N); + StoreU(raw9, d, raw + 9 * N); + StoreU(rawA, d, raw + 0xA * N); + StoreU(rawB, d, raw + 0xB * N); + StoreU(rawC, d, raw + 0xC * N); + StoreU(rawD, d, raw + 0xD * N); + StoreU(rawE, d, raw + 0xE * N); + StoreU(rawF, d, raw + 0xF * N); + } +}; // Pack16<13> + +template <> +struct Pack16<14> { + template <class D> + HWY_INLINE void Pack(D d, const uint16_t* HWY_RESTRICT raw, + uint16_t* HWY_RESTRICT packed_out) const { + using VU16 = Vec<decltype(d)>; + const size_t N = Lanes(d); + const VU16 raw0 = LoadU(d, raw + 0 * N); + const VU16 raw1 = LoadU(d, raw + 1 * N); + const VU16 raw2 = LoadU(d, raw + 2 * N); + const VU16 raw3 = LoadU(d, raw + 3 * N); + const VU16 raw4 = LoadU(d, raw + 4 * N); + const VU16 raw5 = LoadU(d, raw + 5 * N); + const VU16 raw6 = LoadU(d, raw + 6 * N); + const VU16 raw7 = LoadU(d, raw + 7 * N); + const VU16 raw8 = LoadU(d, raw + 8 * N); + const VU16 raw9 = LoadU(d, raw + 9 * N); + const VU16 rawA = LoadU(d, raw + 0xA * N); + const VU16 rawB = LoadU(d, raw + 0xB * N); + const VU16 rawC = LoadU(d, raw + 0xC * N); + const VU16 rawD = LoadU(d, raw + 0xD * N); + const VU16 rawE = LoadU(d, raw + 0xE * N); + const VU16 rawF = LoadU(d, raw + 0xF * N); + + // 14 vectors, each with 14+2 bits; two raw vectors are scattered + // across the upper 2 bits. + const VU16 hi2 = Set(d, 0xC000u); + const VU16 packed0 = Or(raw0, ShiftLeft<14>(rawE)); + const VU16 packed1 = OrAnd(raw1, ShiftLeft<12>(rawE), hi2); + const VU16 packed2 = OrAnd(raw2, ShiftLeft<10>(rawE), hi2); + const VU16 packed3 = OrAnd(raw3, ShiftLeft<8>(rawE), hi2); + const VU16 packed4 = OrAnd(raw4, ShiftLeft<6>(rawE), hi2); + const VU16 packed5 = OrAnd(raw5, ShiftLeft<4>(rawE), hi2); + const VU16 packed6 = OrAnd(raw6, ShiftLeft<2>(rawE), hi2); + const VU16 packed7 = Or(raw7, ShiftLeft<14>(rawF)); + const VU16 packed8 = OrAnd(raw8, ShiftLeft<12>(rawF), hi2); + const VU16 packed9 = OrAnd(raw9, ShiftLeft<10>(rawF), hi2); + const VU16 packedA = OrAnd(rawA, ShiftLeft<8>(rawF), hi2); + const VU16 packedB = OrAnd(rawB, ShiftLeft<6>(rawF), hi2); + const VU16 packedC = OrAnd(rawC, ShiftLeft<4>(rawF), hi2); + const VU16 packedD = OrAnd(rawD, ShiftLeft<2>(rawF), hi2); + + StoreU(packed0, d, packed_out + 0 * N); + StoreU(packed1, d, packed_out + 1 * N); + StoreU(packed2, d, packed_out + 2 * N); + StoreU(packed3, d, packed_out + 3 * N); + StoreU(packed4, d, packed_out + 4 * N); + StoreU(packed5, d, packed_out + 5 * N); + StoreU(packed6, d, packed_out + 6 * N); + StoreU(packed7, d, packed_out + 7 * N); + StoreU(packed8, d, packed_out + 8 * N); + StoreU(packed9, d, packed_out + 9 * N); + StoreU(packedA, d, packed_out + 0xA * N); + StoreU(packedB, d, packed_out + 0xB * N); + StoreU(packedC, d, packed_out + 0xC * N); + StoreU(packedD, d, packed_out + 0xD * N); + } + + template <class D> + HWY_INLINE void Unpack(D d, const uint16_t* HWY_RESTRICT packed_in, + uint16_t* HWY_RESTRICT raw) const { + using VU16 = Vec<decltype(d)>; + const size_t N = Lanes(d); + + const VU16 packed0 = BitCast(d, LoadU(d, packed_in + 0 * N)); + const VU16 packed1 = BitCast(d, LoadU(d, packed_in + 1 * N)); + const VU16 packed2 = BitCast(d, LoadU(d, packed_in + 2 * N)); + const VU16 packed3 = BitCast(d, LoadU(d, packed_in + 3 * N)); + const VU16 packed4 = BitCast(d, LoadU(d, packed_in + 4 * N)); + const VU16 packed5 = BitCast(d, LoadU(d, packed_in + 5 * N)); + const VU16 packed6 = BitCast(d, LoadU(d, packed_in + 6 * N)); + const VU16 packed7 = BitCast(d, LoadU(d, packed_in + 7 * N)); + const VU16 packed8 = BitCast(d, LoadU(d, packed_in + 8 * N)); + const VU16 packed9 = BitCast(d, LoadU(d, packed_in + 9 * N)); + const VU16 packedA = BitCast(d, LoadU(d, packed_in + 0xA * N)); + const VU16 packedB = BitCast(d, LoadU(d, packed_in + 0xB * N)); + const VU16 packedC = BitCast(d, LoadU(d, packed_in + 0xC * N)); + const VU16 packedD = BitCast(d, LoadU(d, packed_in + 0xD * N)); + + const VU16 mask = Set(d, 0x3FFFu); // Lowest 14 bits + + const VU16 raw0 = And(packed0, mask); + StoreU(raw0, d, raw + 0 * N); + + const VU16 raw1 = And(packed1, mask); + StoreU(raw1, d, raw + 1 * N); + + const VU16 raw2 = And(packed2, mask); + StoreU(raw2, d, raw + 2 * N); + + const VU16 raw3 = And(packed3, mask); + StoreU(raw3, d, raw + 3 * N); + + const VU16 raw4 = And(packed4, mask); + StoreU(raw4, d, raw + 4 * N); + + const VU16 raw5 = And(packed5, mask); + StoreU(raw5, d, raw + 5 * N); + + const VU16 raw6 = And(packed6, mask); + StoreU(raw6, d, raw + 6 * N); + + const VU16 raw7 = And(packed7, mask); + StoreU(raw7, d, raw + 7 * N); + + const VU16 raw8 = And(packed8, mask); + StoreU(raw8, d, raw + 8 * N); + + const VU16 raw9 = And(packed9, mask); + StoreU(raw9, d, raw + 9 * N); + + const VU16 rawA = And(packedA, mask); + StoreU(rawA, d, raw + 0xA * N); + + const VU16 rawB = And(packedB, mask); + StoreU(rawB, d, raw + 0xB * N); + + const VU16 rawC = And(packedC, mask); + StoreU(rawC, d, raw + 0xC * N); + + const VU16 rawD = And(packedD, mask); + StoreU(rawD, d, raw + 0xD * N); + + // rawE is the concatenation of the top two bits in packed0..6. + const VU16 E0 = Xor3(ShiftRight<14>(packed0), // + ShiftRight<12>(AndNot(mask, packed1)), + ShiftRight<10>(AndNot(mask, packed2))); + const VU16 E1 = Xor3(ShiftRight<8>(AndNot(mask, packed3)), + ShiftRight<6>(AndNot(mask, packed4)), + ShiftRight<4>(AndNot(mask, packed5))); + const VU16 rawE = Xor3(ShiftRight<2>(AndNot(mask, packed6)), E0, E1); + const VU16 F0 = Xor3(ShiftRight<14>(AndNot(mask, packed7)), + ShiftRight<12>(AndNot(mask, packed8)), + ShiftRight<10>(AndNot(mask, packed9))); + const VU16 F1 = Xor3(ShiftRight<8>(AndNot(mask, packedA)), + ShiftRight<6>(AndNot(mask, packedB)), + ShiftRight<4>(AndNot(mask, packedC))); + const VU16 rawF = Xor3(ShiftRight<2>(AndNot(mask, packedD)), F0, F1); + StoreU(rawE, d, raw + 0xE * N); + StoreU(rawF, d, raw + 0xF * N); + } +}; // Pack16<14> + +template <> +struct Pack16<15> { + template <class D> + HWY_INLINE void Pack(D d, const uint16_t* HWY_RESTRICT raw, + uint16_t* HWY_RESTRICT packed_out) const { + using VU16 = Vec<decltype(d)>; + const size_t N = Lanes(d); + const VU16 raw0 = LoadU(d, raw + 0 * N); + const VU16 raw1 = LoadU(d, raw + 1 * N); + const VU16 raw2 = LoadU(d, raw + 2 * N); + const VU16 raw3 = LoadU(d, raw + 3 * N); + const VU16 raw4 = LoadU(d, raw + 4 * N); + const VU16 raw5 = LoadU(d, raw + 5 * N); + const VU16 raw6 = LoadU(d, raw + 6 * N); + const VU16 raw7 = LoadU(d, raw + 7 * N); + const VU16 raw8 = LoadU(d, raw + 8 * N); + const VU16 raw9 = LoadU(d, raw + 9 * N); + const VU16 rawA = LoadU(d, raw + 0xA * N); + const VU16 rawB = LoadU(d, raw + 0xB * N); + const VU16 rawC = LoadU(d, raw + 0xC * N); + const VU16 rawD = LoadU(d, raw + 0xD * N); + const VU16 rawE = LoadU(d, raw + 0xE * N); + const VU16 rawF = LoadU(d, raw + 0xF * N); + + // 15 vectors, each with 15+1 bits; one packed vector is scattered + // across the upper bit. + const VU16 hi1 = Set(d, 0x8000u); + const VU16 packed0 = Or(raw0, ShiftLeft<15>(rawF)); + const VU16 packed1 = OrAnd(raw1, ShiftLeft<14>(rawF), hi1); + const VU16 packed2 = OrAnd(raw2, ShiftLeft<13>(rawF), hi1); + const VU16 packed3 = OrAnd(raw3, ShiftLeft<12>(rawF), hi1); + const VU16 packed4 = OrAnd(raw4, ShiftLeft<11>(rawF), hi1); + const VU16 packed5 = OrAnd(raw5, ShiftLeft<10>(rawF), hi1); + const VU16 packed6 = OrAnd(raw6, ShiftLeft<9>(rawF), hi1); + const VU16 packed7 = OrAnd(raw7, ShiftLeft<8>(rawF), hi1); + const VU16 packed8 = OrAnd(raw8, ShiftLeft<7>(rawF), hi1); + const VU16 packed9 = OrAnd(raw9, ShiftLeft<6>(rawF), hi1); + const VU16 packedA = OrAnd(rawA, ShiftLeft<5>(rawF), hi1); + const VU16 packedB = OrAnd(rawB, ShiftLeft<4>(rawF), hi1); + const VU16 packedC = OrAnd(rawC, ShiftLeft<3>(rawF), hi1); + const VU16 packedD = OrAnd(rawD, ShiftLeft<2>(rawF), hi1); + const VU16 packedE = OrAnd(rawE, ShiftLeft<1>(rawF), hi1); + + StoreU(packed0, d, packed_out + 0 * N); + StoreU(packed1, d, packed_out + 1 * N); + StoreU(packed2, d, packed_out + 2 * N); + StoreU(packed3, d, packed_out + 3 * N); + StoreU(packed4, d, packed_out + 4 * N); + StoreU(packed5, d, packed_out + 5 * N); + StoreU(packed6, d, packed_out + 6 * N); + StoreU(packed7, d, packed_out + 7 * N); + StoreU(packed8, d, packed_out + 8 * N); + StoreU(packed9, d, packed_out + 9 * N); + StoreU(packedA, d, packed_out + 0xA * N); + StoreU(packedB, d, packed_out + 0xB * N); + StoreU(packedC, d, packed_out + 0xC * N); + StoreU(packedD, d, packed_out + 0xD * N); + StoreU(packedE, d, packed_out + 0xE * N); + } + + template <class D> + HWY_INLINE void Unpack(D d, const uint16_t* HWY_RESTRICT packed_in, + uint16_t* HWY_RESTRICT raw) const { + using VU16 = Vec<decltype(d)>; + const size_t N = Lanes(d); + + const VU16 packed0 = BitCast(d, LoadU(d, packed_in + 0 * N)); + const VU16 packed1 = BitCast(d, LoadU(d, packed_in + 1 * N)); + const VU16 packed2 = BitCast(d, LoadU(d, packed_in + 2 * N)); + const VU16 packed3 = BitCast(d, LoadU(d, packed_in + 3 * N)); + const VU16 packed4 = BitCast(d, LoadU(d, packed_in + 4 * N)); + const VU16 packed5 = BitCast(d, LoadU(d, packed_in + 5 * N)); + const VU16 packed6 = BitCast(d, LoadU(d, packed_in + 6 * N)); + const VU16 packed7 = BitCast(d, LoadU(d, packed_in + 7 * N)); + const VU16 packed8 = BitCast(d, LoadU(d, packed_in + 8 * N)); + const VU16 packed9 = BitCast(d, LoadU(d, packed_in + 9 * N)); + const VU16 packedA = BitCast(d, LoadU(d, packed_in + 0xA * N)); + const VU16 packedB = BitCast(d, LoadU(d, packed_in + 0xB * N)); + const VU16 packedC = BitCast(d, LoadU(d, packed_in + 0xC * N)); + const VU16 packedD = BitCast(d, LoadU(d, packed_in + 0xD * N)); + const VU16 packedE = BitCast(d, LoadU(d, packed_in + 0xE * N)); + + const VU16 mask = Set(d, 0x7FFFu); // Lowest 15 bits + + const VU16 raw0 = And(packed0, mask); + StoreU(raw0, d, raw + 0 * N); + + const VU16 raw1 = And(packed1, mask); + StoreU(raw1, d, raw + 1 * N); + + const VU16 raw2 = And(packed2, mask); + StoreU(raw2, d, raw + 2 * N); + + const VU16 raw3 = And(packed3, mask); + StoreU(raw3, d, raw + 3 * N); + + const VU16 raw4 = And(packed4, mask); + StoreU(raw4, d, raw + 4 * N); + + const VU16 raw5 = And(packed5, mask); + StoreU(raw5, d, raw + 5 * N); + + const VU16 raw6 = And(packed6, mask); + StoreU(raw6, d, raw + 6 * N); + + const VU16 raw7 = And(packed7, mask); + StoreU(raw7, d, raw + 7 * N); + + const VU16 raw8 = And(packed8, mask); + StoreU(raw8, d, raw + 8 * N); + + const VU16 raw9 = And(packed9, mask); + StoreU(raw9, d, raw + 9 * N); + + const VU16 rawA = And(packedA, mask); + StoreU(rawA, d, raw + 0xA * N); + + const VU16 rawB = And(packedB, mask); + StoreU(rawB, d, raw + 0xB * N); + + const VU16 rawC = And(packedC, mask); + StoreU(rawC, d, raw + 0xC * N); + + const VU16 rawD = And(packedD, mask); + StoreU(rawD, d, raw + 0xD * N); + + const VU16 rawE = And(packedE, mask); + StoreU(rawE, d, raw + 0xE * N); + + // rawF is the concatenation of the top bit in packed0..E. + const VU16 F0 = Xor3(ShiftRight<15>(packed0), // + ShiftRight<14>(AndNot(mask, packed1)), + ShiftRight<13>(AndNot(mask, packed2))); + const VU16 F1 = Xor3(ShiftRight<12>(AndNot(mask, packed3)), + ShiftRight<11>(AndNot(mask, packed4)), + ShiftRight<10>(AndNot(mask, packed5))); + const VU16 F2 = Xor3(ShiftRight<9>(AndNot(mask, packed6)), + ShiftRight<8>(AndNot(mask, packed7)), + ShiftRight<7>(AndNot(mask, packed8))); + const VU16 F3 = Xor3(ShiftRight<6>(AndNot(mask, packed9)), + ShiftRight<5>(AndNot(mask, packedA)), + ShiftRight<4>(AndNot(mask, packedB))); + const VU16 F4 = Xor3(ShiftRight<3>(AndNot(mask, packedC)), + ShiftRight<2>(AndNot(mask, packedD)), + ShiftRight<1>(AndNot(mask, packedE))); + const VU16 rawF = Xor3(F0, F1, Xor3(F2, F3, F4)); + StoreU(rawF, d, raw + 0xF * N); + } +}; // Pack16<15> + +template <> +struct Pack16<16> { + template <class D> + HWY_INLINE void Pack(D d, const uint16_t* HWY_RESTRICT raw, + uint16_t* HWY_RESTRICT packed_out) const { + using VU16 = Vec<decltype(d)>; + const size_t N = Lanes(d); + const VU16 raw0 = LoadU(d, raw + 0 * N); + const VU16 raw1 = LoadU(d, raw + 1 * N); + const VU16 raw2 = LoadU(d, raw + 2 * N); + const VU16 raw3 = LoadU(d, raw + 3 * N); + const VU16 raw4 = LoadU(d, raw + 4 * N); + const VU16 raw5 = LoadU(d, raw + 5 * N); + const VU16 raw6 = LoadU(d, raw + 6 * N); + const VU16 raw7 = LoadU(d, raw + 7 * N); + const VU16 raw8 = LoadU(d, raw + 8 * N); + const VU16 raw9 = LoadU(d, raw + 9 * N); + const VU16 rawA = LoadU(d, raw + 0xA * N); + const VU16 rawB = LoadU(d, raw + 0xB * N); + const VU16 rawC = LoadU(d, raw + 0xC * N); + const VU16 rawD = LoadU(d, raw + 0xD * N); + const VU16 rawE = LoadU(d, raw + 0xE * N); + const VU16 rawF = LoadU(d, raw + 0xF * N); + + StoreU(raw0, d, packed_out + 0 * N); + StoreU(raw1, d, packed_out + 1 * N); + StoreU(raw2, d, packed_out + 2 * N); + StoreU(raw3, d, packed_out + 3 * N); + StoreU(raw4, d, packed_out + 4 * N); + StoreU(raw5, d, packed_out + 5 * N); + StoreU(raw6, d, packed_out + 6 * N); + StoreU(raw7, d, packed_out + 7 * N); + StoreU(raw8, d, packed_out + 8 * N); + StoreU(raw9, d, packed_out + 9 * N); + StoreU(rawA, d, packed_out + 0xA * N); + StoreU(rawB, d, packed_out + 0xB * N); + StoreU(rawC, d, packed_out + 0xC * N); + StoreU(rawD, d, packed_out + 0xD * N); + StoreU(rawE, d, packed_out + 0xE * N); + StoreU(rawF, d, packed_out + 0xF * N); + } + + template <class D> + HWY_INLINE void Unpack(D d, const uint16_t* HWY_RESTRICT packed_in, + uint16_t* HWY_RESTRICT raw) const { + using VU16 = Vec<decltype(d)>; + const size_t N = Lanes(d); + + const VU16 raw0 = BitCast(d, LoadU(d, packed_in + 0 * N)); + const VU16 raw1 = BitCast(d, LoadU(d, packed_in + 1 * N)); + const VU16 raw2 = BitCast(d, LoadU(d, packed_in + 2 * N)); + const VU16 raw3 = BitCast(d, LoadU(d, packed_in + 3 * N)); + const VU16 raw4 = BitCast(d, LoadU(d, packed_in + 4 * N)); + const VU16 raw5 = BitCast(d, LoadU(d, packed_in + 5 * N)); + const VU16 raw6 = BitCast(d, LoadU(d, packed_in + 6 * N)); + const VU16 raw7 = BitCast(d, LoadU(d, packed_in + 7 * N)); + const VU16 raw8 = BitCast(d, LoadU(d, packed_in + 8 * N)); + const VU16 raw9 = BitCast(d, LoadU(d, packed_in + 9 * N)); + const VU16 rawA = BitCast(d, LoadU(d, packed_in + 0xA * N)); + const VU16 rawB = BitCast(d, LoadU(d, packed_in + 0xB * N)); + const VU16 rawC = BitCast(d, LoadU(d, packed_in + 0xC * N)); + const VU16 rawD = BitCast(d, LoadU(d, packed_in + 0xD * N)); + const VU16 rawE = BitCast(d, LoadU(d, packed_in + 0xE * N)); + const VU16 rawF = BitCast(d, LoadU(d, packed_in + 0xF * N)); + + StoreU(raw0, d, raw + 0 * N); + StoreU(raw1, d, raw + 1 * N); + StoreU(raw2, d, raw + 2 * N); + StoreU(raw3, d, raw + 3 * N); + StoreU(raw4, d, raw + 4 * N); + StoreU(raw5, d, raw + 5 * N); + StoreU(raw6, d, raw + 6 * N); + StoreU(raw7, d, raw + 7 * N); + StoreU(raw8, d, raw + 8 * N); + StoreU(raw9, d, raw + 9 * N); + StoreU(rawA, d, raw + 0xA * N); + StoreU(rawB, d, raw + 0xB * N); + StoreU(rawC, d, raw + 0xC * N); + StoreU(rawD, d, raw + 0xD * N); + StoreU(rawE, d, raw + 0xE * N); + StoreU(rawF, d, raw + 0xF * N); + } +}; // Pack16<16> + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#endif // HIGHWAY_HWY_CONTRIB_BIT_PACK_INL_H_ diff --git a/third_party/highway/hwy/contrib/bit_pack/bit_pack_test.cc b/third_party/highway/hwy/contrib/bit_pack/bit_pack_test.cc new file mode 100644 index 0000000000..a239da9cf6 --- /dev/null +++ b/third_party/highway/hwy/contrib/bit_pack/bit_pack_test.cc @@ -0,0 +1,205 @@ +// Copyright 2022 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include <stdio.h> + +#include <vector> + +#include "hwy/aligned_allocator.h" +#include "hwy/base.h" +#include "hwy/nanobenchmark.h" + +// clang-format off +#undef HWY_TARGET_INCLUDE +#define HWY_TARGET_INCLUDE "hwy/contrib/bit_pack/bit_pack_test.cc" // NOLINT +#include "hwy/foreach_target.h" // IWYU pragma: keep + +#include "hwy/contrib/bit_pack/bit_pack-inl.h" +#include "hwy/tests/test_util-inl.h" +// clang-format on + +#ifndef HWY_BIT_PACK_BENCHMARK +#define HWY_BIT_PACK_BENCHMARK 0 +#endif + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +// Used to prevent running benchmark (slow) for partial vectors and targets +// except the best available. Global, not per-target, hence must be outside +// HWY_NAMESPACE. Declare first because HWY_ONCE is only true after some code +// has been re-included. +extern size_t last_bits; +extern uint64_t best_target; +#if HWY_ONCE +size_t last_bits = 0; +uint64_t best_target = ~0ull; +#endif +namespace HWY_NAMESPACE { + +template <size_t kBits, typename T> +T Random(RandomState& rng) { + return static_cast<T>(Random32(&rng) & kBits); +} + +template <typename T> +class Checker { + public: + explicit Checker(size_t num) { raw_.reserve(num); } + void NotifyRaw(T raw) { raw_.push_back(raw); } + + void NotifyRawOutput(size_t bits, T raw) { + if (raw_[num_verified_] != raw) { + HWY_ABORT("%zu bits: pos %zu of %zu, expected %.0f actual %.0f\n", bits, + num_verified_, raw_.size(), + static_cast<double>(raw_[num_verified_]), + static_cast<double>(raw)); + } + ++num_verified_; + } + + private: + std::vector<T> raw_; + size_t num_verified_ = 0; +}; + +template <template <size_t> class PackT, size_t kVectors, size_t kBits> +struct TestPack { + template <typename T, class D> + void operator()(T /* t */, D d) { + constexpr size_t kLoops = 16; // working set slightly larger than L1 + const size_t N = Lanes(d); + RandomState rng(N * 129); + static_assert(kBits <= kVectors, ""); + const size_t num_per_loop = N * kVectors; + const size_t num = num_per_loop * kLoops; + const size_t num_packed_per_loop = N * kBits; + const size_t num_packed = num_packed_per_loop * kLoops; + Checker<T> checker(num); + AlignedFreeUniquePtr<T[]> raw = hwy::AllocateAligned<T>(num); + AlignedFreeUniquePtr<T[]> raw2 = hwy::AllocateAligned<T>(num); + AlignedFreeUniquePtr<T[]> packed = hwy::AllocateAligned<T>(num_packed); + + for (size_t i = 0; i < num; ++i) { + raw[i] = Random<kBits, T>(rng); + checker.NotifyRaw(raw[i]); + } + + best_target = HWY_MIN(best_target, HWY_TARGET); + const bool run_bench = HWY_BIT_PACK_BENCHMARK && (kBits != last_bits) && + (HWY_TARGET == best_target); + last_bits = kBits; + + const PackT<kBits> func; + + if (run_bench) { + const size_t kNumInputs = 1; + const size_t num_items = num * size_t(Unpredictable1()); + const FuncInput inputs[kNumInputs] = {num_items}; + Result results[kNumInputs]; + + Params p; + p.verbose = false; + p.max_evals = 7; + p.target_rel_mad = 0.002; + const size_t num_results = MeasureClosure( + [&](FuncInput) HWY_ATTR { + for (size_t i = 0, pi = 0; i < num; + i += num_per_loop, pi += num_packed_per_loop) { + func.Pack(d, raw.get() + i, packed.get() + pi); + } + packed.get()[Random32(&rng) % num_packed] += Unpredictable1() - 1; + for (size_t i = 0, pi = 0; i < num; + i += num_per_loop, pi += num_packed_per_loop) { + func.Unpack(d, packed.get() + pi, raw2.get() + i); + } + return raw2[Random32(&rng) % num]; + }, + inputs, kNumInputs, results, p); + if (num_results != kNumInputs) { + fprintf(stderr, "MeasureClosure failed.\n"); + return; + } + // Print throughput for pack+unpack round trip + for (size_t i = 0; i < num_results; ++i) { + const size_t bytes_per_element = (kBits + 7) / 8; + const double bytes = results[i].input * bytes_per_element; + const double seconds = + results[i].ticks / platform::InvariantTicksPerSecond(); + printf("Bits:%2d elements:%3d GB/s:%4.1f (+/-%3.1f%%)\n", + static_cast<int>(kBits), static_cast<int>(results[i].input), + 1E-9 * bytes / seconds, results[i].variability * 100.0); + } + } else { + for (size_t i = 0, pi = 0; i < num; + i += num_per_loop, pi += num_packed_per_loop) { + func.Pack(d, raw.get() + i, packed.get() + pi); + } + packed.get()[Random32(&rng) % num_packed] += Unpredictable1() - 1; + for (size_t i = 0, pi = 0; i < num; + i += num_per_loop, pi += num_packed_per_loop) { + func.Unpack(d, packed.get() + pi, raw2.get() + i); + } + } + + for (size_t i = 0; i < num; ++i) { + checker.NotifyRawOutput(kBits, raw2[i]); + } + } +}; + +void TestAllPack8() { + ForShrinkableVectors<TestPack<Pack8, 8, 1>>()(uint8_t()); + ForShrinkableVectors<TestPack<Pack8, 8, 2>>()(uint8_t()); + ForShrinkableVectors<TestPack<Pack8, 8, 3>>()(uint8_t()); + ForShrinkableVectors<TestPack<Pack8, 8, 4>>()(uint8_t()); + ForShrinkableVectors<TestPack<Pack8, 8, 5>>()(uint8_t()); + ForShrinkableVectors<TestPack<Pack8, 8, 6>>()(uint8_t()); + ForShrinkableVectors<TestPack<Pack8, 8, 7>>()(uint8_t()); + ForShrinkableVectors<TestPack<Pack8, 8, 8>>()(uint8_t()); +} + +void TestAllPack16() { + ForShrinkableVectors<TestPack<Pack16, 16, 1>>()(uint16_t()); + ForShrinkableVectors<TestPack<Pack16, 16, 2>>()(uint16_t()); + ForShrinkableVectors<TestPack<Pack16, 16, 3>>()(uint16_t()); + ForShrinkableVectors<TestPack<Pack16, 16, 4>>()(uint16_t()); + ForShrinkableVectors<TestPack<Pack16, 16, 5>>()(uint16_t()); + ForShrinkableVectors<TestPack<Pack16, 16, 6>>()(uint16_t()); + ForShrinkableVectors<TestPack<Pack16, 16, 7>>()(uint16_t()); + ForShrinkableVectors<TestPack<Pack16, 16, 8>>()(uint16_t()); + ForShrinkableVectors<TestPack<Pack16, 16, 9>>()(uint16_t()); + ForShrinkableVectors<TestPack<Pack16, 16, 10>>()(uint16_t()); + ForShrinkableVectors<TestPack<Pack16, 16, 11>>()(uint16_t()); + ForShrinkableVectors<TestPack<Pack16, 16, 12>>()(uint16_t()); + ForShrinkableVectors<TestPack<Pack16, 16, 13>>()(uint16_t()); + ForShrinkableVectors<TestPack<Pack16, 16, 14>>()(uint16_t()); + ForShrinkableVectors<TestPack<Pack16, 16, 15>>()(uint16_t()); + ForShrinkableVectors<TestPack<Pack16, 16, 16>>()(uint16_t()); +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE + +namespace hwy { +HWY_BEFORE_TEST(BitPackTest); +HWY_EXPORT_AND_TEST_P(BitPackTest, TestAllPack8); +HWY_EXPORT_AND_TEST_P(BitPackTest, TestAllPack16); +} // namespace hwy + +#endif diff --git a/third_party/highway/hwy/contrib/dot/dot-inl.h b/third_party/highway/hwy/contrib/dot/dot-inl.h new file mode 100644 index 0000000000..e04636f1b8 --- /dev/null +++ b/third_party/highway/hwy/contrib/dot/dot-inl.h @@ -0,0 +1,252 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +// Include guard (still compiled once per target) +#include <cmath> + +#if defined(HIGHWAY_HWY_CONTRIB_DOT_DOT_INL_H_) == \ + defined(HWY_TARGET_TOGGLE) +#ifdef HIGHWAY_HWY_CONTRIB_DOT_DOT_INL_H_ +#undef HIGHWAY_HWY_CONTRIB_DOT_DOT_INL_H_ +#else +#define HIGHWAY_HWY_CONTRIB_DOT_DOT_INL_H_ +#endif + +#include "hwy/highway.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +struct Dot { + // Specify zero or more of these, ORed together, as the kAssumptions template + // argument to Compute. Each one may improve performance or reduce code size, + // at the cost of additional requirements on the arguments. + enum Assumptions { + // num_elements is at least N, which may be up to HWY_MAX_BYTES / sizeof(T). + kAtLeastOneVector = 1, + // num_elements is divisible by N (a power of two, so this can be used if + // the problem size is known to be a power of two >= HWY_MAX_BYTES / + // sizeof(T)). + kMultipleOfVector = 2, + // RoundUpTo(num_elements, N) elements are accessible; their value does not + // matter (will be treated as if they were zero). + kPaddedToVector = 4, + }; + + // Returns sum{pa[i] * pb[i]} for float or double inputs. Aligning the + // pointers to a multiple of N elements is helpful but not required. + template <int kAssumptions, class D, typename T = TFromD<D>, + HWY_IF_NOT_LANE_SIZE_D(D, 2)> + static HWY_INLINE T Compute(const D d, const T* const HWY_RESTRICT pa, + const T* const HWY_RESTRICT pb, + const size_t num_elements) { + static_assert(IsFloat<T>(), "MulAdd requires float type"); + using V = decltype(Zero(d)); + + const size_t N = Lanes(d); + size_t i = 0; + + constexpr bool kIsAtLeastOneVector = + (kAssumptions & kAtLeastOneVector) != 0; + constexpr bool kIsMultipleOfVector = + (kAssumptions & kMultipleOfVector) != 0; + constexpr bool kIsPaddedToVector = (kAssumptions & kPaddedToVector) != 0; + + // Won't be able to do a full vector load without padding => scalar loop. + if (!kIsAtLeastOneVector && !kIsMultipleOfVector && !kIsPaddedToVector && + HWY_UNLIKELY(num_elements < N)) { + // Only 2x unroll to avoid excessive code size. + T sum0 = T(0); + T sum1 = T(0); + for (; i + 2 <= num_elements; i += 2) { + sum0 += pa[i + 0] * pb[i + 0]; + sum1 += pa[i + 1] * pb[i + 1]; + } + if (i < num_elements) { + sum1 += pa[i] * pb[i]; + } + return sum0 + sum1; + } + + // Compiler doesn't make independent sum* accumulators, so unroll manually. + // 2 FMA ports * 4 cycle latency = up to 8 in-flight, but that is excessive + // for unaligned inputs (each unaligned pointer halves the throughput + // because it occupies both L1 load ports for a cycle). We cannot have + // arrays of vectors on RVV/SVE, so always unroll 4x. + V sum0 = Zero(d); + V sum1 = Zero(d); + V sum2 = Zero(d); + V sum3 = Zero(d); + + // Main loop: unrolled + for (; i + 4 * N <= num_elements; /* i += 4 * N */) { // incr in loop + const auto a0 = LoadU(d, pa + i); + const auto b0 = LoadU(d, pb + i); + i += N; + sum0 = MulAdd(a0, b0, sum0); + const auto a1 = LoadU(d, pa + i); + const auto b1 = LoadU(d, pb + i); + i += N; + sum1 = MulAdd(a1, b1, sum1); + const auto a2 = LoadU(d, pa + i); + const auto b2 = LoadU(d, pb + i); + i += N; + sum2 = MulAdd(a2, b2, sum2); + const auto a3 = LoadU(d, pa + i); + const auto b3 = LoadU(d, pb + i); + i += N; + sum3 = MulAdd(a3, b3, sum3); + } + + // Up to 3 iterations of whole vectors + for (; i + N <= num_elements; i += N) { + const auto a = LoadU(d, pa + i); + const auto b = LoadU(d, pb + i); + sum0 = MulAdd(a, b, sum0); + } + + if (!kIsMultipleOfVector) { + const size_t remaining = num_elements - i; + if (remaining != 0) { + if (kIsPaddedToVector) { + const auto mask = FirstN(d, remaining); + const auto a = LoadU(d, pa + i); + const auto b = LoadU(d, pb + i); + sum1 = MulAdd(IfThenElseZero(mask, a), IfThenElseZero(mask, b), sum1); + } else { + // Unaligned load such that the last element is in the highest lane - + // ensures we do not touch any elements outside the valid range. + // If we get here, then num_elements >= N. + HWY_DASSERT(i >= N); + i += remaining - N; + const auto skip = FirstN(d, N - remaining); + const auto a = LoadU(d, pa + i); // always unaligned + const auto b = LoadU(d, pb + i); + sum1 = MulAdd(IfThenZeroElse(skip, a), IfThenZeroElse(skip, b), sum1); + } + } + } // kMultipleOfVector + + // Reduction tree: sum of all accumulators by pairs, then across lanes. + sum0 = Add(sum0, sum1); + sum2 = Add(sum2, sum3); + sum0 = Add(sum0, sum2); + return GetLane(SumOfLanes(d, sum0)); + } + + // Returns sum{pa[i] * pb[i]} for bfloat16 inputs. Aligning the pointers to a + // multiple of N elements is helpful but not required. + template <int kAssumptions, class D> + static HWY_INLINE float Compute(const D d, + const bfloat16_t* const HWY_RESTRICT pa, + const bfloat16_t* const HWY_RESTRICT pb, + const size_t num_elements) { + const RebindToUnsigned<D> du16; + const Repartition<float, D> df32; + + using V = decltype(Zero(df32)); + const size_t N = Lanes(d); + size_t i = 0; + + constexpr bool kIsAtLeastOneVector = + (kAssumptions & kAtLeastOneVector) != 0; + constexpr bool kIsMultipleOfVector = + (kAssumptions & kMultipleOfVector) != 0; + constexpr bool kIsPaddedToVector = (kAssumptions & kPaddedToVector) != 0; + + // Won't be able to do a full vector load without padding => scalar loop. + if (!kIsAtLeastOneVector && !kIsMultipleOfVector && !kIsPaddedToVector && + HWY_UNLIKELY(num_elements < N)) { + float sum0 = 0.0f; // Only 2x unroll to avoid excessive code size for.. + float sum1 = 0.0f; // this unlikely(?) case. + for (; i + 2 <= num_elements; i += 2) { + sum0 += F32FromBF16(pa[i + 0]) * F32FromBF16(pb[i + 0]); + sum1 += F32FromBF16(pa[i + 1]) * F32FromBF16(pb[i + 1]); + } + if (i < num_elements) { + sum1 += F32FromBF16(pa[i]) * F32FromBF16(pb[i]); + } + return sum0 + sum1; + } + + // See comment in the other Compute() overload. Unroll 2x, but we need + // twice as many sums for ReorderWidenMulAccumulate. + V sum0 = Zero(df32); + V sum1 = Zero(df32); + V sum2 = Zero(df32); + V sum3 = Zero(df32); + + // Main loop: unrolled + for (; i + 2 * N <= num_elements; /* i += 2 * N */) { // incr in loop + const auto a0 = LoadU(d, pa + i); + const auto b0 = LoadU(d, pb + i); + i += N; + sum0 = ReorderWidenMulAccumulate(df32, a0, b0, sum0, sum1); + const auto a1 = LoadU(d, pa + i); + const auto b1 = LoadU(d, pb + i); + i += N; + sum2 = ReorderWidenMulAccumulate(df32, a1, b1, sum2, sum3); + } + + // Possibly one more iteration of whole vectors + if (i + N <= num_elements) { + const auto a0 = LoadU(d, pa + i); + const auto b0 = LoadU(d, pb + i); + i += N; + sum0 = ReorderWidenMulAccumulate(df32, a0, b0, sum0, sum1); + } + + if (!kIsMultipleOfVector) { + const size_t remaining = num_elements - i; + if (remaining != 0) { + if (kIsPaddedToVector) { + const auto mask = FirstN(du16, remaining); + const auto va = LoadU(d, pa + i); + const auto vb = LoadU(d, pb + i); + const auto a16 = BitCast(d, IfThenElseZero(mask, BitCast(du16, va))); + const auto b16 = BitCast(d, IfThenElseZero(mask, BitCast(du16, vb))); + sum2 = ReorderWidenMulAccumulate(df32, a16, b16, sum2, sum3); + + } else { + // Unaligned load such that the last element is in the highest lane - + // ensures we do not touch any elements outside the valid range. + // If we get here, then num_elements >= N. + HWY_DASSERT(i >= N); + i += remaining - N; + const auto skip = FirstN(du16, N - remaining); + const auto va = LoadU(d, pa + i); // always unaligned + const auto vb = LoadU(d, pb + i); + const auto a16 = BitCast(d, IfThenZeroElse(skip, BitCast(du16, va))); + const auto b16 = BitCast(d, IfThenZeroElse(skip, BitCast(du16, vb))); + sum2 = ReorderWidenMulAccumulate(df32, a16, b16, sum2, sum3); + } + } + } // kMultipleOfVector + + // Reduction tree: sum of all accumulators by pairs, then across lanes. + sum0 = Add(sum0, sum1); + sum2 = Add(sum2, sum3); + sum0 = Add(sum0, sum2); + return GetLane(SumOfLanes(df32, sum0)); + } +}; + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#endif // HIGHWAY_HWY_CONTRIB_DOT_DOT_INL_H_ diff --git a/third_party/highway/hwy/contrib/dot/dot_test.cc b/third_party/highway/hwy/contrib/dot/dot_test.cc new file mode 100644 index 0000000000..12d7ab270d --- /dev/null +++ b/third_party/highway/hwy/contrib/dot/dot_test.cc @@ -0,0 +1,167 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include <stdint.h> +#include <stdio.h> +#include <stdlib.h> + +#include "hwy/aligned_allocator.h" + +// clang-format off +#undef HWY_TARGET_INCLUDE +#define HWY_TARGET_INCLUDE "hwy/contrib/dot/dot_test.cc" +#include "hwy/foreach_target.h" // IWYU pragma: keep + +#include "hwy/contrib/dot/dot-inl.h" +#include "hwy/tests/test_util-inl.h" +// clang-format on + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +template <typename T> +HWY_NOINLINE T SimpleDot(const T* pa, const T* pb, size_t num) { + double sum = 0.0; + for (size_t i = 0; i < num; ++i) { + sum += pa[i] * pb[i]; + } + return static_cast<T>(sum); +} + +HWY_NOINLINE float SimpleDot(const bfloat16_t* pa, const bfloat16_t* pb, + size_t num) { + float sum = 0.0f; + for (size_t i = 0; i < num; ++i) { + sum += F32FromBF16(pa[i]) * F32FromBF16(pb[i]); + } + return sum; +} + +template <typename T> +void SetValue(const float value, T* HWY_RESTRICT ptr) { + *ptr = static_cast<T>(value); +} +void SetValue(const float value, bfloat16_t* HWY_RESTRICT ptr) { + *ptr = BF16FromF32(value); +} + +class TestDot { + // Computes/verifies one dot product. + template <int kAssumptions, class D> + void Test(D d, size_t num, size_t misalign_a, size_t misalign_b, + RandomState& rng) { + using T = TFromD<D>; + const size_t N = Lanes(d); + const auto random_t = [&rng]() { + const int32_t bits = static_cast<int32_t>(Random32(&rng)) & 1023; + return static_cast<float>(bits - 512) * (1.0f / 64); + }; + + const size_t padded = + (kAssumptions & Dot::kPaddedToVector) ? RoundUpTo(num, N) : num; + AlignedFreeUniquePtr<T[]> pa = AllocateAligned<T>(misalign_a + padded); + AlignedFreeUniquePtr<T[]> pb = AllocateAligned<T>(misalign_b + padded); + T* a = pa.get() + misalign_a; + T* b = pb.get() + misalign_b; + size_t i = 0; + for (; i < num; ++i) { + SetValue(random_t(), a + i); + SetValue(random_t(), b + i); + } + // Fill padding with NaN - the values are not used, but avoids MSAN errors. + for (; i < padded; ++i) { + ScalableTag<float> df1; + SetValue(GetLane(NaN(df1)), a + i); + SetValue(GetLane(NaN(df1)), b + i); + } + + const auto expected = SimpleDot(a, b, num); + const auto actual = Dot::Compute<kAssumptions>(d, a, b, num); + const auto max = static_cast<decltype(actual)>(8 * 8 * num); + HWY_ASSERT(-max <= actual && actual <= max); + HWY_ASSERT(expected - 1E-4 <= actual && actual <= expected + 1E-4); + } + + // Runs tests with various alignments. + template <int kAssumptions, class D> + void ForeachMisalign(D d, size_t num, RandomState& rng) { + const size_t N = Lanes(d); + const size_t misalignments[3] = {0, N / 4, 3 * N / 5}; + for (size_t ma : misalignments) { + for (size_t mb : misalignments) { + Test<kAssumptions>(d, num, ma, mb, rng); + } + } + } + + // Runs tests with various lengths compatible with the given assumptions. + template <int kAssumptions, class D> + void ForeachCount(D d, RandomState& rng) { + const size_t N = Lanes(d); + const size_t counts[] = {1, + 3, + 7, + 16, + HWY_MAX(N / 2, 1), + HWY_MAX(2 * N / 3, 1), + N, + N + 1, + 4 * N / 3, + 3 * N, + 8 * N, + 8 * N + 2}; + for (size_t num : counts) { + if ((kAssumptions & Dot::kAtLeastOneVector) && num < N) continue; + if ((kAssumptions & Dot::kMultipleOfVector) && (num % N) != 0) continue; + ForeachMisalign<kAssumptions>(d, num, rng); + } + } + + public: + template <class T, class D> + HWY_NOINLINE void operator()(T /*unused*/, D d) { + RandomState rng; + + // All 8 combinations of the three length-related flags: + ForeachCount<0>(d, rng); + ForeachCount<Dot::kAtLeastOneVector>(d, rng); + ForeachCount<Dot::kMultipleOfVector>(d, rng); + ForeachCount<Dot::kMultipleOfVector | Dot::kAtLeastOneVector>(d, rng); + ForeachCount<Dot::kPaddedToVector>(d, rng); + ForeachCount<Dot::kPaddedToVector | Dot::kAtLeastOneVector>(d, rng); + ForeachCount<Dot::kPaddedToVector | Dot::kMultipleOfVector>(d, rng); + ForeachCount<Dot::kPaddedToVector | Dot::kMultipleOfVector | + Dot::kAtLeastOneVector>(d, rng); + } +}; + +void TestAllDot() { ForFloatTypes(ForPartialVectors<TestDot>()); } +void TestAllDotBF16() { ForShrinkableVectors<TestDot>()(bfloat16_t()); } + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE + +namespace hwy { +HWY_BEFORE_TEST(DotTest); +HWY_EXPORT_AND_TEST_P(DotTest, TestAllDot); +HWY_EXPORT_AND_TEST_P(DotTest, TestAllDotBF16); +} // namespace hwy + +#endif diff --git a/third_party/highway/hwy/contrib/image/image.cc b/third_party/highway/hwy/contrib/image/image.cc new file mode 100644 index 0000000000..67b37d2711 --- /dev/null +++ b/third_party/highway/hwy/contrib/image/image.cc @@ -0,0 +1,145 @@ +// Copyright 2020 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "hwy/contrib/image/image.h" + +#include <algorithm> // std::swap +#include <cstddef> + +#undef HWY_TARGET_INCLUDE +#define HWY_TARGET_INCLUDE "hwy/contrib/image/image.cc" +#include "hwy/foreach_target.h" // IWYU pragma: keep +#include "hwy/highway.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { +size_t GetVectorSize() { return Lanes(ScalableTag<uint8_t>()); } +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE + +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE +namespace hwy { +namespace { +HWY_EXPORT(GetVectorSize); // Local function. +} // namespace + +size_t ImageBase::VectorSize() { + // Do not cache result - must return the current value, which may be greater + // than the first call if it was subject to DisableTargets! + return HWY_DYNAMIC_DISPATCH(GetVectorSize)(); +} + +size_t ImageBase::BytesPerRow(const size_t xsize, const size_t sizeof_t) { + const size_t vec_size = VectorSize(); + size_t valid_bytes = xsize * sizeof_t; + + // Allow unaligned accesses starting at the last valid value - this may raise + // msan errors unless the user calls InitializePaddingForUnalignedAccesses. + // Skip for the scalar case because no extra lanes will be loaded. + if (vec_size != 1) { + HWY_DASSERT(vec_size >= sizeof_t); + valid_bytes += vec_size - sizeof_t; + } + + // Round up to vector and cache line size. + const size_t align = HWY_MAX(vec_size, HWY_ALIGNMENT); + size_t bytes_per_row = RoundUpTo(valid_bytes, align); + + // During the lengthy window before writes are committed to memory, CPUs + // guard against read after write hazards by checking the address, but + // only the lower 11 bits. We avoid a false dependency between writes to + // consecutive rows by ensuring their sizes are not multiples of 2 KiB. + // Avoid2K prevents the same problem for the planes of an Image3. + if (bytes_per_row % HWY_ALIGNMENT == 0) { + bytes_per_row += align; + } + + HWY_DASSERT(bytes_per_row % align == 0); + return bytes_per_row; +} + +ImageBase::ImageBase(const size_t xsize, const size_t ysize, + const size_t sizeof_t) + : xsize_(static_cast<uint32_t>(xsize)), + ysize_(static_cast<uint32_t>(ysize)), + bytes_(nullptr, AlignedFreer(&AlignedFreer::DoNothing, nullptr)) { + HWY_ASSERT(sizeof_t == 1 || sizeof_t == 2 || sizeof_t == 4 || sizeof_t == 8); + + bytes_per_row_ = 0; + // Dimensions can be zero, e.g. for lazily-allocated images. Only allocate + // if nonzero, because "zero" bytes still have padding/bookkeeping overhead. + if (xsize != 0 && ysize != 0) { + bytes_per_row_ = BytesPerRow(xsize, sizeof_t); + bytes_ = AllocateAligned<uint8_t>(bytes_per_row_ * ysize); + HWY_ASSERT(bytes_.get() != nullptr); + InitializePadding(sizeof_t, Padding::kRoundUp); + } +} + +ImageBase::ImageBase(const size_t xsize, const size_t ysize, + const size_t bytes_per_row, void* const aligned) + : xsize_(static_cast<uint32_t>(xsize)), + ysize_(static_cast<uint32_t>(ysize)), + bytes_per_row_(bytes_per_row), + bytes_(static_cast<uint8_t*>(aligned), + AlignedFreer(&AlignedFreer::DoNothing, nullptr)) { + const size_t vec_size = VectorSize(); + HWY_ASSERT(bytes_per_row % vec_size == 0); + HWY_ASSERT(reinterpret_cast<uintptr_t>(aligned) % vec_size == 0); +} + +void ImageBase::InitializePadding(const size_t sizeof_t, Padding padding) { +#if HWY_IS_MSAN || HWY_IDE + if (xsize_ == 0 || ysize_ == 0) return; + + const size_t vec_size = VectorSize(); // Bytes, independent of sizeof_t! + if (vec_size == 1) return; // Scalar mode: no padding needed + + const size_t valid_size = xsize_ * sizeof_t; + const size_t initialize_size = padding == Padding::kRoundUp + ? RoundUpTo(valid_size, vec_size) + : valid_size + vec_size - sizeof_t; + if (valid_size == initialize_size) return; + + for (size_t y = 0; y < ysize_; ++y) { + uint8_t* HWY_RESTRICT row = static_cast<uint8_t*>(VoidRow(y)); +#if defined(__clang__) && (__clang_major__ <= 6) + // There's a bug in msan in clang-6 when handling AVX2 operations. This + // workaround allows tests to pass on msan, although it is slower and + // prevents msan warnings from uninitialized images. + memset(row, 0, initialize_size); +#else + memset(row + valid_size, 0, initialize_size - valid_size); +#endif // clang6 + } +#else + (void)sizeof_t; + (void)padding; +#endif // HWY_IS_MSAN +} + +void ImageBase::Swap(ImageBase& other) { + std::swap(xsize_, other.xsize_); + std::swap(ysize_, other.ysize_); + std::swap(bytes_per_row_, other.bytes_per_row_); + std::swap(bytes_, other.bytes_); +} + +} // namespace hwy +#endif // HWY_ONCE diff --git a/third_party/highway/hwy/contrib/image/image.h b/third_party/highway/hwy/contrib/image/image.h new file mode 100644 index 0000000000..c99863b06c --- /dev/null +++ b/third_party/highway/hwy/contrib/image/image.h @@ -0,0 +1,470 @@ +// Copyright 2020 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#ifndef HIGHWAY_HWY_CONTRIB_IMAGE_IMAGE_H_ +#define HIGHWAY_HWY_CONTRIB_IMAGE_IMAGE_H_ + +// SIMD/multicore-friendly planar image representation with row accessors. + +#include <stddef.h> +#include <stdint.h> +#include <string.h> + +#include <utility> // std::move + +#include "hwy/aligned_allocator.h" +#include "hwy/base.h" +#include "hwy/highway_export.h" + +namespace hwy { + +// Type-independent parts of Image<> - reduces code duplication and facilitates +// moving member function implementations to cc file. +struct HWY_CONTRIB_DLLEXPORT ImageBase { + // Returns required alignment in bytes for externally allocated memory. + static size_t VectorSize(); + + // Returns distance [bytes] between the start of two consecutive rows, a + // multiple of VectorSize but NOT kAlias (see implementation). + static size_t BytesPerRow(const size_t xsize, const size_t sizeof_t); + + // No allocation (for output params or unused images) + ImageBase() + : xsize_(0), + ysize_(0), + bytes_per_row_(0), + bytes_(nullptr, AlignedFreer(&AlignedFreer::DoNothing, nullptr)) {} + + // Allocates memory (this is the common case) + ImageBase(size_t xsize, size_t ysize, size_t sizeof_t); + + // References but does not take ownership of external memory. Useful for + // interoperability with other libraries. `aligned` must be aligned to a + // multiple of VectorSize() and `bytes_per_row` must also be a multiple of + // VectorSize() or preferably equal to BytesPerRow(). + ImageBase(size_t xsize, size_t ysize, size_t bytes_per_row, void* aligned); + + // Copy construction/assignment is forbidden to avoid inadvertent copies, + // which can be very expensive. Use CopyImageTo() instead. + ImageBase(const ImageBase& other) = delete; + ImageBase& operator=(const ImageBase& other) = delete; + + // Move constructor (required for returning Image from function) + ImageBase(ImageBase&& other) noexcept = default; + + // Move assignment (required for std::vector) + ImageBase& operator=(ImageBase&& other) noexcept = default; + + void Swap(ImageBase& other); + + // Useful for pre-allocating image with some padding for alignment purposes + // and later reporting the actual valid dimensions. Caller is responsible + // for ensuring xsize/ysize are <= the original dimensions. + void ShrinkTo(const size_t xsize, const size_t ysize) { + xsize_ = static_cast<uint32_t>(xsize); + ysize_ = static_cast<uint32_t>(ysize); + // NOTE: we can't recompute bytes_per_row for more compact storage and + // better locality because that would invalidate the image contents. + } + + // How many pixels. + HWY_INLINE size_t xsize() const { return xsize_; } + HWY_INLINE size_t ysize() const { return ysize_; } + + // NOTE: do not use this for copying rows - the valid xsize may be much less. + HWY_INLINE size_t bytes_per_row() const { return bytes_per_row_; } + + // Raw access to byte contents, for interfacing with other libraries. + // Unsigned char instead of char to avoid surprises (sign extension). + HWY_INLINE uint8_t* bytes() { + void* p = bytes_.get(); + return static_cast<uint8_t * HWY_RESTRICT>(HWY_ASSUME_ALIGNED(p, 64)); + } + HWY_INLINE const uint8_t* bytes() const { + const void* p = bytes_.get(); + return static_cast<const uint8_t * HWY_RESTRICT>(HWY_ASSUME_ALIGNED(p, 64)); + } + + protected: + // Returns pointer to the start of a row. + HWY_INLINE void* VoidRow(const size_t y) const { +#if HWY_IS_ASAN || HWY_IS_MSAN || HWY_IS_TSAN + if (y >= ysize_) { + HWY_ABORT("Row(%d) >= %u\n", static_cast<int>(y), ysize_); + } +#endif + + void* row = bytes_.get() + y * bytes_per_row_; + return HWY_ASSUME_ALIGNED(row, 64); + } + + enum class Padding { + // Allow Load(d, row + x) for x = 0; x < xsize(); x += Lanes(d). Default. + kRoundUp, + // Allow LoadU(d, row + x) for x <= xsize() - 1. This requires an extra + // vector to be initialized. If done by default, this would suppress + // legitimate msan warnings. We therefore require users to explicitly call + // InitializePadding before using unaligned loads (e.g. convolution). + kUnaligned + }; + + // Initializes the minimum bytes required to suppress msan warnings from + // legitimate (according to Padding mode) vector loads/stores on the right + // border, where some lanes are uninitialized and assumed to be unused. + void InitializePadding(size_t sizeof_t, Padding padding); + + // (Members are non-const to enable assignment during move-assignment.) + uint32_t xsize_; // In valid pixels, not including any padding. + uint32_t ysize_; + size_t bytes_per_row_; // Includes padding. + AlignedFreeUniquePtr<uint8_t[]> bytes_; +}; + +// Single channel, aligned rows separated by padding. T must be POD. +// +// 'Single channel' (one 2D array per channel) simplifies vectorization +// (repeating the same operation on multiple adjacent components) without the +// complexity of a hybrid layout (8 R, 8 G, 8 B, ...). In particular, clients +// can easily iterate over all components in a row and Image requires no +// knowledge of the pixel format beyond the component type "T". +// +// 'Aligned' means each row is aligned to the L1 cache line size. This prevents +// false sharing between two threads operating on adjacent rows. +// +// 'Padding' is still relevant because vectors could potentially be larger than +// a cache line. By rounding up row sizes to the vector size, we allow +// reading/writing ALIGNED vectors whose first lane is a valid sample. This +// avoids needing a separate loop to handle remaining unaligned lanes. +// +// This image layout could also be achieved with a vector and a row accessor +// function, but a class wrapper with support for "deleter" allows wrapping +// existing memory allocated by clients without copying the pixels. It also +// provides convenient accessors for xsize/ysize, which shortens function +// argument lists. Supports move-construction so it can be stored in containers. +template <typename ComponentType> +class Image : public ImageBase { + public: + using T = ComponentType; + + Image() = default; + Image(const size_t xsize, const size_t ysize) + : ImageBase(xsize, ysize, sizeof(T)) {} + Image(const size_t xsize, const size_t ysize, size_t bytes_per_row, + void* aligned) + : ImageBase(xsize, ysize, bytes_per_row, aligned) {} + + void InitializePaddingForUnalignedAccesses() { + InitializePadding(sizeof(T), Padding::kUnaligned); + } + + HWY_INLINE const T* ConstRow(const size_t y) const { + return static_cast<const T*>(VoidRow(y)); + } + HWY_INLINE const T* ConstRow(const size_t y) { + return static_cast<const T*>(VoidRow(y)); + } + + // Returns pointer to non-const. This allows passing const Image* parameters + // when the callee is only supposed to fill the pixels, as opposed to + // allocating or resizing the image. + HWY_INLINE T* MutableRow(const size_t y) const { + return static_cast<T*>(VoidRow(y)); + } + HWY_INLINE T* MutableRow(const size_t y) { + return static_cast<T*>(VoidRow(y)); + } + + // Returns number of pixels (some of which are padding) per row. Useful for + // computing other rows via pointer arithmetic. WARNING: this must + // NOT be used to determine xsize. + HWY_INLINE intptr_t PixelsPerRow() const { + return static_cast<intptr_t>(bytes_per_row_ / sizeof(T)); + } +}; + +using ImageF = Image<float>; + +// A bundle of 3 same-sized images. To fill an existing Image3 using +// single-channel producers, we also need access to each const Image*. Const +// prevents breaking the same-size invariant, while still allowing pixels to be +// changed via MutableRow. +template <typename ComponentType> +class Image3 { + public: + using T = ComponentType; + using ImageT = Image<T>; + static constexpr size_t kNumPlanes = 3; + + Image3() : planes_{ImageT(), ImageT(), ImageT()} {} + + Image3(const size_t xsize, const size_t ysize) + : planes_{ImageT(xsize, ysize), ImageT(xsize, ysize), + ImageT(xsize, ysize)} {} + + Image3(Image3&& other) noexcept { + for (size_t i = 0; i < kNumPlanes; i++) { + planes_[i] = std::move(other.planes_[i]); + } + } + + Image3(ImageT&& plane0, ImageT&& plane1, ImageT&& plane2) { + if (!SameSize(plane0, plane1) || !SameSize(plane0, plane2)) { + HWY_ABORT( + "Not same size: %d x %d, %d x %d, %d x %d\n", + static_cast<int>(plane0.xsize()), static_cast<int>(plane0.ysize()), + static_cast<int>(plane1.xsize()), static_cast<int>(plane1.ysize()), + static_cast<int>(plane2.xsize()), static_cast<int>(plane2.ysize())); + } + planes_[0] = std::move(plane0); + planes_[1] = std::move(plane1); + planes_[2] = std::move(plane2); + } + + // Copy construction/assignment is forbidden to avoid inadvertent copies, + // which can be very expensive. Use CopyImageTo instead. + Image3(const Image3& other) = delete; + Image3& operator=(const Image3& other) = delete; + + Image3& operator=(Image3&& other) noexcept { + for (size_t i = 0; i < kNumPlanes; i++) { + planes_[i] = std::move(other.planes_[i]); + } + return *this; + } + + HWY_INLINE const T* ConstPlaneRow(const size_t c, const size_t y) const { + return static_cast<const T*>(VoidPlaneRow(c, y)); + } + HWY_INLINE const T* ConstPlaneRow(const size_t c, const size_t y) { + return static_cast<const T*>(VoidPlaneRow(c, y)); + } + + HWY_INLINE T* MutablePlaneRow(const size_t c, const size_t y) const { + return static_cast<T*>(VoidPlaneRow(c, y)); + } + HWY_INLINE T* MutablePlaneRow(const size_t c, const size_t y) { + return static_cast<T*>(VoidPlaneRow(c, y)); + } + + HWY_INLINE const ImageT& Plane(size_t idx) const { return planes_[idx]; } + + void Swap(Image3& other) { + for (size_t c = 0; c < 3; ++c) { + other.planes_[c].Swap(planes_[c]); + } + } + + void ShrinkTo(const size_t xsize, const size_t ysize) { + for (ImageT& plane : planes_) { + plane.ShrinkTo(xsize, ysize); + } + } + + // Sizes of all three images are guaranteed to be equal. + HWY_INLINE size_t xsize() const { return planes_[0].xsize(); } + HWY_INLINE size_t ysize() const { return planes_[0].ysize(); } + // Returns offset [bytes] from one row to the next row of the same plane. + // WARNING: this must NOT be used to determine xsize, nor for copying rows - + // the valid xsize may be much less. + HWY_INLINE size_t bytes_per_row() const { return planes_[0].bytes_per_row(); } + // Returns number of pixels (some of which are padding) per row. Useful for + // computing other rows via pointer arithmetic. WARNING: this must NOT be used + // to determine xsize. + HWY_INLINE intptr_t PixelsPerRow() const { return planes_[0].PixelsPerRow(); } + + private: + // Returns pointer to the start of a row. + HWY_INLINE void* VoidPlaneRow(const size_t c, const size_t y) const { +#if HWY_IS_ASAN || HWY_IS_MSAN || HWY_IS_TSAN + if (c >= kNumPlanes || y >= ysize()) { + HWY_ABORT("PlaneRow(%d, %d) >= %d\n", static_cast<int>(c), + static_cast<int>(y), static_cast<int>(ysize())); + } +#endif + // Use the first plane's stride because the compiler might not realize they + // are all equal. Thus we only need a single multiplication for all planes. + const size_t row_offset = y * planes_[0].bytes_per_row(); + const void* row = planes_[c].bytes() + row_offset; + return static_cast<const T * HWY_RESTRICT>( + HWY_ASSUME_ALIGNED(row, HWY_ALIGNMENT)); + } + + private: + ImageT planes_[kNumPlanes]; +}; + +using Image3F = Image3<float>; + +// Rectangular region in image(s). Factoring this out of Image instead of +// shifting the pointer by x0/y0 allows this to apply to multiple images with +// different resolutions. Can compare size via SameSize(rect1, rect2). +class Rect { + public: + // Most windows are xsize_max * ysize_max, except those on the borders where + // begin + size_max > end. + constexpr Rect(size_t xbegin, size_t ybegin, size_t xsize_max, + size_t ysize_max, size_t xend, size_t yend) + : x0_(xbegin), + y0_(ybegin), + xsize_(ClampedSize(xbegin, xsize_max, xend)), + ysize_(ClampedSize(ybegin, ysize_max, yend)) {} + + // Construct with origin and known size (typically from another Rect). + constexpr Rect(size_t xbegin, size_t ybegin, size_t xsize, size_t ysize) + : x0_(xbegin), y0_(ybegin), xsize_(xsize), ysize_(ysize) {} + + // Construct a rect that covers a whole image. + template <typename Image> + explicit Rect(const Image& image) + : Rect(0, 0, image.xsize(), image.ysize()) {} + + Rect() : Rect(0, 0, 0, 0) {} + + Rect(const Rect&) = default; + Rect& operator=(const Rect&) = default; + + Rect Subrect(size_t xbegin, size_t ybegin, size_t xsize_max, + size_t ysize_max) { + return Rect(x0_ + xbegin, y0_ + ybegin, xsize_max, ysize_max, x0_ + xsize_, + y0_ + ysize_); + } + + template <typename T> + const T* ConstRow(const Image<T>* image, size_t y) const { + return image->ConstRow(y + y0_) + x0_; + } + + template <typename T> + T* MutableRow(const Image<T>* image, size_t y) const { + return image->MutableRow(y + y0_) + x0_; + } + + template <typename T> + const T* ConstPlaneRow(const Image3<T>& image, size_t c, size_t y) const { + return image.ConstPlaneRow(c, y + y0_) + x0_; + } + + template <typename T> + T* MutablePlaneRow(Image3<T>* image, const size_t c, size_t y) const { + return image->MutablePlaneRow(c, y + y0_) + x0_; + } + + // Returns true if this Rect fully resides in the given image. ImageT could be + // Image<T> or Image3<T>; however if ImageT is Rect, results are nonsensical. + template <class ImageT> + bool IsInside(const ImageT& image) const { + return (x0_ + xsize_ <= image.xsize()) && (y0_ + ysize_ <= image.ysize()); + } + + size_t x0() const { return x0_; } + size_t y0() const { return y0_; } + size_t xsize() const { return xsize_; } + size_t ysize() const { return ysize_; } + + private: + // Returns size_max, or whatever is left in [begin, end). + static constexpr size_t ClampedSize(size_t begin, size_t size_max, + size_t end) { + return (begin + size_max <= end) ? size_max + : (end > begin ? end - begin : 0); + } + + size_t x0_; + size_t y0_; + + size_t xsize_; + size_t ysize_; +}; + +// Works for any image-like input type(s). +template <class Image1, class Image2> +HWY_MAYBE_UNUSED bool SameSize(const Image1& image1, const Image2& image2) { + return image1.xsize() == image2.xsize() && image1.ysize() == image2.ysize(); +} + +// Mirrors out of bounds coordinates and returns valid coordinates unchanged. +// We assume the radius (distance outside the image) is small compared to the +// image size, otherwise this might not terminate. +// The mirror is outside the last column (border pixel is also replicated). +static HWY_INLINE HWY_MAYBE_UNUSED size_t Mirror(int64_t x, + const int64_t xsize) { + HWY_DASSERT(xsize != 0); + + // TODO(janwas): replace with branchless version + while (x < 0 || x >= xsize) { + if (x < 0) { + x = -x - 1; + } else { + x = 2 * xsize - 1 - x; + } + } + return static_cast<size_t>(x); +} + +// Wrap modes for ensuring X/Y coordinates are in the valid range [0, size): + +// Mirrors (repeating the edge pixel once). Useful for convolutions. +struct WrapMirror { + HWY_INLINE size_t operator()(const int64_t coord, const size_t size) const { + return Mirror(coord, static_cast<int64_t>(size)); + } +}; + +// Returns the same coordinate, for when we know "coord" is already valid (e.g. +// interior of an image). +struct WrapUnchanged { + HWY_INLINE size_t operator()(const int64_t coord, size_t /*size*/) const { + return static_cast<size_t>(coord); + } +}; + +// Similar to Wrap* but for row pointers (reduces Row() multiplications). + +class WrapRowMirror { + public: + template <class View> + WrapRowMirror(const View& image, size_t ysize) + : first_row_(image.ConstRow(0)), last_row_(image.ConstRow(ysize - 1)) {} + + const float* operator()(const float* const HWY_RESTRICT row, + const int64_t stride) const { + if (row < first_row_) { + const int64_t num_before = first_row_ - row; + // Mirrored; one row before => row 0, two before = row 1, ... + return first_row_ + num_before - stride; + } + if (row > last_row_) { + const int64_t num_after = row - last_row_; + // Mirrored; one row after => last row, two after = last - 1, ... + return last_row_ - num_after + stride; + } + return row; + } + + private: + const float* const HWY_RESTRICT first_row_; + const float* const HWY_RESTRICT last_row_; +}; + +struct WrapRowUnchanged { + HWY_INLINE const float* operator()(const float* const HWY_RESTRICT row, + int64_t /*stride*/) const { + return row; + } +}; + +} // namespace hwy + +#endif // HIGHWAY_HWY_CONTRIB_IMAGE_IMAGE_H_ diff --git a/third_party/highway/hwy/contrib/image/image_test.cc b/third_party/highway/hwy/contrib/image/image_test.cc new file mode 100644 index 0000000000..6886577a46 --- /dev/null +++ b/third_party/highway/hwy/contrib/image/image_test.cc @@ -0,0 +1,152 @@ +// Copyright (c) the JPEG XL Project +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "hwy/contrib/image/image.h" + +#include <stddef.h> +#include <stdint.h> +#include <stdio.h> +#include <stdlib.h> + +#include <random> +#include <utility> + +#undef HWY_TARGET_INCLUDE +#define HWY_TARGET_INCLUDE "hwy/contrib/image/image_test.cc" +#include "hwy/foreach_target.h" // IWYU pragma: keep + +// After foreach_target: +#include "hwy/highway.h" +#include "hwy/tests/test_util-inl.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +// Ensure we can always write full aligned vectors. +struct TestAlignedT { + template <typename T> + void operator()(T /*unused*/) const { + std::mt19937 rng(129); + std::uniform_int_distribution<int> dist(0, 16); + const ScalableTag<T> d; + + for (size_t ysize = 1; ysize < 4; ++ysize) { + for (size_t xsize = 1; xsize < 64; ++xsize) { + Image<T> img(xsize, ysize); + + for (size_t y = 0; y < ysize; ++y) { + T* HWY_RESTRICT row = img.MutableRow(y); + for (size_t x = 0; x < xsize; x += Lanes(d)) { + const auto values = Iota(d, static_cast<T>(dist(rng))); + Store(values, d, row + x); + } + } + + // Sanity check to prevent optimizing out the writes + const auto x = std::uniform_int_distribution<size_t>(0, xsize - 1)(rng); + const auto y = std::uniform_int_distribution<size_t>(0, ysize - 1)(rng); + HWY_ASSERT(img.ConstRow(y)[x] < 16 + Lanes(d)); + } + } + } +}; + +void TestAligned() { ForUnsignedTypes(TestAlignedT()); } + +// Ensure we can write an unaligned vector starting at the last valid value. +struct TestUnalignedT { + template <typename T> + void operator()(T /*unused*/) const { + std::mt19937 rng(129); + std::uniform_int_distribution<int> dist(0, 3); + const ScalableTag<T> d; + + for (size_t ysize = 1; ysize < 4; ++ysize) { + for (size_t xsize = 1; xsize < 128; ++xsize) { + Image<T> img(xsize, ysize); + img.InitializePaddingForUnalignedAccesses(); + +// This test reads padding, which only works if it was initialized, +// which only happens in MSAN builds. +#if HWY_IS_MSAN || HWY_IDE + // Initialize only the valid samples + for (size_t y = 0; y < ysize; ++y) { + T* HWY_RESTRICT row = img.MutableRow(y); + for (size_t x = 0; x < xsize; ++x) { + row[x] = static_cast<T>(1u << dist(rng)); + } + } + + // Read padding bits + auto accum = Zero(d); + for (size_t y = 0; y < ysize; ++y) { + T* HWY_RESTRICT row = img.MutableRow(y); + for (size_t x = 0; x < xsize; ++x) { + accum = Or(accum, LoadU(d, row + x)); + } + } + + // Ensure padding was zero + const size_t N = Lanes(d); + auto lanes = AllocateAligned<T>(N); + Store(accum, d, lanes.get()); + for (size_t i = 0; i < N; ++i) { + HWY_ASSERT(lanes[i] < 16); + } +#else // Check that writing padding does not overwrite valid samples + // Initialize only the valid samples + for (size_t y = 0; y < ysize; ++y) { + T* HWY_RESTRICT row = img.MutableRow(y); + for (size_t x = 0; x < xsize; ++x) { + row[x] = static_cast<T>(x); + } + } + + // Zero padding and rightmost sample + for (size_t y = 0; y < ysize; ++y) { + T* HWY_RESTRICT row = img.MutableRow(y); + StoreU(Zero(d), d, row + xsize - 1); + } + + // Ensure no samples except the rightmost were overwritten + for (size_t y = 0; y < ysize; ++y) { + T* HWY_RESTRICT row = img.MutableRow(y); + for (size_t x = 0; x < xsize - 1; ++x) { + HWY_ASSERT_EQ(static_cast<T>(x), row[x]); + } + } +#endif + } + } + } +}; + +void TestUnaligned() { ForUnsignedTypes(TestUnalignedT()); } + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE + +namespace hwy { +HWY_BEFORE_TEST(ImageTest); +HWY_EXPORT_AND_TEST_P(ImageTest, TestAligned); +HWY_EXPORT_AND_TEST_P(ImageTest, TestUnaligned); +} // namespace hwy + +#endif diff --git a/third_party/highway/hwy/contrib/math/math-inl.h b/third_party/highway/hwy/contrib/math/math-inl.h new file mode 100644 index 0000000000..b4cbb5d119 --- /dev/null +++ b/third_party/highway/hwy/contrib/math/math-inl.h @@ -0,0 +1,1242 @@ +// Copyright 2020 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +// Include guard (still compiled once per target) +#if defined(HIGHWAY_HWY_CONTRIB_MATH_MATH_INL_H_) == \ + defined(HWY_TARGET_TOGGLE) +#ifdef HIGHWAY_HWY_CONTRIB_MATH_MATH_INL_H_ +#undef HIGHWAY_HWY_CONTRIB_MATH_MATH_INL_H_ +#else +#define HIGHWAY_HWY_CONTRIB_MATH_MATH_INL_H_ +#endif + +#include "hwy/highway.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +/** + * Highway SIMD version of std::acos(x). + * + * Valid Lane Types: float32, float64 + * Max Error: ULP = 2 + * Valid Range: [-1, +1] + * @return arc cosine of 'x' + */ +template <class D, class V> +HWY_INLINE V Acos(const D d, V x); +template <class D, class V> +HWY_NOINLINE V CallAcos(const D d, VecArg<V> x) { + return Acos(d, x); +} + +/** + * Highway SIMD version of std::acosh(x). + * + * Valid Lane Types: float32, float64 + * Max Error: ULP = 3 + * Valid Range: float32[1, +FLT_MAX], float64[1, +DBL_MAX] + * @return hyperbolic arc cosine of 'x' + */ +template <class D, class V> +HWY_INLINE V Acosh(const D d, V x); +template <class D, class V> +HWY_NOINLINE V CallAcosh(const D d, VecArg<V> x) { + return Acosh(d, x); +} + +/** + * Highway SIMD version of std::asin(x). + * + * Valid Lane Types: float32, float64 + * Max Error: ULP = 2 + * Valid Range: [-1, +1] + * @return arc sine of 'x' + */ +template <class D, class V> +HWY_INLINE V Asin(const D d, V x); +template <class D, class V> +HWY_NOINLINE V CallAsin(const D d, VecArg<V> x) { + return Asin(d, x); +} + +/** + * Highway SIMD version of std::asinh(x). + * + * Valid Lane Types: float32, float64 + * Max Error: ULP = 3 + * Valid Range: float32[-FLT_MAX, +FLT_MAX], float64[-DBL_MAX, +DBL_MAX] + * @return hyperbolic arc sine of 'x' + */ +template <class D, class V> +HWY_INLINE V Asinh(const D d, V x); +template <class D, class V> +HWY_NOINLINE V CallAsinh(const D d, VecArg<V> x) { + return Asinh(d, x); +} + +/** + * Highway SIMD version of std::atan(x). + * + * Valid Lane Types: float32, float64 + * Max Error: ULP = 3 + * Valid Range: float32[-FLT_MAX, +FLT_MAX], float64[-DBL_MAX, +DBL_MAX] + * @return arc tangent of 'x' + */ +template <class D, class V> +HWY_INLINE V Atan(const D d, V x); +template <class D, class V> +HWY_NOINLINE V CallAtan(const D d, VecArg<V> x) { + return Atan(d, x); +} + +/** + * Highway SIMD version of std::atanh(x). + * + * Valid Lane Types: float32, float64 + * Max Error: ULP = 3 + * Valid Range: (-1, +1) + * @return hyperbolic arc tangent of 'x' + */ +template <class D, class V> +HWY_INLINE V Atanh(const D d, V x); +template <class D, class V> +HWY_NOINLINE V CallAtanh(const D d, VecArg<V> x) { + return Atanh(d, x); +} + +/** + * Highway SIMD version of std::cos(x). + * + * Valid Lane Types: float32, float64 + * Max Error: ULP = 3 + * Valid Range: [-39000, +39000] + * @return cosine of 'x' + */ +template <class D, class V> +HWY_INLINE V Cos(const D d, V x); +template <class D, class V> +HWY_NOINLINE V CallCos(const D d, VecArg<V> x) { + return Cos(d, x); +} + +/** + * Highway SIMD version of std::exp(x). + * + * Valid Lane Types: float32, float64 + * Max Error: ULP = 1 + * Valid Range: float32[-FLT_MAX, +104], float64[-DBL_MAX, +706] + * @return e^x + */ +template <class D, class V> +HWY_INLINE V Exp(const D d, V x); +template <class D, class V> +HWY_NOINLINE V CallExp(const D d, VecArg<V> x) { + return Exp(d, x); +} + +/** + * Highway SIMD version of std::expm1(x). + * + * Valid Lane Types: float32, float64 + * Max Error: ULP = 4 + * Valid Range: float32[-FLT_MAX, +104], float64[-DBL_MAX, +706] + * @return e^x - 1 + */ +template <class D, class V> +HWY_INLINE V Expm1(const D d, V x); +template <class D, class V> +HWY_NOINLINE V CallExpm1(const D d, VecArg<V> x) { + return Expm1(d, x); +} + +/** + * Highway SIMD version of std::log(x). + * + * Valid Lane Types: float32, float64 + * Max Error: ULP = 4 + * Valid Range: float32(0, +FLT_MAX], float64(0, +DBL_MAX] + * @return natural logarithm of 'x' + */ +template <class D, class V> +HWY_INLINE V Log(const D d, V x); +template <class D, class V> +HWY_NOINLINE V CallLog(const D d, VecArg<V> x) { + return Log(d, x); +} + +/** + * Highway SIMD version of std::log10(x). + * + * Valid Lane Types: float32, float64 + * Max Error: ULP = 2 + * Valid Range: float32(0, +FLT_MAX], float64(0, +DBL_MAX] + * @return base 10 logarithm of 'x' + */ +template <class D, class V> +HWY_INLINE V Log10(const D d, V x); +template <class D, class V> +HWY_NOINLINE V CallLog10(const D d, VecArg<V> x) { + return Log10(d, x); +} + +/** + * Highway SIMD version of std::log1p(x). + * + * Valid Lane Types: float32, float64 + * Max Error: ULP = 2 + * Valid Range: float32[0, +FLT_MAX], float64[0, +DBL_MAX] + * @return log(1 + x) + */ +template <class D, class V> +HWY_INLINE V Log1p(const D d, V x); +template <class D, class V> +HWY_NOINLINE V CallLog1p(const D d, VecArg<V> x) { + return Log1p(d, x); +} + +/** + * Highway SIMD version of std::log2(x). + * + * Valid Lane Types: float32, float64 + * Max Error: ULP = 2 + * Valid Range: float32(0, +FLT_MAX], float64(0, +DBL_MAX] + * @return base 2 logarithm of 'x' + */ +template <class D, class V> +HWY_INLINE V Log2(const D d, V x); +template <class D, class V> +HWY_NOINLINE V CallLog2(const D d, VecArg<V> x) { + return Log2(d, x); +} + +/** + * Highway SIMD version of std::sin(x). + * + * Valid Lane Types: float32, float64 + * Max Error: ULP = 3 + * Valid Range: [-39000, +39000] + * @return sine of 'x' + */ +template <class D, class V> +HWY_INLINE V Sin(const D d, V x); +template <class D, class V> +HWY_NOINLINE V CallSin(const D d, VecArg<V> x) { + return Sin(d, x); +} + +/** + * Highway SIMD version of std::sinh(x). + * + * Valid Lane Types: float32, float64 + * Max Error: ULP = 4 + * Valid Range: float32[-88.7228, +88.7228], float64[-709, +709] + * @return hyperbolic sine of 'x' + */ +template <class D, class V> +HWY_INLINE V Sinh(const D d, V x); +template <class D, class V> +HWY_NOINLINE V CallSinh(const D d, VecArg<V> x) { + return Sinh(d, x); +} + +/** + * Highway SIMD version of std::tanh(x). + * + * Valid Lane Types: float32, float64 + * Max Error: ULP = 4 + * Valid Range: float32[-FLT_MAX, +FLT_MAX], float64[-DBL_MAX, +DBL_MAX] + * @return hyperbolic tangent of 'x' + */ +template <class D, class V> +HWY_INLINE V Tanh(const D d, V x); +template <class D, class V> +HWY_NOINLINE V CallTanh(const D d, VecArg<V> x) { + return Tanh(d, x); +} + +//////////////////////////////////////////////////////////////////////////////// +// Implementation +//////////////////////////////////////////////////////////////////////////////// +namespace impl { + +// Estrin's Scheme is a faster method for evaluating large polynomials on +// super scalar architectures. It works by factoring the Horner's Method +// polynomial into power of two sub-trees that can be evaluated in parallel. +// Wikipedia Link: https://en.wikipedia.org/wiki/Estrin%27s_scheme +template <class T> +HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1) { + return MulAdd(c1, x, c0); +} +template <class T> +HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2) { + T x2 = Mul(x, x); + return MulAdd(x2, c2, MulAdd(c1, x, c0)); +} +template <class T> +HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3) { + T x2 = Mul(x, x); + return MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0)); +} +template <class T> +HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4) { + T x2 = Mul(x, x); + T x4 = Mul(x2, x2); + return MulAdd(x4, c4, MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0))); +} +template <class T> +HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5) { + T x2 = Mul(x, x); + T x4 = Mul(x2, x2); + return MulAdd(x4, MulAdd(c5, x, c4), + MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0))); +} +template <class T> +HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5, + T c6) { + T x2 = Mul(x, x); + T x4 = Mul(x2, x2); + return MulAdd(x4, MulAdd(x2, c6, MulAdd(c5, x, c4)), + MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0))); +} +template <class T> +HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5, + T c6, T c7) { + T x2 = Mul(x, x); + T x4 = Mul(x2, x2); + return MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)), + MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0))); +} +template <class T> +HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5, + T c6, T c7, T c8) { + T x2 = Mul(x, x); + T x4 = Mul(x2, x2); + T x8 = Mul(x4, x4); + return MulAdd(x8, c8, + MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)), + MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0)))); +} +template <class T> +HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5, + T c6, T c7, T c8, T c9) { + T x2 = Mul(x, x); + T x4 = Mul(x2, x2); + T x8 = Mul(x4, x4); + return MulAdd(x8, MulAdd(c9, x, c8), + MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)), + MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0)))); +} +template <class T> +HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5, + T c6, T c7, T c8, T c9, T c10) { + T x2 = Mul(x, x); + T x4 = Mul(x2, x2); + T x8 = Mul(x4, x4); + return MulAdd(x8, MulAdd(x2, c10, MulAdd(c9, x, c8)), + MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)), + MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0)))); +} +template <class T> +HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5, + T c6, T c7, T c8, T c9, T c10, T c11) { + T x2 = Mul(x, x); + T x4 = Mul(x2, x2); + T x8 = Mul(x4, x4); + return MulAdd(x8, MulAdd(x2, MulAdd(c11, x, c10), MulAdd(c9, x, c8)), + MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)), + MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0)))); +} +template <class T> +HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5, + T c6, T c7, T c8, T c9, T c10, T c11, + T c12) { + T x2 = Mul(x, x); + T x4 = Mul(x2, x2); + T x8 = Mul(x4, x4); + return MulAdd( + x8, MulAdd(x4, c12, MulAdd(x2, MulAdd(c11, x, c10), MulAdd(c9, x, c8))), + MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)), + MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0)))); +} +template <class T> +HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5, + T c6, T c7, T c8, T c9, T c10, T c11, + T c12, T c13) { + T x2 = Mul(x, x); + T x4 = Mul(x2, x2); + T x8 = Mul(x4, x4); + return MulAdd(x8, + MulAdd(x4, MulAdd(c13, x, c12), + MulAdd(x2, MulAdd(c11, x, c10), MulAdd(c9, x, c8))), + MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)), + MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0)))); +} +template <class T> +HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5, + T c6, T c7, T c8, T c9, T c10, T c11, + T c12, T c13, T c14) { + T x2 = Mul(x, x); + T x4 = Mul(x2, x2); + T x8 = Mul(x4, x4); + return MulAdd(x8, + MulAdd(x4, MulAdd(x2, c14, MulAdd(c13, x, c12)), + MulAdd(x2, MulAdd(c11, x, c10), MulAdd(c9, x, c8))), + MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)), + MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0)))); +} +template <class T> +HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5, + T c6, T c7, T c8, T c9, T c10, T c11, + T c12, T c13, T c14, T c15) { + T x2 = Mul(x, x); + T x4 = Mul(x2, x2); + T x8 = Mul(x4, x4); + return MulAdd(x8, + MulAdd(x4, MulAdd(x2, MulAdd(c15, x, c14), MulAdd(c13, x, c12)), + MulAdd(x2, MulAdd(c11, x, c10), MulAdd(c9, x, c8))), + MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)), + MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0)))); +} +template <class T> +HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5, + T c6, T c7, T c8, T c9, T c10, T c11, + T c12, T c13, T c14, T c15, T c16) { + T x2 = Mul(x, x); + T x4 = Mul(x2, x2); + T x8 = Mul(x4, x4); + T x16 = Mul(x8, x8); + return MulAdd( + x16, c16, + MulAdd(x8, + MulAdd(x4, MulAdd(x2, MulAdd(c15, x, c14), MulAdd(c13, x, c12)), + MulAdd(x2, MulAdd(c11, x, c10), MulAdd(c9, x, c8))), + MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)), + MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0))))); +} +template <class T> +HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5, + T c6, T c7, T c8, T c9, T c10, T c11, + T c12, T c13, T c14, T c15, T c16, T c17) { + T x2 = Mul(x, x); + T x4 = Mul(x2, x2); + T x8 = Mul(x4, x4); + T x16 = Mul(x8, x8); + return MulAdd( + x16, MulAdd(c17, x, c16), + MulAdd(x8, + MulAdd(x4, MulAdd(x2, MulAdd(c15, x, c14), MulAdd(c13, x, c12)), + MulAdd(x2, MulAdd(c11, x, c10), MulAdd(c9, x, c8))), + MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)), + MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0))))); +} +template <class T> +HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5, + T c6, T c7, T c8, T c9, T c10, T c11, + T c12, T c13, T c14, T c15, T c16, T c17, + T c18) { + T x2 = Mul(x, x); + T x4 = Mul(x2, x2); + T x8 = Mul(x4, x4); + T x16 = Mul(x8, x8); + return MulAdd( + x16, MulAdd(x2, c18, MulAdd(c17, x, c16)), + MulAdd(x8, + MulAdd(x4, MulAdd(x2, MulAdd(c15, x, c14), MulAdd(c13, x, c12)), + MulAdd(x2, MulAdd(c11, x, c10), MulAdd(c9, x, c8))), + MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)), + MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0))))); +} + +template <class FloatOrDouble> +struct AsinImpl {}; +template <class FloatOrDouble> +struct AtanImpl {}; +template <class FloatOrDouble> +struct CosSinImpl {}; +template <class FloatOrDouble> +struct ExpImpl {}; +template <class FloatOrDouble> +struct LogImpl {}; + +template <> +struct AsinImpl<float> { + // Polynomial approximation for asin(x) over the range [0, 0.5). + template <class D, class V> + HWY_INLINE V AsinPoly(D d, V x2, V /*x*/) { + const auto k0 = Set(d, +0.1666677296f); + const auto k1 = Set(d, +0.07495029271f); + const auto k2 = Set(d, +0.04547423869f); + const auto k3 = Set(d, +0.02424046025f); + const auto k4 = Set(d, +0.04197454825f); + + return Estrin(x2, k0, k1, k2, k3, k4); + } +}; + +#if HWY_HAVE_FLOAT64 && HWY_HAVE_INTEGER64 + +template <> +struct AsinImpl<double> { + // Polynomial approximation for asin(x) over the range [0, 0.5). + template <class D, class V> + HWY_INLINE V AsinPoly(D d, V x2, V /*x*/) { + const auto k0 = Set(d, +0.1666666666666497543); + const auto k1 = Set(d, +0.07500000000378581611); + const auto k2 = Set(d, +0.04464285681377102438); + const auto k3 = Set(d, +0.03038195928038132237); + const auto k4 = Set(d, +0.02237176181932048341); + const auto k5 = Set(d, +0.01735956991223614604); + const auto k6 = Set(d, +0.01388715184501609218); + const auto k7 = Set(d, +0.01215360525577377331); + const auto k8 = Set(d, +0.006606077476277170610); + const auto k9 = Set(d, +0.01929045477267910674); + const auto k10 = Set(d, -0.01581918243329996643); + const auto k11 = Set(d, +0.03161587650653934628); + + return Estrin(x2, k0, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11); + } +}; + +#endif + +template <> +struct AtanImpl<float> { + // Polynomial approximation for atan(x) over the range [0, 1.0). + template <class D, class V> + HWY_INLINE V AtanPoly(D d, V x) { + const auto k0 = Set(d, -0.333331018686294555664062f); + const auto k1 = Set(d, +0.199926957488059997558594f); + const auto k2 = Set(d, -0.142027363181114196777344f); + const auto k3 = Set(d, +0.106347933411598205566406f); + const auto k4 = Set(d, -0.0748900920152664184570312f); + const auto k5 = Set(d, +0.0425049886107444763183594f); + const auto k6 = Set(d, -0.0159569028764963150024414f); + const auto k7 = Set(d, +0.00282363896258175373077393f); + + const auto y = Mul(x, x); + return MulAdd(Estrin(y, k0, k1, k2, k3, k4, k5, k6, k7), Mul(y, x), x); + } +}; + +#if HWY_HAVE_FLOAT64 && HWY_HAVE_INTEGER64 + +template <> +struct AtanImpl<double> { + // Polynomial approximation for atan(x) over the range [0, 1.0). + template <class D, class V> + HWY_INLINE V AtanPoly(D d, V x) { + const auto k0 = Set(d, -0.333333333333311110369124); + const auto k1 = Set(d, +0.199999999996591265594148); + const auto k2 = Set(d, -0.14285714266771329383765); + const auto k3 = Set(d, +0.111111105648261418443745); + const auto k4 = Set(d, -0.090908995008245008229153); + const auto k5 = Set(d, +0.0769219538311769618355029); + const auto k6 = Set(d, -0.0666573579361080525984562); + const auto k7 = Set(d, +0.0587666392926673580854313); + const auto k8 = Set(d, -0.0523674852303482457616113); + const auto k9 = Set(d, +0.0466667150077840625632675); + const auto k10 = Set(d, -0.0407629191276836500001934); + const auto k11 = Set(d, +0.0337852580001353069993897); + const auto k12 = Set(d, -0.0254517624932312641616861); + const auto k13 = Set(d, +0.016599329773529201970117); + const auto k14 = Set(d, -0.00889896195887655491740809); + const auto k15 = Set(d, +0.00370026744188713119232403); + const auto k16 = Set(d, -0.00110611831486672482563471); + const auto k17 = Set(d, +0.000209850076645816976906797); + const auto k18 = Set(d, -1.88796008463073496563746e-5); + + const auto y = Mul(x, x); + return MulAdd(Estrin(y, k0, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, + k12, k13, k14, k15, k16, k17, k18), + Mul(y, x), x); + } +}; + +#endif + +template <> +struct CosSinImpl<float> { + // Rounds float toward zero and returns as int32_t. + template <class D, class V> + HWY_INLINE Vec<Rebind<int32_t, D>> ToInt32(D /*unused*/, V x) { + return ConvertTo(Rebind<int32_t, D>(), x); + } + + template <class D, class V> + HWY_INLINE V Poly(D d, V x) { + const auto k0 = Set(d, -1.66666597127914428710938e-1f); + const auto k1 = Set(d, +8.33307858556509017944336e-3f); + const auto k2 = Set(d, -1.981069071916863322258e-4f); + const auto k3 = Set(d, +2.6083159809786593541503e-6f); + + const auto y = Mul(x, x); + return MulAdd(Estrin(y, k0, k1, k2, k3), Mul(y, x), x); + } + + template <class D, class V, class VI32> + HWY_INLINE V CosReduce(D d, V x, VI32 q) { + // kHalfPiPart0f + kHalfPiPart1f + kHalfPiPart2f + kHalfPiPart3f ~= -pi/2 + const V kHalfPiPart0f = Set(d, -0.5f * 3.140625f); + const V kHalfPiPart1f = Set(d, -0.5f * 0.0009670257568359375f); + const V kHalfPiPart2f = Set(d, -0.5f * 6.2771141529083251953e-7f); + const V kHalfPiPart3f = Set(d, -0.5f * 1.2154201256553420762e-10f); + + // Extended precision modular arithmetic. + const V qf = ConvertTo(d, q); + x = MulAdd(qf, kHalfPiPart0f, x); + x = MulAdd(qf, kHalfPiPart1f, x); + x = MulAdd(qf, kHalfPiPart2f, x); + x = MulAdd(qf, kHalfPiPart3f, x); + return x; + } + + template <class D, class V, class VI32> + HWY_INLINE V SinReduce(D d, V x, VI32 q) { + // kPiPart0f + kPiPart1f + kPiPart2f + kPiPart3f ~= -pi + const V kPiPart0f = Set(d, -3.140625f); + const V kPiPart1f = Set(d, -0.0009670257568359375f); + const V kPiPart2f = Set(d, -6.2771141529083251953e-7f); + const V kPiPart3f = Set(d, -1.2154201256553420762e-10f); + + // Extended precision modular arithmetic. + const V qf = ConvertTo(d, q); + x = MulAdd(qf, kPiPart0f, x); + x = MulAdd(qf, kPiPart1f, x); + x = MulAdd(qf, kPiPart2f, x); + x = MulAdd(qf, kPiPart3f, x); + return x; + } + + // (q & 2) == 0 ? -0.0 : +0.0 + template <class D, class VI32> + HWY_INLINE Vec<Rebind<float, D>> CosSignFromQuadrant(D d, VI32 q) { + const VI32 kTwo = Set(Rebind<int32_t, D>(), 2); + return BitCast(d, ShiftLeft<30>(AndNot(q, kTwo))); + } + + // ((q & 1) ? -0.0 : +0.0) + template <class D, class VI32> + HWY_INLINE Vec<Rebind<float, D>> SinSignFromQuadrant(D d, VI32 q) { + const VI32 kOne = Set(Rebind<int32_t, D>(), 1); + return BitCast(d, ShiftLeft<31>(And(q, kOne))); + } +}; + +#if HWY_HAVE_FLOAT64 && HWY_HAVE_INTEGER64 + +template <> +struct CosSinImpl<double> { + // Rounds double toward zero and returns as int32_t. + template <class D, class V> + HWY_INLINE Vec<Rebind<int32_t, D>> ToInt32(D /*unused*/, V x) { + return DemoteTo(Rebind<int32_t, D>(), x); + } + + template <class D, class V> + HWY_INLINE V Poly(D d, V x) { + const auto k0 = Set(d, -0.166666666666666657414808); + const auto k1 = Set(d, +0.00833333333333332974823815); + const auto k2 = Set(d, -0.000198412698412696162806809); + const auto k3 = Set(d, +2.75573192239198747630416e-6); + const auto k4 = Set(d, -2.50521083763502045810755e-8); + const auto k5 = Set(d, +1.60590430605664501629054e-10); + const auto k6 = Set(d, -7.64712219118158833288484e-13); + const auto k7 = Set(d, +2.81009972710863200091251e-15); + const auto k8 = Set(d, -7.97255955009037868891952e-18); + + const auto y = Mul(x, x); + return MulAdd(Estrin(y, k0, k1, k2, k3, k4, k5, k6, k7, k8), Mul(y, x), x); + } + + template <class D, class V, class VI32> + HWY_INLINE V CosReduce(D d, V x, VI32 q) { + // kHalfPiPart0d + kHalfPiPart1d + kHalfPiPart2d + kHalfPiPart3d ~= -pi/2 + const V kHalfPiPart0d = Set(d, -0.5 * 3.1415926218032836914); + const V kHalfPiPart1d = Set(d, -0.5 * 3.1786509424591713469e-8); + const V kHalfPiPart2d = Set(d, -0.5 * 1.2246467864107188502e-16); + const V kHalfPiPart3d = Set(d, -0.5 * 1.2736634327021899816e-24); + + // Extended precision modular arithmetic. + const V qf = PromoteTo(d, q); + x = MulAdd(qf, kHalfPiPart0d, x); + x = MulAdd(qf, kHalfPiPart1d, x); + x = MulAdd(qf, kHalfPiPart2d, x); + x = MulAdd(qf, kHalfPiPart3d, x); + return x; + } + + template <class D, class V, class VI32> + HWY_INLINE V SinReduce(D d, V x, VI32 q) { + // kPiPart0d + kPiPart1d + kPiPart2d + kPiPart3d ~= -pi + const V kPiPart0d = Set(d, -3.1415926218032836914); + const V kPiPart1d = Set(d, -3.1786509424591713469e-8); + const V kPiPart2d = Set(d, -1.2246467864107188502e-16); + const V kPiPart3d = Set(d, -1.2736634327021899816e-24); + + // Extended precision modular arithmetic. + const V qf = PromoteTo(d, q); + x = MulAdd(qf, kPiPart0d, x); + x = MulAdd(qf, kPiPart1d, x); + x = MulAdd(qf, kPiPart2d, x); + x = MulAdd(qf, kPiPart3d, x); + return x; + } + + // (q & 2) == 0 ? -0.0 : +0.0 + template <class D, class VI32> + HWY_INLINE Vec<Rebind<double, D>> CosSignFromQuadrant(D d, VI32 q) { + const VI32 kTwo = Set(Rebind<int32_t, D>(), 2); + return BitCast( + d, ShiftLeft<62>(PromoteTo(Rebind<int64_t, D>(), AndNot(q, kTwo)))); + } + + // ((q & 1) ? -0.0 : +0.0) + template <class D, class VI32> + HWY_INLINE Vec<Rebind<double, D>> SinSignFromQuadrant(D d, VI32 q) { + const VI32 kOne = Set(Rebind<int32_t, D>(), 1); + return BitCast( + d, ShiftLeft<63>(PromoteTo(Rebind<int64_t, D>(), And(q, kOne)))); + } +}; + +#endif + +template <> +struct ExpImpl<float> { + // Rounds float toward zero and returns as int32_t. + template <class D, class V> + HWY_INLINE Vec<Rebind<int32_t, D>> ToInt32(D /*unused*/, V x) { + return ConvertTo(Rebind<int32_t, D>(), x); + } + + template <class D, class V> + HWY_INLINE V ExpPoly(D d, V x) { + const auto k0 = Set(d, +0.5f); + const auto k1 = Set(d, +0.166666671633720397949219f); + const auto k2 = Set(d, +0.0416664853692054748535156f); + const auto k3 = Set(d, +0.00833336077630519866943359f); + const auto k4 = Set(d, +0.00139304355252534151077271f); + const auto k5 = Set(d, +0.000198527617612853646278381f); + + return MulAdd(Estrin(x, k0, k1, k2, k3, k4, k5), Mul(x, x), x); + } + + // Computes 2^x, where x is an integer. + template <class D, class VI32> + HWY_INLINE Vec<D> Pow2I(D d, VI32 x) { + const Rebind<int32_t, D> di32; + const VI32 kOffset = Set(di32, 0x7F); + return BitCast(d, ShiftLeft<23>(Add(x, kOffset))); + } + + // Sets the exponent of 'x' to 2^e. + template <class D, class V, class VI32> + HWY_INLINE V LoadExpShortRange(D d, V x, VI32 e) { + const VI32 y = ShiftRight<1>(e); + return Mul(Mul(x, Pow2I(d, y)), Pow2I(d, Sub(e, y))); + } + + template <class D, class V, class VI32> + HWY_INLINE V ExpReduce(D d, V x, VI32 q) { + // kLn2Part0f + kLn2Part1f ~= -ln(2) + const V kLn2Part0f = Set(d, -0.693145751953125f); + const V kLn2Part1f = Set(d, -1.428606765330187045e-6f); + + // Extended precision modular arithmetic. + const V qf = ConvertTo(d, q); + x = MulAdd(qf, kLn2Part0f, x); + x = MulAdd(qf, kLn2Part1f, x); + return x; + } +}; + +template <> +struct LogImpl<float> { + template <class D, class V> + HWY_INLINE Vec<Rebind<int32_t, D>> Log2p1NoSubnormal(D /*d*/, V x) { + const Rebind<int32_t, D> di32; + const Rebind<uint32_t, D> du32; + const auto kBias = Set(di32, 0x7F); + return Sub(BitCast(di32, ShiftRight<23>(BitCast(du32, x))), kBias); + } + + // Approximates Log(x) over the range [sqrt(2) / 2, sqrt(2)]. + template <class D, class V> + HWY_INLINE V LogPoly(D d, V x) { + const V k0 = Set(d, 0.66666662693f); + const V k1 = Set(d, 0.40000972152f); + const V k2 = Set(d, 0.28498786688f); + const V k3 = Set(d, 0.24279078841f); + + const V x2 = Mul(x, x); + const V x4 = Mul(x2, x2); + return MulAdd(MulAdd(k2, x4, k0), x2, Mul(MulAdd(k3, x4, k1), x4)); + } +}; + +#if HWY_HAVE_FLOAT64 && HWY_HAVE_INTEGER64 +template <> +struct ExpImpl<double> { + // Rounds double toward zero and returns as int32_t. + template <class D, class V> + HWY_INLINE Vec<Rebind<int32_t, D>> ToInt32(D /*unused*/, V x) { + return DemoteTo(Rebind<int32_t, D>(), x); + } + + template <class D, class V> + HWY_INLINE V ExpPoly(D d, V x) { + const auto k0 = Set(d, +0.5); + const auto k1 = Set(d, +0.166666666666666851703837); + const auto k2 = Set(d, +0.0416666666666665047591422); + const auto k3 = Set(d, +0.00833333333331652721664984); + const auto k4 = Set(d, +0.00138888888889774492207962); + const auto k5 = Set(d, +0.000198412698960509205564975); + const auto k6 = Set(d, +2.4801587159235472998791e-5); + const auto k7 = Set(d, +2.75572362911928827629423e-6); + const auto k8 = Set(d, +2.75573911234900471893338e-7); + const auto k9 = Set(d, +2.51112930892876518610661e-8); + const auto k10 = Set(d, +2.08860621107283687536341e-9); + + return MulAdd(Estrin(x, k0, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10), + Mul(x, x), x); + } + + // Computes 2^x, where x is an integer. + template <class D, class VI32> + HWY_INLINE Vec<D> Pow2I(D d, VI32 x) { + const Rebind<int32_t, D> di32; + const Rebind<int64_t, D> di64; + const VI32 kOffset = Set(di32, 0x3FF); + return BitCast(d, ShiftLeft<52>(PromoteTo(di64, Add(x, kOffset)))); + } + + // Sets the exponent of 'x' to 2^e. + template <class D, class V, class VI32> + HWY_INLINE V LoadExpShortRange(D d, V x, VI32 e) { + const VI32 y = ShiftRight<1>(e); + return Mul(Mul(x, Pow2I(d, y)), Pow2I(d, Sub(e, y))); + } + + template <class D, class V, class VI32> + HWY_INLINE V ExpReduce(D d, V x, VI32 q) { + // kLn2Part0d + kLn2Part1d ~= -ln(2) + const V kLn2Part0d = Set(d, -0.6931471805596629565116018); + const V kLn2Part1d = Set(d, -0.28235290563031577122588448175e-12); + + // Extended precision modular arithmetic. + const V qf = PromoteTo(d, q); + x = MulAdd(qf, kLn2Part0d, x); + x = MulAdd(qf, kLn2Part1d, x); + return x; + } +}; + +template <> +struct LogImpl<double> { + template <class D, class V> + HWY_INLINE Vec<Rebind<int64_t, D>> Log2p1NoSubnormal(D /*d*/, V x) { + const Rebind<int64_t, D> di64; + const Rebind<uint64_t, D> du64; + return Sub(BitCast(di64, ShiftRight<52>(BitCast(du64, x))), + Set(di64, 0x3FF)); + } + + // Approximates Log(x) over the range [sqrt(2) / 2, sqrt(2)]. + template <class D, class V> + HWY_INLINE V LogPoly(D d, V x) { + const V k0 = Set(d, 0.6666666666666735130); + const V k1 = Set(d, 0.3999999999940941908); + const V k2 = Set(d, 0.2857142874366239149); + const V k3 = Set(d, 0.2222219843214978396); + const V k4 = Set(d, 0.1818357216161805012); + const V k5 = Set(d, 0.1531383769920937332); + const V k6 = Set(d, 0.1479819860511658591); + + const V x2 = Mul(x, x); + const V x4 = Mul(x2, x2); + return MulAdd(MulAdd(MulAdd(MulAdd(k6, x4, k4), x4, k2), x4, k0), x2, + (Mul(MulAdd(MulAdd(k5, x4, k3), x4, k1), x4))); + } +}; + +#endif + +template <class D, class V, bool kAllowSubnormals = true> +HWY_INLINE V Log(const D d, V x) { + // http://git.musl-libc.org/cgit/musl/tree/src/math/log.c for more info. + using T = TFromD<D>; + impl::LogImpl<T> impl; + + constexpr bool kIsF32 = (sizeof(T) == 4); + + // Float Constants + const V kLn2Hi = Set(d, kIsF32 ? static_cast<T>(0.69313812256f) + : static_cast<T>(0.693147180369123816490)); + const V kLn2Lo = Set(d, kIsF32 ? static_cast<T>(9.0580006145e-6f) + : static_cast<T>(1.90821492927058770002e-10)); + const V kOne = Set(d, static_cast<T>(+1.0)); + const V kMinNormal = Set(d, kIsF32 ? static_cast<T>(1.175494351e-38f) + : static_cast<T>(2.2250738585072014e-308)); + const V kScale = Set(d, kIsF32 ? static_cast<T>(3.355443200e+7f) + : static_cast<T>(1.8014398509481984e+16)); + + // Integer Constants + using TI = MakeSigned<T>; + const Rebind<TI, D> di; + using VI = decltype(Zero(di)); + const VI kLowerBits = Set(di, kIsF32 ? static_cast<TI>(0x00000000L) + : static_cast<TI>(0xFFFFFFFFLL)); + const VI kMagic = Set(di, kIsF32 ? static_cast<TI>(0x3F3504F3L) + : static_cast<TI>(0x3FE6A09E00000000LL)); + const VI kExpMask = Set(di, kIsF32 ? static_cast<TI>(0x3F800000L) + : static_cast<TI>(0x3FF0000000000000LL)); + const VI kExpScale = + Set(di, kIsF32 ? static_cast<TI>(-25) : static_cast<TI>(-54)); + const VI kManMask = Set(di, kIsF32 ? static_cast<TI>(0x7FFFFFL) + : static_cast<TI>(0xFFFFF00000000LL)); + + // Scale up 'x' so that it is no longer denormalized. + VI exp_bits; + V exp; + if (kAllowSubnormals == true) { + const auto is_denormal = Lt(x, kMinNormal); + x = IfThenElse(is_denormal, Mul(x, kScale), x); + + // Compute the new exponent. + exp_bits = Add(BitCast(di, x), Sub(kExpMask, kMagic)); + const VI exp_scale = + BitCast(di, IfThenElseZero(is_denormal, BitCast(d, kExpScale))); + exp = ConvertTo( + d, Add(exp_scale, impl.Log2p1NoSubnormal(d, BitCast(d, exp_bits)))); + } else { + // Compute the new exponent. + exp_bits = Add(BitCast(di, x), Sub(kExpMask, kMagic)); + exp = ConvertTo(d, impl.Log2p1NoSubnormal(d, BitCast(d, exp_bits))); + } + + // Renormalize. + const V y = Or(And(x, BitCast(d, kLowerBits)), + BitCast(d, Add(And(exp_bits, kManMask), kMagic))); + + // Approximate and reconstruct. + const V ym1 = Sub(y, kOne); + const V z = Div(ym1, Add(y, kOne)); + + return MulSub( + exp, kLn2Hi, + Sub(MulSub(z, Sub(ym1, impl.LogPoly(d, z)), Mul(exp, kLn2Lo)), ym1)); +} + +} // namespace impl + +template <class D, class V> +HWY_INLINE V Acos(const D d, V x) { + using T = TFromD<D>; + + const V kZero = Zero(d); + const V kHalf = Set(d, static_cast<T>(+0.5)); + const V kPi = Set(d, static_cast<T>(+3.14159265358979323846264)); + const V kPiOverTwo = Set(d, static_cast<T>(+1.57079632679489661923132169)); + + const V sign_x = And(SignBit(d), x); + const V abs_x = Xor(x, sign_x); + const auto mask = Lt(abs_x, kHalf); + const V yy = + IfThenElse(mask, Mul(abs_x, abs_x), NegMulAdd(abs_x, kHalf, kHalf)); + const V y = IfThenElse(mask, abs_x, Sqrt(yy)); + + impl::AsinImpl<T> impl; + const V t = Mul(impl.AsinPoly(d, yy, y), Mul(y, yy)); + + const V t_plus_y = Add(t, y); + const V z = + IfThenElse(mask, Sub(kPiOverTwo, Add(Xor(y, sign_x), Xor(t, sign_x))), + Add(t_plus_y, t_plus_y)); + return IfThenElse(Or(mask, Ge(x, kZero)), z, Sub(kPi, z)); +} + +template <class D, class V> +HWY_INLINE V Acosh(const D d, V x) { + using T = TFromD<D>; + + const V kLarge = Set(d, static_cast<T>(268435456.0)); + const V kLog2 = Set(d, static_cast<T>(0.693147180559945286227)); + const V kOne = Set(d, static_cast<T>(+1.0)); + const V kTwo = Set(d, static_cast<T>(+2.0)); + + const auto is_x_large = Gt(x, kLarge); + const auto is_x_gt_2 = Gt(x, kTwo); + + const V x_minus_1 = Sub(x, kOne); + const V y0 = MulSub(kTwo, x, Div(kOne, Add(Sqrt(MulSub(x, x, kOne)), x))); + const V y1 = + Add(Sqrt(MulAdd(x_minus_1, kTwo, Mul(x_minus_1, x_minus_1))), x_minus_1); + const V y2 = + IfThenElse(is_x_gt_2, IfThenElse(is_x_large, x, y0), Add(y1, kOne)); + const V z = impl::Log<D, V, /*kAllowSubnormals=*/false>(d, y2); + + const auto is_pole = Eq(y2, kOne); + const auto divisor = Sub(IfThenZeroElse(is_pole, y2), kOne); + return Add(IfThenElse(is_x_gt_2, z, + IfThenElse(is_pole, y1, Div(Mul(z, y1), divisor))), + IfThenElseZero(is_x_large, kLog2)); +} + +template <class D, class V> +HWY_INLINE V Asin(const D d, V x) { + using T = TFromD<D>; + + const V kHalf = Set(d, static_cast<T>(+0.5)); + const V kTwo = Set(d, static_cast<T>(+2.0)); + const V kPiOverTwo = Set(d, static_cast<T>(+1.57079632679489661923132169)); + + const V sign_x = And(SignBit(d), x); + const V abs_x = Xor(x, sign_x); + const auto mask = Lt(abs_x, kHalf); + const V yy = + IfThenElse(mask, Mul(abs_x, abs_x), NegMulAdd(abs_x, kHalf, kHalf)); + const V y = IfThenElse(mask, abs_x, Sqrt(yy)); + + impl::AsinImpl<T> impl; + const V z0 = MulAdd(impl.AsinPoly(d, yy, y), Mul(yy, y), y); + const V z1 = NegMulAdd(z0, kTwo, kPiOverTwo); + return Or(IfThenElse(mask, z0, z1), sign_x); +} + +template <class D, class V> +HWY_INLINE V Asinh(const D d, V x) { + using T = TFromD<D>; + + const V kSmall = Set(d, static_cast<T>(1.0 / 268435456.0)); + const V kLarge = Set(d, static_cast<T>(268435456.0)); + const V kLog2 = Set(d, static_cast<T>(0.693147180559945286227)); + const V kOne = Set(d, static_cast<T>(+1.0)); + const V kTwo = Set(d, static_cast<T>(+2.0)); + + const V sign_x = And(SignBit(d), x); // Extract the sign bit + const V abs_x = Xor(x, sign_x); + + const auto is_x_large = Gt(abs_x, kLarge); + const auto is_x_lt_2 = Lt(abs_x, kTwo); + + const V x2 = Mul(x, x); + const V sqrt_x2_plus_1 = Sqrt(Add(x2, kOne)); + + const V y0 = MulAdd(abs_x, kTwo, Div(kOne, Add(sqrt_x2_plus_1, abs_x))); + const V y1 = Add(Div(x2, Add(sqrt_x2_plus_1, kOne)), abs_x); + const V y2 = + IfThenElse(is_x_lt_2, Add(y1, kOne), IfThenElse(is_x_large, abs_x, y0)); + const V z = impl::Log<D, V, /*kAllowSubnormals=*/false>(d, y2); + + const auto is_pole = Eq(y2, kOne); + const auto divisor = Sub(IfThenZeroElse(is_pole, y2), kOne); + const auto large = IfThenElse(is_pole, y1, Div(Mul(z, y1), divisor)); + const V y = IfThenElse(Lt(abs_x, kSmall), x, large); + return Or(Add(IfThenElse(is_x_lt_2, y, z), IfThenElseZero(is_x_large, kLog2)), + sign_x); +} + +template <class D, class V> +HWY_INLINE V Atan(const D d, V x) { + using T = TFromD<D>; + + const V kOne = Set(d, static_cast<T>(+1.0)); + const V kPiOverTwo = Set(d, static_cast<T>(+1.57079632679489661923132169)); + + const V sign = And(SignBit(d), x); + const V abs_x = Xor(x, sign); + const auto mask = Gt(abs_x, kOne); + + impl::AtanImpl<T> impl; + const auto divisor = IfThenElse(mask, abs_x, kOne); + const V y = impl.AtanPoly(d, IfThenElse(mask, Div(kOne, divisor), abs_x)); + return Or(IfThenElse(mask, Sub(kPiOverTwo, y), y), sign); +} + +template <class D, class V> +HWY_INLINE V Atanh(const D d, V x) { + using T = TFromD<D>; + + const V kHalf = Set(d, static_cast<T>(+0.5)); + const V kOne = Set(d, static_cast<T>(+1.0)); + + const V sign = And(SignBit(d), x); // Extract the sign bit + const V abs_x = Xor(x, sign); + return Mul(Log1p(d, Div(Add(abs_x, abs_x), Sub(kOne, abs_x))), + Xor(kHalf, sign)); +} + +template <class D, class V> +HWY_INLINE V Cos(const D d, V x) { + using T = TFromD<D>; + impl::CosSinImpl<T> impl; + + // Float Constants + const V kOneOverPi = Set(d, static_cast<T>(0.31830988618379067153)); + + // Integer Constants + const Rebind<int32_t, D> di32; + using VI32 = decltype(Zero(di32)); + const VI32 kOne = Set(di32, 1); + + const V y = Abs(x); // cos(x) == cos(|x|) + + // Compute the quadrant, q = int(|x| / pi) * 2 + 1 + const VI32 q = Add(ShiftLeft<1>(impl.ToInt32(d, Mul(y, kOneOverPi))), kOne); + + // Reduce range, apply sign, and approximate. + return impl.Poly( + d, Xor(impl.CosReduce(d, y, q), impl.CosSignFromQuadrant(d, q))); +} + +template <class D, class V> +HWY_INLINE V Exp(const D d, V x) { + using T = TFromD<D>; + + const V kHalf = Set(d, static_cast<T>(+0.5)); + const V kLowerBound = + Set(d, static_cast<T>((sizeof(T) == 4 ? -104.0 : -1000.0))); + const V kNegZero = Set(d, static_cast<T>(-0.0)); + const V kOne = Set(d, static_cast<T>(+1.0)); + const V kOneOverLog2 = Set(d, static_cast<T>(+1.442695040888963407359924681)); + + impl::ExpImpl<T> impl; + + // q = static_cast<int32>((x / log(2)) + ((x < 0) ? -0.5 : +0.5)) + const auto q = + impl.ToInt32(d, MulAdd(x, kOneOverLog2, Or(kHalf, And(x, kNegZero)))); + + // Reduce, approximate, and then reconstruct. + const V y = impl.LoadExpShortRange( + d, Add(impl.ExpPoly(d, impl.ExpReduce(d, x, q)), kOne), q); + return IfThenElseZero(Ge(x, kLowerBound), y); +} + +template <class D, class V> +HWY_INLINE V Expm1(const D d, V x) { + using T = TFromD<D>; + + const V kHalf = Set(d, static_cast<T>(+0.5)); + const V kLowerBound = + Set(d, static_cast<T>((sizeof(T) == 4 ? -104.0 : -1000.0))); + const V kLn2Over2 = Set(d, static_cast<T>(+0.346573590279972654708616)); + const V kNegOne = Set(d, static_cast<T>(-1.0)); + const V kNegZero = Set(d, static_cast<T>(-0.0)); + const V kOne = Set(d, static_cast<T>(+1.0)); + const V kOneOverLog2 = Set(d, static_cast<T>(+1.442695040888963407359924681)); + + impl::ExpImpl<T> impl; + + // q = static_cast<int32>((x / log(2)) + ((x < 0) ? -0.5 : +0.5)) + const auto q = + impl.ToInt32(d, MulAdd(x, kOneOverLog2, Or(kHalf, And(x, kNegZero)))); + + // Reduce, approximate, and then reconstruct. + const V y = impl.ExpPoly(d, impl.ExpReduce(d, x, q)); + const V z = IfThenElse(Lt(Abs(x), kLn2Over2), y, + Sub(impl.LoadExpShortRange(d, Add(y, kOne), q), kOne)); + return IfThenElse(Lt(x, kLowerBound), kNegOne, z); +} + +template <class D, class V> +HWY_INLINE V Log(const D d, V x) { + return impl::Log<D, V, /*kAllowSubnormals=*/true>(d, x); +} + +template <class D, class V> +HWY_INLINE V Log10(const D d, V x) { + using T = TFromD<D>; + return Mul(Log(d, x), Set(d, static_cast<T>(0.4342944819032518276511))); +} + +template <class D, class V> +HWY_INLINE V Log1p(const D d, V x) { + using T = TFromD<D>; + const V kOne = Set(d, static_cast<T>(+1.0)); + + const V y = Add(x, kOne); + const auto is_pole = Eq(y, kOne); + const auto divisor = Sub(IfThenZeroElse(is_pole, y), kOne); + const auto non_pole = + Mul(impl::Log<D, V, /*kAllowSubnormals=*/false>(d, y), Div(x, divisor)); + return IfThenElse(is_pole, x, non_pole); +} + +template <class D, class V> +HWY_INLINE V Log2(const D d, V x) { + using T = TFromD<D>; + return Mul(Log(d, x), Set(d, static_cast<T>(1.44269504088896340735992))); +} + +template <class D, class V> +HWY_INLINE V Sin(const D d, V x) { + using T = TFromD<D>; + impl::CosSinImpl<T> impl; + + // Float Constants + const V kOneOverPi = Set(d, static_cast<T>(0.31830988618379067153)); + const V kHalf = Set(d, static_cast<T>(0.5)); + + // Integer Constants + const Rebind<int32_t, D> di32; + using VI32 = decltype(Zero(di32)); + + const V abs_x = Abs(x); + const V sign_x = Xor(abs_x, x); + + // Compute the quadrant, q = int((|x| / pi) + 0.5) + const VI32 q = impl.ToInt32(d, MulAdd(abs_x, kOneOverPi, kHalf)); + + // Reduce range, apply sign, and approximate. + return impl.Poly(d, Xor(impl.SinReduce(d, abs_x, q), + Xor(impl.SinSignFromQuadrant(d, q), sign_x))); +} + +template <class D, class V> +HWY_INLINE V Sinh(const D d, V x) { + using T = TFromD<D>; + const V kHalf = Set(d, static_cast<T>(+0.5)); + const V kOne = Set(d, static_cast<T>(+1.0)); + const V kTwo = Set(d, static_cast<T>(+2.0)); + + const V sign = And(SignBit(d), x); // Extract the sign bit + const V abs_x = Xor(x, sign); + const V y = Expm1(d, abs_x); + const V z = Mul(Div(Add(y, kTwo), Add(y, kOne)), Mul(y, kHalf)); + return Xor(z, sign); // Reapply the sign bit +} + +template <class D, class V> +HWY_INLINE V Tanh(const D d, V x) { + using T = TFromD<D>; + const V kLimit = Set(d, static_cast<T>(18.714973875)); + const V kOne = Set(d, static_cast<T>(+1.0)); + const V kTwo = Set(d, static_cast<T>(+2.0)); + + const V sign = And(SignBit(d), x); // Extract the sign bit + const V abs_x = Xor(x, sign); + const V y = Expm1(d, Mul(abs_x, kTwo)); + const V z = IfThenElse(Gt(abs_x, kLimit), kOne, Div(y, Add(y, kTwo))); + return Xor(z, sign); // Reapply the sign bit +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#endif // HIGHWAY_HWY_CONTRIB_MATH_MATH_INL_H_ diff --git a/third_party/highway/hwy/contrib/math/math_test.cc b/third_party/highway/hwy/contrib/math/math_test.cc new file mode 100644 index 0000000000..2cc58c6106 --- /dev/null +++ b/third_party/highway/hwy/contrib/math/math_test.cc @@ -0,0 +1,228 @@ +// Copyright 2020 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#ifndef __STDC_FORMAT_MACROS +#define __STDC_FORMAT_MACROS // before inttypes.h +#endif +#include <inttypes.h> +#include <stdio.h> + +#include <cfloat> // FLT_MAX +#include <cmath> // std::abs +#include <type_traits> + +// clang-format off +#undef HWY_TARGET_INCLUDE +#define HWY_TARGET_INCLUDE "hwy/contrib/math/math_test.cc" +#include "hwy/foreach_target.h" // IWYU pragma: keep + +#include "hwy/contrib/math/math-inl.h" +#include "hwy/tests/test_util-inl.h" +// clang-format on + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +template <class Out, class In> +inline Out BitCast(const In& in) { + static_assert(sizeof(Out) == sizeof(In), ""); + Out out; + CopyBytes<sizeof(out)>(&in, &out); + return out; +} + +template <class T, class D> +HWY_NOINLINE void TestMath(const std::string name, T (*fx1)(T), + Vec<D> (*fxN)(D, VecArg<Vec<D>>), D d, T min, T max, + uint64_t max_error_ulp) { + using UintT = MakeUnsigned<T>; + + const UintT min_bits = BitCast<UintT>(min); + const UintT max_bits = BitCast<UintT>(max); + + // If min is negative and max is positive, the range needs to be broken into + // two pieces, [+0, max] and [-0, min], otherwise [min, max]. + int range_count = 1; + UintT ranges[2][2] = {{min_bits, max_bits}, {0, 0}}; + if ((min < 0.0) && (max > 0.0)) { + ranges[0][0] = BitCast<UintT>(static_cast<T>(+0.0)); + ranges[0][1] = max_bits; + ranges[1][0] = BitCast<UintT>(static_cast<T>(-0.0)); + ranges[1][1] = min_bits; + range_count = 2; + } + + uint64_t max_ulp = 0; + // Emulation is slower, so cannot afford as many. + constexpr UintT kSamplesPerRange = static_cast<UintT>(AdjustedReps(4000)); + for (int range_index = 0; range_index < range_count; ++range_index) { + const UintT start = ranges[range_index][0]; + const UintT stop = ranges[range_index][1]; + const UintT step = HWY_MAX(1, ((stop - start) / kSamplesPerRange)); + for (UintT value_bits = start; value_bits <= stop; value_bits += step) { + // For reasons unknown, the HWY_MAX is necessary on RVV, otherwise + // value_bits can be less than start, and thus possibly NaN. + const T value = BitCast<T>(HWY_MIN(HWY_MAX(start, value_bits), stop)); + const T actual = GetLane(fxN(d, Set(d, value))); + const T expected = fx1(value); + + // Skip small inputs and outputs on armv7, it flushes subnormals to zero. +#if HWY_TARGET == HWY_NEON && HWY_ARCH_ARM_V7 + if ((std::abs(value) < 1e-37f) || (std::abs(expected) < 1e-37f)) { + continue; + } +#endif + + const auto ulp = hwy::detail::ComputeUlpDelta(actual, expected); + max_ulp = HWY_MAX(max_ulp, ulp); + if (ulp > max_error_ulp) { + fprintf(stderr, + "%s: %s(%f) expected %f actual %f ulp %" PRIu64 " max ulp %u\n", + hwy::TypeName(T(), Lanes(d)).c_str(), name.c_str(), value, + expected, actual, static_cast<uint64_t>(ulp), + static_cast<uint32_t>(max_error_ulp)); + } + } + } + fprintf(stderr, "%s: %s max_ulp %" PRIu64 "\n", + hwy::TypeName(T(), Lanes(d)).c_str(), name.c_str(), max_ulp); + HWY_ASSERT(max_ulp <= max_error_ulp); +} + +#define DEFINE_MATH_TEST_FUNC(NAME) \ + HWY_NOINLINE void TestAll##NAME() { \ + ForFloatTypes(ForPartialVectors<Test##NAME>()); \ + } + +#undef DEFINE_MATH_TEST +#define DEFINE_MATH_TEST(NAME, F32x1, F32xN, F32_MIN, F32_MAX, F32_ERROR, \ + F64x1, F64xN, F64_MIN, F64_MAX, F64_ERROR) \ + struct Test##NAME { \ + template <class T, class D> \ + HWY_NOINLINE void operator()(T, D d) { \ + if (sizeof(T) == 4) { \ + TestMath<T, D>(HWY_STR(NAME), F32x1, F32xN, d, F32_MIN, F32_MAX, \ + F32_ERROR); \ + } else { \ + TestMath<T, D>(HWY_STR(NAME), F64x1, F64xN, d, \ + static_cast<T>(F64_MIN), static_cast<T>(F64_MAX), \ + F64_ERROR); \ + } \ + } \ + }; \ + DEFINE_MATH_TEST_FUNC(NAME) + +// Floating point values closest to but less than 1.0 +const float kNearOneF = BitCast<float>(0x3F7FFFFF); +const double kNearOneD = BitCast<double>(0x3FEFFFFFFFFFFFFFULL); + +// The discrepancy is unacceptably large for MSYS2 (less accurate libm?), so +// only increase the error tolerance there. +constexpr uint64_t Cos64ULP() { +#if defined(__MINGW32__) + return 23; +#else + return 3; +#endif +} + +constexpr uint64_t ACosh32ULP() { +#if defined(__MINGW32__) + return 8; +#else + return 3; +#endif +} + +// clang-format off +DEFINE_MATH_TEST(Acos, + std::acos, CallAcos, -1.0f, +1.0f, 3, // NEON is 3 instead of 2 + std::acos, CallAcos, -1.0, +1.0, 2) +DEFINE_MATH_TEST(Acosh, + std::acosh, CallAcosh, +1.0f, +FLT_MAX, ACosh32ULP(), + std::acosh, CallAcosh, +1.0, +DBL_MAX, 3) +DEFINE_MATH_TEST(Asin, + std::asin, CallAsin, -1.0f, +1.0f, 4, // ARMv7 is 4 instead of 2 + std::asin, CallAsin, -1.0, +1.0, 2) +DEFINE_MATH_TEST(Asinh, + std::asinh, CallAsinh, -FLT_MAX, +FLT_MAX, 3, + std::asinh, CallAsinh, -DBL_MAX, +DBL_MAX, 3) +DEFINE_MATH_TEST(Atan, + std::atan, CallAtan, -FLT_MAX, +FLT_MAX, 3, + std::atan, CallAtan, -DBL_MAX, +DBL_MAX, 3) +DEFINE_MATH_TEST(Atanh, + std::atanh, CallAtanh, -kNearOneF, +kNearOneF, 4, // NEON is 4 instead of 3 + std::atanh, CallAtanh, -kNearOneD, +kNearOneD, 3) +DEFINE_MATH_TEST(Cos, + std::cos, CallCos, -39000.0f, +39000.0f, 3, + std::cos, CallCos, -39000.0, +39000.0, Cos64ULP()) +DEFINE_MATH_TEST(Exp, + std::exp, CallExp, -FLT_MAX, +104.0f, 1, + std::exp, CallExp, -DBL_MAX, +104.0, 1) +DEFINE_MATH_TEST(Expm1, + std::expm1, CallExpm1, -FLT_MAX, +104.0f, 4, + std::expm1, CallExpm1, -DBL_MAX, +104.0, 4) +DEFINE_MATH_TEST(Log, + std::log, CallLog, +FLT_MIN, +FLT_MAX, 1, + std::log, CallLog, +DBL_MIN, +DBL_MAX, 1) +DEFINE_MATH_TEST(Log10, + std::log10, CallLog10, +FLT_MIN, +FLT_MAX, 2, + std::log10, CallLog10, +DBL_MIN, +DBL_MAX, 2) +DEFINE_MATH_TEST(Log1p, + std::log1p, CallLog1p, +0.0f, +1e37f, 3, // NEON is 3 instead of 2 + std::log1p, CallLog1p, +0.0, +DBL_MAX, 2) +DEFINE_MATH_TEST(Log2, + std::log2, CallLog2, +FLT_MIN, +FLT_MAX, 2, + std::log2, CallLog2, +DBL_MIN, +DBL_MAX, 2) +DEFINE_MATH_TEST(Sin, + std::sin, CallSin, -39000.0f, +39000.0f, 3, + std::sin, CallSin, -39000.0, +39000.0, 4) // MSYS is 4 instead of 3 +DEFINE_MATH_TEST(Sinh, + std::sinh, CallSinh, -80.0f, +80.0f, 4, + std::sinh, CallSinh, -709.0, +709.0, 4) +DEFINE_MATH_TEST(Tanh, + std::tanh, CallTanh, -FLT_MAX, +FLT_MAX, 4, + std::tanh, CallTanh, -DBL_MAX, +DBL_MAX, 4) +// clang-format on + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE + +namespace hwy { +HWY_BEFORE_TEST(HwyMathTest); +HWY_EXPORT_AND_TEST_P(HwyMathTest, TestAllAcos); +HWY_EXPORT_AND_TEST_P(HwyMathTest, TestAllAcosh); +HWY_EXPORT_AND_TEST_P(HwyMathTest, TestAllAsin); +HWY_EXPORT_AND_TEST_P(HwyMathTest, TestAllAsinh); +HWY_EXPORT_AND_TEST_P(HwyMathTest, TestAllAtan); +HWY_EXPORT_AND_TEST_P(HwyMathTest, TestAllAtanh); +HWY_EXPORT_AND_TEST_P(HwyMathTest, TestAllCos); +HWY_EXPORT_AND_TEST_P(HwyMathTest, TestAllExp); +HWY_EXPORT_AND_TEST_P(HwyMathTest, TestAllExpm1); +HWY_EXPORT_AND_TEST_P(HwyMathTest, TestAllLog); +HWY_EXPORT_AND_TEST_P(HwyMathTest, TestAllLog10); +HWY_EXPORT_AND_TEST_P(HwyMathTest, TestAllLog1p); +HWY_EXPORT_AND_TEST_P(HwyMathTest, TestAllLog2); +HWY_EXPORT_AND_TEST_P(HwyMathTest, TestAllSin); +HWY_EXPORT_AND_TEST_P(HwyMathTest, TestAllSinh); +HWY_EXPORT_AND_TEST_P(HwyMathTest, TestAllTanh); +} // namespace hwy + +#endif diff --git a/third_party/highway/hwy/contrib/sort/BUILD b/third_party/highway/hwy/contrib/sort/BUILD new file mode 100644 index 0000000000..af4ed78837 --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/BUILD @@ -0,0 +1,193 @@ +package( + default_applicable_licenses = ["//:license"], + default_visibility = ["//visibility:public"], +) + +licenses(["notice"]) + +# Unused on Bazel builds, where this is not defined/known; Copybara replaces +# usages with an empty list. +COMPAT = [ + "//buildenv/target:non_prod", # includes mobile/vendor. +] + +# cc_library( +# name = "vxsort", +# srcs = [ +# "vxsort/isa_detection.cpp", +# "vxsort/isa_detection_msvc.cpp", +# "vxsort/isa_detection_sane.cpp", +# "vxsort/machine_traits.avx2.cpp", +# "vxsort/smallsort/avx2_load_mask_tables.cpp", +# "vxsort/smallsort/bitonic_sort.AVX2.double.generated.cpp", +# "vxsort/smallsort/bitonic_sort.AVX2.float.generated.cpp", +# "vxsort/smallsort/bitonic_sort.AVX2.int32_t.generated.cpp", +# "vxsort/smallsort/bitonic_sort.AVX2.int64_t.generated.cpp", +# "vxsort/smallsort/bitonic_sort.AVX2.uint32_t.generated.cpp", +# "vxsort/smallsort/bitonic_sort.AVX2.uint64_t.generated.cpp", +# "vxsort/smallsort/bitonic_sort.AVX512.double.generated.cpp", +# "vxsort/smallsort/bitonic_sort.AVX512.float.generated.cpp", +# "vxsort/smallsort/bitonic_sort.AVX512.int32_t.generated.cpp", +# "vxsort/smallsort/bitonic_sort.AVX512.int64_t.generated.cpp", +# "vxsort/smallsort/bitonic_sort.AVX512.uint32_t.generated.cpp", +# "vxsort/smallsort/bitonic_sort.AVX512.uint64_t.generated.cpp", +# "vxsort/vxsort_stats.cpp", +# ], +# hdrs = [ +# "vxsort/alignment.h", +# "vxsort/defs.h", +# "vxsort/isa_detection.h", +# "vxsort/machine_traits.avx2.h", +# "vxsort/machine_traits.avx512.h", +# "vxsort/machine_traits.h", +# "vxsort/packer.h", +# "vxsort/smallsort/bitonic_sort.AVX2.double.generated.h", +# "vxsort/smallsort/bitonic_sort.AVX2.float.generated.h", +# "vxsort/smallsort/bitonic_sort.AVX2.int32_t.generated.h", +# "vxsort/smallsort/bitonic_sort.AVX2.int64_t.generated.h", +# "vxsort/smallsort/bitonic_sort.AVX2.uint32_t.generated.h", +# "vxsort/smallsort/bitonic_sort.AVX2.uint64_t.generated.h", +# "vxsort/smallsort/bitonic_sort.AVX512.double.generated.h", +# "vxsort/smallsort/bitonic_sort.AVX512.float.generated.h", +# "vxsort/smallsort/bitonic_sort.AVX512.int32_t.generated.h", +# "vxsort/smallsort/bitonic_sort.AVX512.int64_t.generated.h", +# "vxsort/smallsort/bitonic_sort.AVX512.uint32_t.generated.h", +# "vxsort/smallsort/bitonic_sort.AVX512.uint64_t.generated.h", +# "vxsort/smallsort/bitonic_sort.h", +# "vxsort/vxsort.h", +# "vxsort/vxsort_stats.h", +# ], +# compatible_with = [], +# textual_hdrs = [ +# "vxsort/vxsort_targets_disable.h", +# "vxsort/vxsort_targets_enable_avx2.h", +# "vxsort/vxsort_targets_enable_avx512.h", +# ], +# ) + +cc_library( + name = "vqsort", + srcs = [ + # Split into separate files to reduce MSVC build time. + "vqsort.cc", + "vqsort_128a.cc", + "vqsort_128d.cc", + "vqsort_f32a.cc", + "vqsort_f32d.cc", + "vqsort_f64a.cc", + "vqsort_f64d.cc", + "vqsort_i16a.cc", + "vqsort_i16d.cc", + "vqsort_i32a.cc", + "vqsort_i32d.cc", + "vqsort_i64a.cc", + "vqsort_i64d.cc", + "vqsort_kv64a.cc", + "vqsort_kv64d.cc", + "vqsort_kv128a.cc", + "vqsort_kv128d.cc", + "vqsort_u16a.cc", + "vqsort_u16d.cc", + "vqsort_u32a.cc", + "vqsort_u32d.cc", + "vqsort_u64a.cc", + "vqsort_u64d.cc", + ], + hdrs = [ + "vqsort.h", # public interface + ], + compatible_with = [], + local_defines = ["hwy_contrib_EXPORTS"], + textual_hdrs = [ + "shared-inl.h", + "sorting_networks-inl.h", + "traits-inl.h", + "traits128-inl.h", + "vqsort-inl.h", + # Placeholder for internal instrumentation. Do not remove. + ], + deps = [ + # Only if VQSORT_SECURE_RNG is set. + # "//third_party/absl/random", + "//:hwy", + # ":vxsort", # required if HAVE_VXSORT + ], +) + +# ----------------------------------------------------------------------------- +# Internal-only targets + +cc_library( + name = "helpers", + testonly = 1, + textual_hdrs = [ + "algo-inl.h", + "result-inl.h", + ], + deps = [ + ":vqsort", + "//:nanobenchmark", + # Required for HAVE_PDQSORT, but that is unused and this is + # unavailable to Bazel builds, hence commented out. + # "//third_party/boost/allowed", + # Avoid ips4o and thus TBB to work around hwloc build failure. + ], +) + +cc_binary( + name = "print_network", + testonly = 1, + srcs = ["print_network.cc"], + deps = [ + ":helpers", + ":vqsort", + "//:hwy", + ], +) + +cc_test( + name = "sort_test", + size = "medium", + srcs = ["sort_test.cc"], + # Do not enable fully_static_link (pthread crash on bazel) + local_defines = ["HWY_IS_TEST"], + # for test_suite. + tags = ["hwy_ops_test"], + deps = [ + ":helpers", + ":vqsort", + "@com_google_googletest//:gtest_main", + "//:hwy", + "//:hwy_test_util", + ], +) + +cc_binary( + name = "bench_sort", + testonly = 1, + srcs = ["bench_sort.cc"], + # Do not enable fully_static_link (pthread crash on bazel) + local_defines = ["HWY_IS_TEST"], + deps = [ + ":helpers", + ":vqsort", + "@com_google_googletest//:gtest_main", + "//:hwy", + "//:hwy_test_util", + ], +) + +cc_binary( + name = "bench_parallel", + testonly = 1, + srcs = ["bench_parallel.cc"], + # Do not enable fully_static_link (pthread crash on bazel) + local_defines = ["HWY_IS_TEST"], + deps = [ + ":helpers", + ":vqsort", + "@com_google_googletest//:gtest_main", + "//:hwy", + "//:hwy_test_util", + ], +) diff --git a/third_party/highway/hwy/contrib/sort/README.md b/third_party/highway/hwy/contrib/sort/README.md new file mode 100644 index 0000000000..a0051414d3 --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/README.md @@ -0,0 +1,87 @@ +# Vectorized and performance-portable Quicksort + +## Introduction + +As of 2022-06-07 this sorts large arrays of built-in types about ten times as +fast as `std::sort`. See also our +[blog post](https://opensource.googleblog.com/2022/06/Vectorized%20and%20performance%20portable%20Quicksort.html) +and [paper](https://arxiv.org/abs/2205.05982). + +## Instructions + +Here are instructions for reproducing our results on Linux and AWS (SVE, NEON). + +### Linux + +Please first ensure golang, and Clang (tested with 13.0.1) are installed via +your system's package manager. + +``` +go install github.com/bazelbuild/bazelisk@latest +git clone https://github.com/google/highway +cd highway +CC=clang CXX=clang++ ~/go/bin/bazelisk build -c opt hwy/contrib/sort:all +bazel-bin/hwy/contrib/sort/sort_test +bazel-bin/hwy/contrib/sort/bench_sort +``` + +### AWS Graviton3 + +Instance config: amazon linux 5.10 arm64, c7g.8xlarge (largest allowed config is +32 vCPU). Initial launch will fail. Wait a few minutes for an email saying the +config is verified, then re-launch. See IPv4 hostname in list of instances. + +`ssh -i /path/key.pem ec2-user@hostname` + +Note that the AWS CMake package is too old for llvm, so we build it first: +``` +wget https://cmake.org/files/v3.23/cmake-3.23.2.tar.gz +tar -xvzf cmake-3.23.2.tar.gz && cd cmake-3.23.2/ +./bootstrap -- -DCMAKE_USE_OPENSSL=OFF +make -j8 && sudo make install +cd .. +``` + +AWS clang is at version 11.1, which generates unnecessary `AND` instructions +which slow down the sort by 1.15x. We tested with clang trunk as of June 13 +(which reports Git hash 8f6512fea000c3a0d394864bb94e524bee375069). To build: + +``` +git clone --depth 1 https://github.com/llvm/llvm-project.git +cd llvm-project +mkdir -p build && cd build +/usr/local/bin/cmake ../llvm -DLLVM_ENABLE_PROJECTS="clang" -DLLVM_ENABLE_RUNTIMES="libcxx;libcxxabi" -DCMAKE_BUILD_TYPE=Release +make -j32 && sudo make install +``` + +``` +sudo yum install go +go install github.com/bazelbuild/bazelisk@latest +git clone https://github.com/google/highway +cd highway +CC=/usr/local/bin/clang CXX=/usr/local/bin/clang++ ~/go/bin/bazelisk build -c opt --copt=-march=armv8.2-a+sve hwy/contrib/sort:all +bazel-bin/hwy/contrib/sort/sort_test +bazel-bin/hwy/contrib/sort/bench_sort +``` + +The above command line enables SVE, which is currently only available on +Graviton 3. You can also test NEON on the same processor, or other Arm CPUs, by +changing the `-march=` option to `--copt=-march=armv8.2-a+crypto`. Note that +such flags will be unnecessary once Clang supports `#pragma target` for NEON and +SVE intrinsics, as it does for x86. + +## Results + +`bench_sort` outputs the instruction set (AVX3 refers to AVX-512), the sort +algorithm (std for `std::sort`, vq for our vqsort), the type of keys being +sorted (f32 is float), the distribution of keys (uniform32 for uniform random +with range 0-2^32), the number of keys, then the throughput of sorted keys (i.e. +number of key bytes output per second). + +Example excerpt from Xeon 6154 (Skylake-X) CPU clocked at 3 GHz: + +``` +[ RUN ] BenchSortGroup/BenchSort.BenchAllSort/AVX3 + AVX3: std: f32: uniform32: 1.00E+06 54 MB/s ( 1 threads) + AVX3: vq: f32: uniform32: 1.00E+06 1143 MB/s ( 1 threads) +``` diff --git a/third_party/highway/hwy/contrib/sort/algo-inl.h b/third_party/highway/hwy/contrib/sort/algo-inl.h new file mode 100644 index 0000000000..1ebbbd5745 --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/algo-inl.h @@ -0,0 +1,513 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +// Normal include guard for target-independent parts +#ifndef HIGHWAY_HWY_CONTRIB_SORT_ALGO_INL_H_ +#define HIGHWAY_HWY_CONTRIB_SORT_ALGO_INL_H_ + +#include <stdint.h> +#include <string.h> // memcpy + +#include <algorithm> // std::sort, std::min, std::max +#include <functional> // std::less, std::greater +#include <thread> // NOLINT +#include <vector> + +#include "hwy/base.h" +#include "hwy/contrib/sort/vqsort.h" + +// Third-party algorithms +#define HAVE_AVX2SORT 0 +#define HAVE_IPS4O 0 +// When enabling, consider changing max_threads (required for Table 1a) +#define HAVE_PARALLEL_IPS4O (HAVE_IPS4O && 1) +#define HAVE_PDQSORT 0 +#define HAVE_SORT512 0 +#define HAVE_VXSORT 0 + +#if HAVE_AVX2SORT +HWY_PUSH_ATTRIBUTES("avx2,avx") +#include "avx2sort.h" //NOLINT +HWY_POP_ATTRIBUTES +#endif +#if HAVE_IPS4O || HAVE_PARALLEL_IPS4O +#include "third_party/ips4o/include/ips4o.hpp" +#include "third_party/ips4o/include/ips4o/thread_pool.hpp" +#endif +#if HAVE_PDQSORT +#include "third_party/boost/allowed/sort/sort.hpp" +#endif +#if HAVE_SORT512 +#include "sort512.h" //NOLINT +#endif + +// vxsort is difficult to compile for multiple targets because it also uses +// .cpp files, and we'd also have to #undef its include guards. Instead, compile +// only for AVX2 or AVX3 depending on this macro. +#define VXSORT_AVX3 1 +#if HAVE_VXSORT +// inlined from vxsort_targets_enable_avx512 (must close before end of header) +#ifdef __GNUC__ +#ifdef __clang__ +#if VXSORT_AVX3 +#pragma clang attribute push(__attribute__((target("avx512f,avx512dq"))), \ + apply_to = any(function)) +#else +#pragma clang attribute push(__attribute__((target("avx2"))), \ + apply_to = any(function)) +#endif // VXSORT_AVX3 + +#else +#pragma GCC push_options +#if VXSORT_AVX3 +#pragma GCC target("avx512f,avx512dq") +#else +#pragma GCC target("avx2") +#endif // VXSORT_AVX3 +#endif +#endif + +#if VXSORT_AVX3 +#include "vxsort/machine_traits.avx512.h" +#else +#include "vxsort/machine_traits.avx2.h" +#endif // VXSORT_AVX3 +#include "vxsort/vxsort.h" +#ifdef __GNUC__ +#ifdef __clang__ +#pragma clang attribute pop +#else +#pragma GCC pop_options +#endif +#endif +#endif // HAVE_VXSORT + +namespace hwy { + +enum class Dist { kUniform8, kUniform16, kUniform32 }; + +static inline std::vector<Dist> AllDist() { + return {/*Dist::kUniform8, Dist::kUniform16,*/ Dist::kUniform32}; +} + +static inline const char* DistName(Dist dist) { + switch (dist) { + case Dist::kUniform8: + return "uniform8"; + case Dist::kUniform16: + return "uniform16"; + case Dist::kUniform32: + return "uniform32"; + } + return "unreachable"; +} + +template <typename T> +class InputStats { + public: + void Notify(T value) { + min_ = std::min(min_, value); + max_ = std::max(max_, value); + // Converting to integer would truncate floats, multiplying to save digits + // risks overflow especially when casting, so instead take the sum of the + // bit representations as the checksum. + uint64_t bits = 0; + static_assert(sizeof(T) <= 8, "Expected a built-in type"); + CopyBytes<sizeof(T)>(&value, &bits); // not same size + sum_ += bits; + count_ += 1; + } + + bool operator==(const InputStats& other) const { + if (count_ != other.count_) { + HWY_ABORT("count %d vs %d\n", static_cast<int>(count_), + static_cast<int>(other.count_)); + } + + if (min_ != other.min_ || max_ != other.max_) { + HWY_ABORT("minmax %f/%f vs %f/%f\n", static_cast<double>(min_), + static_cast<double>(max_), static_cast<double>(other.min_), + static_cast<double>(other.max_)); + } + + // Sum helps detect duplicated/lost values + if (sum_ != other.sum_) { + HWY_ABORT("Sum mismatch %g %g; min %g max %g\n", + static_cast<double>(sum_), static_cast<double>(other.sum_), + static_cast<double>(min_), static_cast<double>(max_)); + } + + return true; + } + + private: + T min_ = hwy::HighestValue<T>(); + T max_ = hwy::LowestValue<T>(); + uint64_t sum_ = 0; + size_t count_ = 0; +}; + +enum class Algo { +#if HAVE_AVX2SORT + kSEA, +#endif +#if HAVE_IPS4O + kIPS4O, +#endif +#if HAVE_PARALLEL_IPS4O + kParallelIPS4O, +#endif +#if HAVE_PDQSORT + kPDQ, +#endif +#if HAVE_SORT512 + kSort512, +#endif +#if HAVE_VXSORT + kVXSort, +#endif + kStd, + kVQSort, + kHeap, +}; + +static inline const char* AlgoName(Algo algo) { + switch (algo) { +#if HAVE_AVX2SORT + case Algo::kSEA: + return "sea"; +#endif +#if HAVE_IPS4O + case Algo::kIPS4O: + return "ips4o"; +#endif +#if HAVE_PARALLEL_IPS4O + case Algo::kParallelIPS4O: + return "par_ips4o"; +#endif +#if HAVE_PDQSORT + case Algo::kPDQ: + return "pdq"; +#endif +#if HAVE_SORT512 + case Algo::kSort512: + return "sort512"; +#endif +#if HAVE_VXSORT + case Algo::kVXSort: + return "vxsort"; +#endif + case Algo::kStd: + return "std"; + case Algo::kVQSort: + return "vq"; + case Algo::kHeap: + return "heap"; + } + return "unreachable"; +} + +} // namespace hwy +#endif // HIGHWAY_HWY_CONTRIB_SORT_ALGO_INL_H_ + +// Per-target +#if defined(HIGHWAY_HWY_CONTRIB_SORT_ALGO_TOGGLE) == \ + defined(HWY_TARGET_TOGGLE) +#ifdef HIGHWAY_HWY_CONTRIB_SORT_ALGO_TOGGLE +#undef HIGHWAY_HWY_CONTRIB_SORT_ALGO_TOGGLE +#else +#define HIGHWAY_HWY_CONTRIB_SORT_ALGO_TOGGLE +#endif + +#include "hwy/contrib/sort/traits-inl.h" +#include "hwy/contrib/sort/traits128-inl.h" +#include "hwy/contrib/sort/vqsort-inl.h" // HeapSort +#include "hwy/tests/test_util-inl.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +class Xorshift128Plus { + static HWY_INLINE uint64_t SplitMix64(uint64_t z) { + z = (z ^ (z >> 30)) * 0xBF58476D1CE4E5B9ull; + z = (z ^ (z >> 27)) * 0x94D049BB133111EBull; + return z ^ (z >> 31); + } + + public: + // Generates two vectors of 64-bit seeds via SplitMix64 and stores into + // `seeds`. Generating these afresh in each ChoosePivot is too expensive. + template <class DU64> + static void GenerateSeeds(DU64 du64, TFromD<DU64>* HWY_RESTRICT seeds) { + seeds[0] = SplitMix64(0x9E3779B97F4A7C15ull); + for (size_t i = 1; i < 2 * Lanes(du64); ++i) { + seeds[i] = SplitMix64(seeds[i - 1]); + } + } + + // Need to pass in the state because vector cannot be class members. + template <class VU64> + static VU64 RandomBits(VU64& state0, VU64& state1) { + VU64 s1 = state0; + VU64 s0 = state1; + const VU64 bits = Add(s1, s0); + state0 = s0; + s1 = Xor(s1, ShiftLeft<23>(s1)); + state1 = Xor(s1, Xor(s0, Xor(ShiftRight<18>(s1), ShiftRight<5>(s0)))); + return bits; + } +}; + +template <class D, class VU64, HWY_IF_NOT_FLOAT_D(D)> +Vec<D> RandomValues(D d, VU64& s0, VU64& s1, const VU64 mask) { + const VU64 bits = Xorshift128Plus::RandomBits(s0, s1); + return BitCast(d, And(bits, mask)); +} + +// It is important to avoid denormals, which are flushed to zero by SIMD but not +// scalar sorts, and NaN, which may be ordered differently in scalar vs. SIMD. +template <class DF, class VU64, HWY_IF_FLOAT_D(DF)> +Vec<DF> RandomValues(DF df, VU64& s0, VU64& s1, const VU64 mask) { + using TF = TFromD<DF>; + const RebindToUnsigned<decltype(df)> du; + using VU = Vec<decltype(du)>; + + const VU64 bits64 = And(Xorshift128Plus::RandomBits(s0, s1), mask); + +#if HWY_TARGET == HWY_SCALAR // Cannot repartition u64 to smaller types + using TU = MakeUnsigned<TF>; + const VU bits = Set(du, static_cast<TU>(GetLane(bits64) & LimitsMax<TU>())); +#else + const VU bits = BitCast(du, bits64); +#endif + // Avoid NaN/denormal by only generating values in [1, 2), i.e. random + // mantissas with the exponent taken from the representation of 1.0. + const VU k1 = BitCast(du, Set(df, TF{1.0})); + const VU mantissa_mask = Set(du, MantissaMask<TF>()); + const VU representation = OrAnd(k1, bits, mantissa_mask); + return BitCast(df, representation); +} + +template <class DU64> +Vec<DU64> MaskForDist(DU64 du64, const Dist dist, size_t sizeof_t) { + switch (sizeof_t) { + case 2: + return Set(du64, (dist == Dist::kUniform8) ? 0x00FF00FF00FF00FFull + : 0xFFFFFFFFFFFFFFFFull); + case 4: + return Set(du64, (dist == Dist::kUniform8) ? 0x000000FF000000FFull + : (dist == Dist::kUniform16) ? 0x0000FFFF0000FFFFull + : 0xFFFFFFFFFFFFFFFFull); + case 8: + return Set(du64, (dist == Dist::kUniform8) ? 0x00000000000000FFull + : (dist == Dist::kUniform16) ? 0x000000000000FFFFull + : 0x00000000FFFFFFFFull); + default: + HWY_ABORT("Logic error"); + return Zero(du64); + } +} + +template <typename T> +InputStats<T> GenerateInput(const Dist dist, T* v, size_t num) { + SortTag<uint64_t> du64; + using VU64 = Vec<decltype(du64)>; + const size_t N64 = Lanes(du64); + auto seeds = hwy::AllocateAligned<uint64_t>(2 * N64); + Xorshift128Plus::GenerateSeeds(du64, seeds.get()); + VU64 s0 = Load(du64, seeds.get()); + VU64 s1 = Load(du64, seeds.get() + N64); + +#if HWY_TARGET == HWY_SCALAR + const Sisd<T> d; +#else + const Repartition<T, decltype(du64)> d; +#endif + using V = Vec<decltype(d)>; + const size_t N = Lanes(d); + const VU64 mask = MaskForDist(du64, dist, sizeof(T)); + auto buf = hwy::AllocateAligned<T>(N); + + size_t i = 0; + for (; i + N <= num; i += N) { + const V values = RandomValues(d, s0, s1, mask); + StoreU(values, d, v + i); + } + if (i < num) { + const V values = RandomValues(d, s0, s1, mask); + StoreU(values, d, buf.get()); + memcpy(v + i, buf.get(), (num - i) * sizeof(T)); + } + + InputStats<T> input_stats; + for (size_t i = 0; i < num; ++i) { + input_stats.Notify(v[i]); + } + return input_stats; +} + +struct ThreadLocal { + Sorter sorter; +}; + +struct SharedState { +#if HAVE_PARALLEL_IPS4O + const unsigned max_threads = hwy::LimitsMax<unsigned>(); // 16 for Table 1a + ips4o::StdThreadPool pool{static_cast<int>( + HWY_MIN(max_threads, std::thread::hardware_concurrency() / 2))}; +#endif + std::vector<ThreadLocal> tls{1}; +}; + +// Bridge from keys (passed to Run) to lanes as expected by HeapSort. For +// non-128-bit keys they are the same: +template <class Order, typename KeyType, HWY_IF_NOT_LANE_SIZE(KeyType, 16)> +void CallHeapSort(KeyType* HWY_RESTRICT keys, const size_t num_keys) { + using detail::TraitsLane; + using detail::SharedTraits; + if (Order().IsAscending()) { + const SharedTraits<TraitsLane<detail::OrderAscending<KeyType>>> st; + return detail::HeapSort(st, keys, num_keys); + } else { + const SharedTraits<TraitsLane<detail::OrderDescending<KeyType>>> st; + return detail::HeapSort(st, keys, num_keys); + } +} + +#if VQSORT_ENABLED +template <class Order> +void CallHeapSort(hwy::uint128_t* HWY_RESTRICT keys, const size_t num_keys) { + using detail::SharedTraits; + using detail::Traits128; + uint64_t* lanes = reinterpret_cast<uint64_t*>(keys); + const size_t num_lanes = num_keys * 2; + if (Order().IsAscending()) { + const SharedTraits<Traits128<detail::OrderAscending128>> st; + return detail::HeapSort(st, lanes, num_lanes); + } else { + const SharedTraits<Traits128<detail::OrderDescending128>> st; + return detail::HeapSort(st, lanes, num_lanes); + } +} + +template <class Order> +void CallHeapSort(K64V64* HWY_RESTRICT keys, const size_t num_keys) { + using detail::SharedTraits; + using detail::Traits128; + uint64_t* lanes = reinterpret_cast<uint64_t*>(keys); + const size_t num_lanes = num_keys * 2; + if (Order().IsAscending()) { + const SharedTraits<Traits128<detail::OrderAscendingKV128>> st; + return detail::HeapSort(st, lanes, num_lanes); + } else { + const SharedTraits<Traits128<detail::OrderDescendingKV128>> st; + return detail::HeapSort(st, lanes, num_lanes); + } +} +#endif // VQSORT_ENABLED + +template <class Order, typename KeyType> +void Run(Algo algo, KeyType* HWY_RESTRICT inout, size_t num, + SharedState& shared, size_t thread) { + const std::less<KeyType> less; + const std::greater<KeyType> greater; + + switch (algo) { +#if HAVE_AVX2SORT + case Algo::kSEA: + return avx2::quicksort(inout, static_cast<int>(num)); +#endif + +#if HAVE_IPS4O + case Algo::kIPS4O: + if (Order().IsAscending()) { + return ips4o::sort(inout, inout + num, less); + } else { + return ips4o::sort(inout, inout + num, greater); + } +#endif + +#if HAVE_PARALLEL_IPS4O + case Algo::kParallelIPS4O: + if (Order().IsAscending()) { + return ips4o::parallel::sort(inout, inout + num, less, shared.pool); + } else { + return ips4o::parallel::sort(inout, inout + num, greater, shared.pool); + } +#endif + +#if HAVE_SORT512 + case Algo::kSort512: + HWY_ABORT("not supported"); + // return Sort512::Sort(inout, num); +#endif + +#if HAVE_PDQSORT + case Algo::kPDQ: + if (Order().IsAscending()) { + return boost::sort::pdqsort_branchless(inout, inout + num, less); + } else { + return boost::sort::pdqsort_branchless(inout, inout + num, greater); + } +#endif + +#if HAVE_VXSORT + case Algo::kVXSort: { +#if (VXSORT_AVX3 && HWY_TARGET != HWY_AVX3) || \ + (!VXSORT_AVX3 && HWY_TARGET != HWY_AVX2) + fprintf(stderr, "Do not call for target %s\n", + hwy::TargetName(HWY_TARGET)); + return; +#else +#if VXSORT_AVX3 + vxsort::vxsort<KeyType, vxsort::AVX512> vx; +#else + vxsort::vxsort<KeyType, vxsort::AVX2> vx; +#endif + if (Order().IsAscending()) { + return vx.sort(inout, inout + num - 1); + } else { + fprintf(stderr, "Skipping VX - does not support descending order\n"); + return; + } +#endif // enabled for this target + } +#endif // HAVE_VXSORT + + case Algo::kStd: + if (Order().IsAscending()) { + return std::sort(inout, inout + num, less); + } else { + return std::sort(inout, inout + num, greater); + } + + case Algo::kVQSort: + return shared.tls[thread].sorter(inout, num, Order()); + + case Algo::kHeap: + return CallHeapSort<Order>(inout, num); + + default: + HWY_ABORT("Not implemented"); + } +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#endif // HIGHWAY_HWY_CONTRIB_SORT_ALGO_TOGGLE diff --git a/third_party/highway/hwy/contrib/sort/bench_parallel.cc b/third_party/highway/hwy/contrib/sort/bench_parallel.cc new file mode 100644 index 0000000000..1c8c928e21 --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/bench_parallel.cc @@ -0,0 +1,238 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +// Concurrent, independent sorts for generating more memory traffic and testing +// scalability. + +#include <stdint.h> +#include <stdio.h> + +#include <condition_variable> //NOLINT +#include <functional> +#include <memory> +#include <mutex> //NOLINT +#include <thread> //NOLINT +#include <utility> +#include <vector> + +// clang-format off +#undef HWY_TARGET_INCLUDE +#define HWY_TARGET_INCLUDE "hwy/contrib/sort/bench_parallel.cc" //NOLINT +#include "hwy/foreach_target.h" // IWYU pragma: keep + +// After foreach_target +#include "hwy/contrib/sort/algo-inl.h" +#include "hwy/contrib/sort/result-inl.h" +#include "hwy/aligned_allocator.h" +// Last +#include "hwy/tests/test_util-inl.h" +// clang-format on + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { +namespace { + +class ThreadPool { + public: + // Starts the given number of worker threads and blocks until they are ready. + explicit ThreadPool( + const size_t num_threads = std::thread::hardware_concurrency()) + : num_threads_(num_threads) { + HWY_ASSERT(num_threads_ > 0); + threads_.reserve(num_threads_); + for (size_t i = 0; i < num_threads_; ++i) { + threads_.emplace_back(ThreadFunc, this, i); + } + + WorkersReadyBarrier(); + } + + ThreadPool(const ThreadPool&) = delete; + ThreadPool& operator&(const ThreadPool&) = delete; + + // Waits for all threads to exit. + ~ThreadPool() { + StartWorkers(kWorkerExit); + + for (std::thread& thread : threads_) { + thread.join(); + } + } + + size_t NumThreads() const { return threads_.size(); } + + template <class Func> + void RunOnThreads(size_t max_threads, const Func& func) { + task_ = &CallClosure<Func>; + data_ = &func; + StartWorkers(max_threads); + WorkersReadyBarrier(); + } + + private: + // After construction and between calls to Run, workers are "ready", i.e. + // waiting on worker_start_cv_. They are "started" by sending a "command" + // and notifying all worker_start_cv_ waiters. (That is why all workers + // must be ready/waiting - otherwise, the notification will not reach all of + // them and the main thread waits in vain for them to report readiness.) + using WorkerCommand = uint64_t; + + static constexpr WorkerCommand kWorkerWait = ~1ULL; + static constexpr WorkerCommand kWorkerExit = ~2ULL; + + // Calls a closure (lambda with captures). + template <class Closure> + static void CallClosure(const void* f, size_t thread) { + (*reinterpret_cast<const Closure*>(f))(thread); + } + + void WorkersReadyBarrier() { + std::unique_lock<std::mutex> lock(mutex_); + // Typically only a single iteration. + while (workers_ready_ != threads_.size()) { + workers_ready_cv_.wait(lock); + } + workers_ready_ = 0; + + // Safely handle spurious worker wakeups. + worker_start_command_ = kWorkerWait; + } + + // Precondition: all workers are ready. + void StartWorkers(const WorkerCommand worker_command) { + std::unique_lock<std::mutex> lock(mutex_); + worker_start_command_ = worker_command; + // Workers will need this lock, so release it before they wake up. + lock.unlock(); + worker_start_cv_.notify_all(); + } + + static void ThreadFunc(ThreadPool* self, size_t thread) { + // Until kWorkerExit command received: + for (;;) { + std::unique_lock<std::mutex> lock(self->mutex_); + // Notify main thread that this thread is ready. + if (++self->workers_ready_ == self->num_threads_) { + self->workers_ready_cv_.notify_one(); + } + RESUME_WAIT: + // Wait for a command. + self->worker_start_cv_.wait(lock); + const WorkerCommand command = self->worker_start_command_; + switch (command) { + case kWorkerWait: // spurious wakeup: + goto RESUME_WAIT; // lock still held, avoid incrementing ready. + case kWorkerExit: + return; // exits thread + default: + break; + } + + lock.unlock(); + // Command is the maximum number of threads that should run the task. + HWY_ASSERT(command < self->NumThreads()); + if (thread < command) { + self->task_(self->data_, thread); + } + } + } + + const size_t num_threads_; + + // Unmodified after ctor, but cannot be const because we call thread::join(). + std::vector<std::thread> threads_; + + std::mutex mutex_; // guards both cv and their variables. + std::condition_variable workers_ready_cv_; + size_t workers_ready_ = 0; + std::condition_variable worker_start_cv_; + WorkerCommand worker_start_command_; + + // Written by main thread, read by workers (after mutex lock/unlock). + std::function<void(const void*, size_t)> task_; // points to CallClosure + const void* data_; // points to caller's Func +}; + +template <class Traits> +void RunWithoutVerify(Traits st, const Dist dist, const size_t num_keys, + const Algo algo, SharedState& shared, size_t thread) { + using LaneType = typename Traits::LaneType; + using KeyType = typename Traits::KeyType; + using Order = typename Traits::Order; + const size_t num_lanes = num_keys * st.LanesPerKey(); + auto aligned = hwy::AllocateAligned<LaneType>(num_lanes); + + (void)GenerateInput(dist, aligned.get(), num_lanes); + + const Timestamp t0; + Run<Order>(algo, reinterpret_cast<KeyType*>(aligned.get()), num_keys, shared, + thread); + HWY_ASSERT(aligned[0] < aligned[num_lanes - 1]); +} + +void BenchParallel() { + // Not interested in benchmark results for other targets on x86 + if (HWY_ARCH_X86 && (HWY_TARGET != HWY_AVX2 && HWY_TARGET != HWY_AVX3)) { + return; + } + + ThreadPool pool; + const size_t NT = pool.NumThreads(); + + detail::SharedTraits<detail::TraitsLane<detail::OrderAscending<int64_t>>> st; + using KeyType = typename decltype(st)::KeyType; + const size_t num_keys = size_t{100} * 1000 * 1000; + +#if HAVE_IPS4O + const Algo algo = Algo::kIPS4O; +#else + const Algo algo = Algo::kVQSort; +#endif + const Dist dist = Dist::kUniform32; + + SharedState shared; + shared.tls.resize(NT); + + std::vector<Result> results; + for (size_t nt = 1; nt < NT; nt += HWY_MAX(1, NT / 16)) { + Timestamp t0; + // Default capture because MSVC wants algo/dist but clang does not. + pool.RunOnThreads(nt, [=, &shared](size_t thread) { + RunWithoutVerify(st, dist, num_keys, algo, shared, thread); + }); + const double sec = SecondsSince(t0); + results.emplace_back(algo, dist, num_keys, nt, sec, sizeof(KeyType), + st.KeyString()); + results.back().Print(); + } +} + +} // namespace +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE + +namespace hwy { +namespace { +HWY_BEFORE_TEST(BenchParallel); +HWY_EXPORT_AND_TEST_P(BenchParallel, BenchParallel); +} // namespace +} // namespace hwy + +#endif // HWY_ONCE diff --git a/third_party/highway/hwy/contrib/sort/bench_sort.cc b/third_party/highway/hwy/contrib/sort/bench_sort.cc new file mode 100644 index 0000000000..a668fde907 --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/bench_sort.cc @@ -0,0 +1,310 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include <stdint.h> +#include <stdio.h> + +#include <vector> + +// clang-format off +#undef HWY_TARGET_INCLUDE +#define HWY_TARGET_INCLUDE "hwy/contrib/sort/bench_sort.cc" +#include "hwy/foreach_target.h" // IWYU pragma: keep + +// After foreach_target +#include "hwy/contrib/sort/algo-inl.h" +#include "hwy/contrib/sort/result-inl.h" +#include "hwy/contrib/sort/sorting_networks-inl.h" // SharedTraits +#include "hwy/contrib/sort/traits-inl.h" +#include "hwy/contrib/sort/traits128-inl.h" +#include "hwy/tests/test_util-inl.h" +// clang-format on + +// Mode for larger sorts because M1 is able to access more than the per-core +// share of L2, so 1M elements might still be in cache. +#define SORT_100M 0 + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +// Defined within HWY_ONCE, used by BenchAllSort. +extern int64_t first_sort_target; + +namespace HWY_NAMESPACE { +namespace { +using detail::TraitsLane; +using detail::OrderAscending; +using detail::OrderDescending; +using detail::SharedTraits; + +#if VQSORT_ENABLED || HWY_IDE +using detail::OrderAscending128; +using detail::OrderAscendingKV128; +using detail::Traits128; + +template <class Traits> +HWY_NOINLINE void BenchPartition() { + using LaneType = typename Traits::LaneType; + using KeyType = typename Traits::KeyType; + const SortTag<LaneType> d; + detail::SharedTraits<Traits> st; + const Dist dist = Dist::kUniform8; + double sum = 0.0; + + detail::Generator rng(&sum, 123); // for ChoosePivot + + const size_t max_log2 = AdjustedLog2Reps(20); + for (size_t log2 = max_log2; log2 < max_log2 + 1; ++log2) { + const size_t num_lanes = 1ull << log2; + const size_t num_keys = num_lanes / st.LanesPerKey(); + auto aligned = hwy::AllocateAligned<LaneType>(num_lanes); + auto buf = hwy::AllocateAligned<LaneType>( + HWY_MAX(hwy::SortConstants::PartitionBufNum(Lanes(d)), + hwy::SortConstants::PivotBufNum(sizeof(LaneType), Lanes(d)))); + + std::vector<double> seconds; + const size_t num_reps = (1ull << (14 - log2 / 2)) * 30; + for (size_t rep = 0; rep < num_reps; ++rep) { + (void)GenerateInput(dist, aligned.get(), num_lanes); + + // The pivot value can influence performance. Do exactly what vqsort will + // do so that the performance (influenced by prefetching and branch + // prediction) is likely to predict the actual performance inside vqsort. + detail::DrawSamples(d, st, aligned.get(), num_lanes, buf.get(), rng); + detail::SortSamples(d, st, buf.get()); + auto pivot = detail::ChoosePivotByRank(d, st, buf.get()); + + const Timestamp t0; + detail::Partition(d, st, aligned.get(), num_lanes - 1, pivot, buf.get()); + seconds.push_back(SecondsSince(t0)); + // 'Use' the result to prevent optimizing out the partition. + sum += static_cast<double>(aligned.get()[num_lanes / 2]); + } + + Result(Algo::kVQSort, dist, num_keys, 1, SummarizeMeasurements(seconds), + sizeof(KeyType), st.KeyString()) + .Print(); + } + HWY_ASSERT(sum != 999999); // Prevent optimizing out +} + +HWY_NOINLINE void BenchAllPartition() { + // Not interested in benchmark results for these targets + if (HWY_TARGET == HWY_SSSE3) { + return; + } + + BenchPartition<TraitsLane<OrderDescending<float>>>(); + BenchPartition<TraitsLane<OrderDescending<int32_t>>>(); + BenchPartition<TraitsLane<OrderDescending<int64_t>>>(); + BenchPartition<Traits128<OrderAscending128>>(); + // BenchPartition<Traits128<OrderDescending128>>(); + BenchPartition<Traits128<OrderAscendingKV128>>(); +} + +template <class Traits> +HWY_NOINLINE void BenchBase(std::vector<Result>& results) { + // Not interested in benchmark results for these targets + if (HWY_TARGET == HWY_SSSE3 || HWY_TARGET == HWY_SSE4) { + return; + } + + using LaneType = typename Traits::LaneType; + using KeyType = typename Traits::KeyType; + const SortTag<LaneType> d; + detail::SharedTraits<Traits> st; + const Dist dist = Dist::kUniform32; + + const size_t N = Lanes(d); + const size_t num_lanes = SortConstants::BaseCaseNum(N); + const size_t num_keys = num_lanes / st.LanesPerKey(); + auto keys = hwy::AllocateAligned<LaneType>(num_lanes); + auto buf = hwy::AllocateAligned<LaneType>(num_lanes + N); + + std::vector<double> seconds; + double sum = 0; // prevents elision + constexpr size_t kMul = AdjustedReps(600); // ensures long enough to measure + + for (size_t rep = 0; rep < 30; ++rep) { + InputStats<LaneType> input_stats = + GenerateInput(dist, keys.get(), num_lanes); + + const Timestamp t0; + for (size_t i = 0; i < kMul; ++i) { + detail::BaseCase(d, st, keys.get(), keys.get() + num_lanes, num_lanes, + buf.get()); + sum += static_cast<double>(keys[0]); + } + seconds.push_back(SecondsSince(t0)); + // printf("%f\n", seconds.back()); + + HWY_ASSERT(VerifySort(st, input_stats, keys.get(), num_lanes, "BenchBase")); + } + HWY_ASSERT(sum < 1E99); + results.emplace_back(Algo::kVQSort, dist, num_keys * kMul, 1, + SummarizeMeasurements(seconds), sizeof(KeyType), + st.KeyString()); +} + +HWY_NOINLINE void BenchAllBase() { + // Not interested in benchmark results for these targets + if (HWY_TARGET == HWY_SSSE3) { + return; + } + + std::vector<Result> results; + BenchBase<TraitsLane<OrderAscending<float>>>(results); + BenchBase<TraitsLane<OrderDescending<int64_t>>>(results); + BenchBase<Traits128<OrderAscending128>>(results); + for (const Result& r : results) { + r.Print(); + } +} + +#else +void BenchAllPartition() {} +void BenchAllBase() {} +#endif // VQSORT_ENABLED + +std::vector<Algo> AlgoForBench() { + return { +#if HAVE_AVX2SORT + Algo::kSEA, +#endif +#if HAVE_PARALLEL_IPS4O + Algo::kParallelIPS4O, +#elif HAVE_IPS4O + Algo::kIPS4O, +#endif +#if HAVE_PDQSORT + Algo::kPDQ, +#endif +#if HAVE_SORT512 + Algo::kSort512, +#endif +// Only include if we're compiling for the target it supports. +#if HAVE_VXSORT && ((VXSORT_AVX3 && HWY_TARGET == HWY_AVX3) || \ + (!VXSORT_AVX3 && HWY_TARGET == HWY_AVX2)) + Algo::kVXSort, +#endif + +#if !HAVE_PARALLEL_IPS4O +#if !SORT_100M + // These are 10-20x slower, but that's OK for the default size when we + // are not testing the parallel nor 100M modes. + Algo::kStd, Algo::kHeap, +#endif + + Algo::kVQSort, // only ~4x slower, but not required for Table 1a +#endif + }; +} + +template <class Traits> +HWY_NOINLINE void BenchSort(size_t num_keys) { + if (first_sort_target == 0) first_sort_target = HWY_TARGET; + + SharedState shared; + detail::SharedTraits<Traits> st; + using Order = typename Traits::Order; + using LaneType = typename Traits::LaneType; + using KeyType = typename Traits::KeyType; + const size_t num_lanes = num_keys * st.LanesPerKey(); + auto aligned = hwy::AllocateAligned<LaneType>(num_lanes); + + const size_t reps = num_keys > 1000 * 1000 ? 10 : 30; + + for (Algo algo : AlgoForBench()) { + // Other algorithms don't depend on the vector instructions, so only run + // them for the first target. +#if !HAVE_VXSORT + if (algo != Algo::kVQSort && HWY_TARGET != first_sort_target) { + continue; + } +#endif + + for (Dist dist : AllDist()) { + std::vector<double> seconds; + for (size_t rep = 0; rep < reps; ++rep) { + InputStats<LaneType> input_stats = + GenerateInput(dist, aligned.get(), num_lanes); + + const Timestamp t0; + Run<Order>(algo, reinterpret_cast<KeyType*>(aligned.get()), num_keys, + shared, /*thread=*/0); + seconds.push_back(SecondsSince(t0)); + // printf("%f\n", seconds.back()); + + HWY_ASSERT( + VerifySort(st, input_stats, aligned.get(), num_lanes, "BenchSort")); + } + Result(algo, dist, num_keys, 1, SummarizeMeasurements(seconds), + sizeof(KeyType), st.KeyString()) + .Print(); + } // dist + } // algo +} + +HWY_NOINLINE void BenchAllSort() { + // Not interested in benchmark results for these targets + if (HWY_TARGET == HWY_SSSE3 || HWY_TARGET == HWY_SSE4) { + return; + } + + constexpr size_t K = 1000; + constexpr size_t M = K * K; + (void)K; + (void)M; + for (size_t num_keys : { +#if HAVE_PARALLEL_IPS4O || SORT_100M + 100 * M, +#else + 1 * M, +#endif + }) { + BenchSort<TraitsLane<OrderAscending<float>>>(num_keys); + // BenchSort<TraitsLane<OrderDescending<double>>>(num_keys); + // BenchSort<TraitsLane<OrderAscending<int16_t>>>(num_keys); + BenchSort<TraitsLane<OrderDescending<int32_t>>>(num_keys); + BenchSort<TraitsLane<OrderAscending<int64_t>>>(num_keys); + // BenchSort<TraitsLane<OrderDescending<uint16_t>>>(num_keys); + // BenchSort<TraitsLane<OrderDescending<uint32_t>>>(num_keys); + // BenchSort<TraitsLane<OrderAscending<uint64_t>>>(num_keys); + +#if !HAVE_VXSORT && VQSORT_ENABLED + BenchSort<Traits128<OrderAscending128>>(num_keys); + BenchSort<Traits128<OrderAscendingKV128>>(num_keys); +#endif + } +} + +} // namespace +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE + +namespace hwy { +int64_t first_sort_target = 0; // none run yet +namespace { +HWY_BEFORE_TEST(BenchSort); +HWY_EXPORT_AND_TEST_P(BenchSort, BenchAllPartition); +HWY_EXPORT_AND_TEST_P(BenchSort, BenchAllBase); +HWY_EXPORT_AND_TEST_P(BenchSort, BenchAllSort); +} // namespace +} // namespace hwy + +#endif // HWY_ONCE diff --git a/third_party/highway/hwy/contrib/sort/print_network.cc b/third_party/highway/hwy/contrib/sort/print_network.cc new file mode 100644 index 0000000000..59cfebcfbd --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/print_network.cc @@ -0,0 +1,191 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include <stdio.h> + +#include <algorithm> + +#include "hwy/base.h" + +// Based on A.7 in "Entwurf und Implementierung vektorisierter +// Sortieralgorithmen" and code by Mark Blacher. +void PrintMergeNetwork16x2() { + for (int i = 8; i < 16; ++i) { + printf("v%x = st.SwapAdjacent(d, v%x);\n", i, i); + } + for (int i = 0; i < 8; ++i) { + printf("st.Sort2(d, v%x, v%x);\n", i, 15 - i); + } + for (int i = 0; i < 4; ++i) { + printf("v%x = st.SwapAdjacent(d, v%x);\n", i + 4, i + 4); + printf("v%x = st.SwapAdjacent(d, v%x);\n", i + 12, i + 12); + } + for (int i = 0; i < 4; ++i) { + printf("st.Sort2(d, v%x, v%x);\n", i, 7 - i); + printf("st.Sort2(d, v%x, v%x);\n", i + 8, 15 - i); + } + for (int i = 0; i < 16; i += 4) { + printf("v%x = st.SwapAdjacent(d, v%x);\n", i + 2, i + 2); + printf("v%x = st.SwapAdjacent(d, v%x);\n", i + 3, i + 3); + } + for (int i = 0; i < 16; i += 4) { + printf("st.Sort2(d, v%x, v%x);\n", i, i + 3); + printf("st.Sort2(d, v%x, v%x);\n", i + 1, i + 2); + } + for (int i = 0; i < 16; i += 2) { + printf("v%x = st.SwapAdjacent(d, v%x);\n", i + 1, i + 1); + } + for (int i = 0; i < 16; i += 2) { + printf("st.Sort2(d, v%x, v%x);\n", i, i + 1); + } + for (int i = 0; i < 16; ++i) { + printf("v%x = st.SortPairsDistance1<kOrder>(d, v%x);\n", i, i); + } + printf("\n"); +} + +void PrintMergeNetwork16x4() { + printf("\n"); + + for (int i = 8; i < 16; ++i) { + printf("v%x = st.Reverse4(d, v%x);\n", i, i); + } + for (int i = 0; i < 8; ++i) { + printf("st.Sort2(d, v%x, v%x);\n", i, 15 - i); + } + for (int i = 0; i < 4; ++i) { + printf("v%x = st.Reverse4(d, v%x);\n", i + 4, i + 4); + printf("v%x = st.Reverse4(d, v%x);\n", i + 12, i + 12); + } + for (int i = 0; i < 4; ++i) { + printf("st.Sort2(d, v%x, v%x);\n", i, 7 - i); + printf("st.Sort2(d, v%x, v%x);\n", i + 8, 15 - i); + } + for (int i = 0; i < 16; i += 4) { + printf("v%x = st.Reverse4(d, v%x);\n", i + 2, i + 2); + printf("v%x = st.Reverse4(d, v%x);\n", i + 3, i + 3); + } + for (int i = 0; i < 16; i += 4) { + printf("st.Sort2(d, v%x, v%x);\n", i, i + 3); + printf("st.Sort2(d, v%x, v%x);\n", i + 1, i + 2); + } + for (int i = 0; i < 16; i += 2) { + printf("v%x = st.Reverse4(d, v%x);\n", i + 1, i + 1); + } + for (int i = 0; i < 16; i += 2) { + printf("st.Sort2(d, v%x, v%x);\n", i, i + 1); + } + for (int i = 0; i < 16; ++i) { + printf("v%x = st.SortPairsReverse4(d, v%x);\n", i, i); + } + for (int i = 0; i < 16; ++i) { + printf("v%x = st.SortPairsDistance1<kOrder>(d, v%x);\n", i, i); + } +} + +void PrintMergeNetwork16x8() { + printf("\n"); + + for (int i = 8; i < 16; ++i) { + printf("v%x = st.ReverseKeys8(d, v%x);\n", i, i); + } + for (int i = 0; i < 8; ++i) { + printf("st.Sort2(d, v%x, v%x);\n", i, 15 - i); + } + for (int i = 0; i < 4; ++i) { + printf("v%x = st.ReverseKeys8(d, v%x);\n", i + 4, i + 4); + printf("v%x = st.ReverseKeys8(d, v%x);\n", i + 12, i + 12); + } + for (int i = 0; i < 4; ++i) { + printf("st.Sort2(d, v%x, v%x);\n", i, 7 - i); + printf("st.Sort2(d, v%x, v%x);\n", i + 8, 15 - i); + } + for (int i = 0; i < 16; i += 4) { + printf("v%x = st.ReverseKeys8(d, v%x);\n", i + 2, i + 2); + printf("v%x = st.ReverseKeys8(d, v%x);\n", i + 3, i + 3); + } + for (int i = 0; i < 16; i += 4) { + printf("st.Sort2(d, v%x, v%x);\n", i, i + 3); + printf("st.Sort2(d, v%x, v%x);\n", i + 1, i + 2); + } + for (int i = 0; i < 16; i += 2) { + printf("v%x = st.ReverseKeys8(d, v%x);\n", i + 1, i + 1); + } + for (int i = 0; i < 16; i += 2) { + printf("st.Sort2(d, v%x, v%x);\n", i, i + 1); + } + for (int i = 0; i < 16; ++i) { + printf("v%x = st.SortPairsReverse8(d, v%x);\n", i, i); + } + for (int i = 0; i < 16; ++i) { + printf("v%x = st.SortPairsDistance2<kOrder>(d, v%x);\n", i, i); + } + for (int i = 0; i < 16; ++i) { + printf("v%x = st.SortPairsDistance1<kOrder>(d, v%x);\n", i, i); + } +} + +void PrintMergeNetwork16x16() { + printf("\n"); + + for (int i = 8; i < 16; ++i) { + printf("v%x = st.ReverseKeys16(d, v%x);\n", i, i); + } + for (int i = 0; i < 8; ++i) { + printf("st.Sort2(d, v%x, v%x);\n", i, 15 - i); + } + for (int i = 0; i < 4; ++i) { + printf("v%x = st.ReverseKeys16(d, v%x);\n", i + 4, i + 4); + printf("v%x = st.ReverseKeys16(d, v%x);\n", i + 12, i + 12); + } + for (int i = 0; i < 4; ++i) { + printf("st.Sort2(d, v%x, v%x);\n", i, 7 - i); + printf("st.Sort2(d, v%x, v%x);\n", i + 8, 15 - i); + } + for (int i = 0; i < 16; i += 4) { + printf("v%x = st.ReverseKeys16(d, v%x);\n", i + 2, i + 2); + printf("v%x = st.ReverseKeys16(d, v%x);\n", i + 3, i + 3); + } + for (int i = 0; i < 16; i += 4) { + printf("st.Sort2(d, v%x, v%x);\n", i, i + 3); + printf("st.Sort2(d, v%x, v%x);\n", i + 1, i + 2); + } + for (int i = 0; i < 16; i += 2) { + printf("v%x = st.ReverseKeys16(d, v%x);\n", i + 1, i + 1); + } + for (int i = 0; i < 16; i += 2) { + printf("st.Sort2(d, v%x, v%x);\n", i, i + 1); + } + for (int i = 0; i < 16; ++i) { + printf("v%x = st.SortPairsReverse16<kOrder>(d, v%x);\n", i, i); + } + for (int i = 0; i < 16; ++i) { + printf("v%x = st.SortPairsDistance4<kOrder>(d, v%x);\n", i, i); + } + for (int i = 0; i < 16; ++i) { + printf("v%x = st.SortPairsDistance2<kOrder>(d, v%x);\n", i, i); + } + for (int i = 0; i < 16; ++i) { + printf("v%x = st.SortPairsDistance1<kOrder>(d, v%x);\n", i, i); + } +} + +int main(int argc, char** argv) { + PrintMergeNetwork16x2(); + PrintMergeNetwork16x4(); + PrintMergeNetwork16x8(); + PrintMergeNetwork16x16(); + return 0; +} diff --git a/third_party/highway/hwy/contrib/sort/result-inl.h b/third_party/highway/hwy/contrib/sort/result-inl.h new file mode 100644 index 0000000000..f3d842dfbd --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/result-inl.h @@ -0,0 +1,139 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "hwy/contrib/sort/algo-inl.h" + +// Normal include guard for non-SIMD parts +#ifndef HIGHWAY_HWY_CONTRIB_SORT_RESULT_INL_H_ +#define HIGHWAY_HWY_CONTRIB_SORT_RESULT_INL_H_ + +#include <time.h> + +#include <algorithm> // std::sort +#include <string> + +#include "hwy/base.h" +#include "hwy/nanobenchmark.h" + +namespace hwy { + +struct Timestamp { + Timestamp() { t = platform::Now(); } + double t; +}; + +static inline double SecondsSince(const Timestamp& t0) { + const Timestamp t1; + return t1.t - t0.t; +} + +// Returns trimmed mean (we don't want to run an out-of-L3-cache sort often +// enough for the mode to be reliable). +static inline double SummarizeMeasurements(std::vector<double>& seconds) { + std::sort(seconds.begin(), seconds.end()); + double sum = 0; + int count = 0; + const size_t num = seconds.size(); + for (size_t i = num / 4; i < num / 2; ++i) { + sum += seconds[i]; + count += 1; + } + return sum / count; +} + +} // namespace hwy +#endif // HIGHWAY_HWY_CONTRIB_SORT_RESULT_INL_H_ + +// Per-target +#if defined(HIGHWAY_HWY_CONTRIB_SORT_RESULT_TOGGLE) == \ + defined(HWY_TARGET_TOGGLE) +#ifdef HIGHWAY_HWY_CONTRIB_SORT_RESULT_TOGGLE +#undef HIGHWAY_HWY_CONTRIB_SORT_RESULT_TOGGLE +#else +#define HIGHWAY_HWY_CONTRIB_SORT_RESULT_TOGGLE +#endif + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +struct Result { + Result() {} + Result(const Algo algo, Dist dist, size_t num_keys, size_t num_threads, + double sec, size_t sizeof_key, const std::string& key_name) + : target(HWY_TARGET), + algo(algo), + dist(dist), + num_keys(num_keys), + num_threads(num_threads), + sec(sec), + sizeof_key(sizeof_key), + key_name(key_name) {} + + void Print() const { + const double bytes = static_cast<double>(num_keys) * + static_cast<double>(num_threads) * + static_cast<double>(sizeof_key); + printf("%10s: %12s: %7s: %9s: %.2E %4.0f MB/s (%2zu threads)\n", + hwy::TargetName(target), AlgoName(algo), key_name.c_str(), + DistName(dist), static_cast<double>(num_keys), bytes * 1E-6 / sec, + num_threads); + } + + int64_t target; + Algo algo; + Dist dist; + size_t num_keys = 0; + size_t num_threads = 0; + double sec = 0.0; + size_t sizeof_key = 0; + std::string key_name; +}; + +template <class Traits, typename LaneType> +bool VerifySort(Traits st, const InputStats<LaneType>& input_stats, + const LaneType* out, size_t num_lanes, const char* caller) { + constexpr size_t N1 = st.LanesPerKey(); + HWY_ASSERT(num_lanes >= N1); + + InputStats<LaneType> output_stats; + // Ensure it matches the sort order + for (size_t i = 0; i < num_lanes - N1; i += N1) { + output_stats.Notify(out[i]); + if (N1 == 2) output_stats.Notify(out[i + 1]); + // Reverse order instead of checking !Compare1 so we accept equal keys. + if (st.Compare1(out + i + N1, out + i)) { + printf("%s: i=%d of %d lanes: N1=%d %5.0f %5.0f vs. %5.0f %5.0f\n\n", + caller, static_cast<int>(i), static_cast<int>(num_lanes), + static_cast<int>(N1), static_cast<double>(out[i + 1]), + static_cast<double>(out[i + 0]), + static_cast<double>(out[i + N1 + 1]), + static_cast<double>(out[i + N1])); + HWY_ABORT("%d-bit sort is incorrect\n", + static_cast<int>(sizeof(LaneType) * 8 * N1)); + } + } + output_stats.Notify(out[num_lanes - N1]); + if (N1 == 2) output_stats.Notify(out[num_lanes - N1 + 1]); + + return input_stats == output_stats; +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#endif // HIGHWAY_HWY_CONTRIB_SORT_RESULT_TOGGLE diff --git a/third_party/highway/hwy/contrib/sort/shared-inl.h b/third_party/highway/hwy/contrib/sort/shared-inl.h new file mode 100644 index 0000000000..735f95ee22 --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/shared-inl.h @@ -0,0 +1,134 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +// Definitions shared between vqsort-inl and sorting_networks-inl. + +// Normal include guard for target-independent parts +#ifndef HIGHWAY_HWY_CONTRIB_SORT_SHARED_INL_H_ +#define HIGHWAY_HWY_CONTRIB_SORT_SHARED_INL_H_ + +#include "hwy/base.h" + +namespace hwy { + +// Internal constants - these are to avoid magic numbers/literals and cannot be +// changed without also changing the associated code. +struct SortConstants { +// SortingNetwork reshapes its input into a matrix. This is the maximum number +// of *keys* per vector. +#if HWY_COMPILER_MSVC || HWY_IS_DEBUG_BUILD + static constexpr size_t kMaxCols = 8; // avoid build timeout/stack overflow +#else + static constexpr size_t kMaxCols = 16; // enough for u32 in 512-bit vector +#endif + + // 16 rows is a compromise between using the 32 AVX-512/SVE/RVV registers, + // fitting within 16 AVX2 registers with only a few spills, keeping BaseCase + // code size reasonable (7 KiB for AVX-512 and 16 cols), and minimizing the + // extra logN factor for larger networks (for which only loose upper bounds + // on size are known). + static constexpr size_t kMaxRowsLog2 = 4; + static constexpr size_t kMaxRows = size_t{1} << kMaxRowsLog2; + + static constexpr HWY_INLINE size_t BaseCaseNum(size_t N) { + return kMaxRows * HWY_MIN(N, kMaxCols); + } + + // Unrolling is important (pipelining and amortizing branch mispredictions); + // 2x is sufficient to reach full memory bandwidth on SKX in Partition, but + // somewhat slower for sorting than 4x. + // + // To change, must also update left + 3 * N etc. in the loop. + static constexpr size_t kPartitionUnroll = 4; + + static constexpr HWY_INLINE size_t PartitionBufNum(size_t N) { + // The main loop reads kPartitionUnroll vectors, and first loads from + // both left and right beforehand, so it requires min = 2 * + // kPartitionUnroll vectors. To handle smaller amounts (only guaranteed + // >= BaseCaseNum), we partition the right side into a buffer. We need + // another vector at the end so CompressStore does not overwrite anything. + return (2 * kPartitionUnroll + 1) * N; + } + + // Chunk := group of keys loaded for sampling a pivot. Matches the typical + // cache line size of 64 bytes to get maximum benefit per L2 miss. Sort() + // ensures vectors are no larger than that, so this can be independent of the + // vector size and thus constexpr. + static constexpr HWY_INLINE size_t LanesPerChunk(size_t sizeof_t) { + return 64 / sizeof_t; + } + + static constexpr HWY_INLINE size_t PivotBufNum(size_t sizeof_t, size_t N) { + // 3 chunks of medians, 1 chunk of median medians plus two padding vectors. + return (3 + 1) * LanesPerChunk(sizeof_t) + 2 * N; + } + + template <typename T> + static constexpr HWY_INLINE size_t BufNum(size_t N) { + // One extra for padding plus another for full-vector loads. + return HWY_MAX(BaseCaseNum(N) + 2 * N, + HWY_MAX(PartitionBufNum(N), PivotBufNum(sizeof(T), N))); + } + + template <typename T> + static constexpr HWY_INLINE size_t BufBytes(size_t vector_size) { + return sizeof(T) * BufNum<T>(vector_size / sizeof(T)); + } +}; + +} // namespace hwy + +#endif // HIGHWAY_HWY_CONTRIB_SORT_SHARED_INL_H_ + +// Per-target +#if defined(HIGHWAY_HWY_CONTRIB_SORT_SHARED_TOGGLE) == \ + defined(HWY_TARGET_TOGGLE) +#ifdef HIGHWAY_HWY_CONTRIB_SORT_SHARED_TOGGLE +#undef HIGHWAY_HWY_CONTRIB_SORT_SHARED_TOGGLE +#else +#define HIGHWAY_HWY_CONTRIB_SORT_SHARED_TOGGLE +#endif + +#include "hwy/highway.h" + +// vqsort isn't available on HWY_SCALAR, and builds time out on MSVC opt and +// Arm v7 debug. +#undef VQSORT_ENABLED +#if (HWY_TARGET == HWY_SCALAR) || \ + (HWY_COMPILER_MSVC && !HWY_IS_DEBUG_BUILD) || \ + (HWY_ARCH_ARM_V7 && HWY_IS_DEBUG_BUILD) +#define VQSORT_ENABLED 0 +#else +#define VQSORT_ENABLED 1 +#endif + +namespace hwy { +namespace HWY_NAMESPACE { + +// Default tag / vector width selector. +#if HWY_TARGET == HWY_RVV +// Use LMUL = 1/2; for SEW=64 this ends up emulated via vsetvl. +template <typename T> +using SortTag = ScalableTag<T, -1>; +#else +template <typename T> +using SortTag = ScalableTag<T>; +#endif + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy + +#endif // HIGHWAY_HWY_CONTRIB_SORT_SHARED_TOGGLE diff --git a/third_party/highway/hwy/contrib/sort/sort_test.cc b/third_party/highway/hwy/contrib/sort/sort_test.cc new file mode 100644 index 0000000000..2d1f1d5169 --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/sort_test.cc @@ -0,0 +1,626 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#ifndef __STDC_FORMAT_MACROS +#define __STDC_FORMAT_MACROS // before inttypes.h +#endif +#include <inttypes.h> +#include <stdint.h> +#include <stdio.h> +#include <string.h> // memcpy + +#include <unordered_map> +#include <vector> + +// clang-format off +#undef HWY_TARGET_INCLUDE +#define HWY_TARGET_INCLUDE "hwy/contrib/sort/sort_test.cc" +#include "hwy/foreach_target.h" // IWYU pragma: keep + +#include "hwy/contrib/sort/vqsort.h" +// After foreach_target +#include "hwy/contrib/sort/algo-inl.h" +#include "hwy/contrib/sort/traits128-inl.h" +#include "hwy/contrib/sort/result-inl.h" +#include "hwy/contrib/sort/vqsort-inl.h" // BaseCase +#include "hwy/tests/test_util-inl.h" +// clang-format on + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { +namespace { + +using detail::OrderAscending; +using detail::OrderDescending; +using detail::SharedTraits; +using detail::TraitsLane; +#if VQSORT_ENABLED || HWY_IDE +using detail::OrderAscending128; +using detail::OrderAscendingKV128; +using detail::OrderAscendingKV64; +using detail::OrderDescending128; +using detail::OrderDescendingKV128; +using detail::OrderDescendingKV64; +using detail::Traits128; + +template <class Traits> +static HWY_NOINLINE void TestMedian3() { + using LaneType = typename Traits::LaneType; + using D = CappedTag<LaneType, 1>; + SharedTraits<Traits> st; + const D d; + using V = Vec<D>; + for (uint32_t bits = 0; bits < 8; ++bits) { + const V v0 = Set(d, LaneType{(bits & (1u << 0)) ? 1u : 0u}); + const V v1 = Set(d, LaneType{(bits & (1u << 1)) ? 1u : 0u}); + const V v2 = Set(d, LaneType{(bits & (1u << 2)) ? 1u : 0u}); + const LaneType m = GetLane(detail::MedianOf3(st, v0, v1, v2)); + // If at least half(rounded up) of bits are 1, so is the median. + const size_t count = PopCount(bits); + HWY_ASSERT_EQ((count >= 2) ? static_cast<LaneType>(1) : 0, m); + } +} + +HWY_NOINLINE void TestAllMedian() { + TestMedian3<TraitsLane<OrderAscending<uint64_t> > >(); +} + +template <class Traits> +static HWY_NOINLINE void TestBaseCaseAscDesc() { + using LaneType = typename Traits::LaneType; + SharedTraits<Traits> st; + const SortTag<LaneType> d; + const size_t N = Lanes(d); + const size_t base_case_num = SortConstants::BaseCaseNum(N); + const size_t N1 = st.LanesPerKey(); + + constexpr int kDebug = 0; + auto aligned_lanes = hwy::AllocateAligned<LaneType>(N + base_case_num + N); + auto buf = hwy::AllocateAligned<LaneType>(base_case_num + 2 * N); + + std::vector<size_t> lengths; + lengths.push_back(HWY_MAX(1, N1)); + lengths.push_back(3 * N1); + lengths.push_back(base_case_num / 2); + lengths.push_back(base_case_num / 2 + N1); + lengths.push_back(base_case_num - N1); + lengths.push_back(base_case_num); + + std::vector<size_t> misalignments; + misalignments.push_back(0); + misalignments.push_back(1); + if (N >= 6) misalignments.push_back(N / 2 - 1); + misalignments.push_back(N / 2); + misalignments.push_back(N / 2 + 1); + misalignments.push_back(HWY_MIN(2 * N / 3 + 3, size_t{N - 1})); + + for (bool asc : {false, true}) { + for (size_t len : lengths) { + for (size_t misalign : misalignments) { + LaneType* HWY_RESTRICT lanes = aligned_lanes.get() + misalign; + if (kDebug) { + printf("============%s asc %d N1 %d len %d misalign %d\n", + st.KeyString().c_str(), asc, static_cast<int>(N1), + static_cast<int>(len), static_cast<int>(misalign)); + } + + for (size_t i = 0; i < misalign; ++i) { + aligned_lanes[i] = hwy::LowestValue<LaneType>(); + } + InputStats<LaneType> input_stats; + for (size_t i = 0; i < len; ++i) { + lanes[i] = asc ? static_cast<LaneType>(LaneType(i) + 1) + : static_cast<LaneType>(LaneType(len) - LaneType(i)); + input_stats.Notify(lanes[i]); + if (kDebug >= 2) { + printf("%3zu: %f\n", i, static_cast<double>(lanes[i])); + } + } + for (size_t i = len; i < base_case_num + N; ++i) { + lanes[i] = hwy::LowestValue<LaneType>(); + } + + detail::BaseCase(d, st, lanes, lanes + len, len, buf.get()); + + if (kDebug >= 2) { + printf("out>>>>>>\n"); + for (size_t i = 0; i < len; ++i) { + printf("%3zu: %f\n", i, static_cast<double>(lanes[i])); + } + } + + HWY_ASSERT(VerifySort(st, input_stats, lanes, len, "BaseAscDesc")); + for (size_t i = 0; i < misalign; ++i) { + if (aligned_lanes[i] != hwy::LowestValue<LaneType>()) + HWY_ABORT("Overrun misalign at %d\n", static_cast<int>(i)); + } + for (size_t i = len; i < base_case_num + N; ++i) { + if (lanes[i] != hwy::LowestValue<LaneType>()) + HWY_ABORT("Overrun right at %d\n", static_cast<int>(i)); + } + } // misalign + } // len + } // asc +} + +template <class Traits> +static HWY_NOINLINE void TestBaseCase01() { + using LaneType = typename Traits::LaneType; + SharedTraits<Traits> st; + const SortTag<LaneType> d; + const size_t N = Lanes(d); + const size_t base_case_num = SortConstants::BaseCaseNum(N); + const size_t N1 = st.LanesPerKey(); + + constexpr int kDebug = 0; + auto lanes = hwy::AllocateAligned<LaneType>(base_case_num + N); + auto buf = hwy::AllocateAligned<LaneType>(base_case_num + 2 * N); + + std::vector<size_t> lengths; + lengths.push_back(HWY_MAX(1, N1)); + lengths.push_back(3 * N1); + lengths.push_back(base_case_num / 2); + lengths.push_back(base_case_num / 2 + N1); + lengths.push_back(base_case_num - N1); + lengths.push_back(base_case_num); + + for (size_t len : lengths) { + if (kDebug) { + printf("============%s 01 N1 %d len %d\n", st.KeyString().c_str(), + static_cast<int>(N1), static_cast<int>(len)); + } + const uint64_t kMaxBits = AdjustedLog2Reps(HWY_MIN(len, size_t{14})); + for (uint64_t bits = 0; bits < ((1ull << kMaxBits) - 1); ++bits) { + InputStats<LaneType> input_stats; + for (size_t i = 0; i < len; ++i) { + lanes[i] = (i < 64 && (bits & (1ull << i))) ? 1 : 0; + input_stats.Notify(lanes[i]); + if (kDebug >= 2) { + printf("%3zu: %f\n", i, static_cast<double>(lanes[i])); + } + } + for (size_t i = len; i < base_case_num + N; ++i) { + lanes[i] = hwy::LowestValue<LaneType>(); + } + + detail::BaseCase(d, st, lanes.get(), lanes.get() + len, len, buf.get()); + + if (kDebug >= 2) { + printf("out>>>>>>\n"); + for (size_t i = 0; i < len; ++i) { + printf("%3zu: %f\n", i, static_cast<double>(lanes[i])); + } + } + + HWY_ASSERT(VerifySort(st, input_stats, lanes.get(), len, "Base01")); + for (size_t i = len; i < base_case_num + N; ++i) { + if (lanes[i] != hwy::LowestValue<LaneType>()) + HWY_ABORT("Overrun right at %d\n", static_cast<int>(i)); + } + } // bits + } // len +} + +template <class Traits> +static HWY_NOINLINE void TestBaseCase() { + TestBaseCaseAscDesc<Traits>(); + TestBaseCase01<Traits>(); +} + +HWY_NOINLINE void TestAllBaseCase() { + // Workaround for stack overflow on MSVC debug. +#if defined(_MSC_VER) + return; +#endif + TestBaseCase<TraitsLane<OrderAscending<int32_t> > >(); + TestBaseCase<TraitsLane<OrderDescending<int64_t> > >(); + TestBaseCase<Traits128<OrderAscending128> >(); + TestBaseCase<Traits128<OrderDescending128> >(); +} + +template <class Traits> +static HWY_NOINLINE void VerifyPartition( + Traits st, typename Traits::LaneType* HWY_RESTRICT lanes, size_t left, + size_t border, size_t right, const size_t N1, + const typename Traits::LaneType* pivot) { + /* for (size_t i = left; i < right; ++i) { + if (i == border) printf("--\n"); + printf("%4zu: %3d\n", i, lanes[i]); + }*/ + + HWY_ASSERT(left % N1 == 0); + HWY_ASSERT(border % N1 == 0); + HWY_ASSERT(right % N1 == 0); + const bool asc = typename Traits::Order().IsAscending(); + for (size_t i = left; i < border; i += N1) { + if (st.Compare1(pivot, lanes + i)) { + HWY_ABORT( + "%s: asc %d left[%d] piv %.0f %.0f compares before %.0f %.0f " + "border %d", + st.KeyString().c_str(), asc, static_cast<int>(i), + static_cast<double>(pivot[1]), static_cast<double>(pivot[0]), + static_cast<double>(lanes[i + 1]), static_cast<double>(lanes[i + 0]), + static_cast<int>(border)); + } + } + for (size_t i = border; i < right; i += N1) { + if (!st.Compare1(pivot, lanes + i)) { + HWY_ABORT( + "%s: asc %d right[%d] piv %.0f %.0f compares after %.0f %.0f " + "border %d", + st.KeyString().c_str(), asc, static_cast<int>(i), + static_cast<double>(pivot[1]), static_cast<double>(pivot[0]), + static_cast<double>(lanes[i + 1]), static_cast<double>(lanes[i]), + static_cast<int>(border)); + } + } +} + +template <class Traits> +static HWY_NOINLINE void TestPartition() { + using LaneType = typename Traits::LaneType; + const SortTag<LaneType> d; + SharedTraits<Traits> st; + const bool asc = typename Traits::Order().IsAscending(); + const size_t N = Lanes(d); + constexpr int kDebug = 0; + const size_t base_case_num = SortConstants::BaseCaseNum(N); + // left + len + align + const size_t total = 32 + (base_case_num + 4 * HWY_MAX(N, 4)) + 2 * N; + auto aligned_lanes = hwy::AllocateAligned<LaneType>(total); + auto buf = hwy::AllocateAligned<LaneType>(SortConstants::PartitionBufNum(N)); + + const size_t N1 = st.LanesPerKey(); + for (bool in_asc : {false, true}) { + for (int left_i : {0, 1, 4, 6, 7, 8, 12, 15, 22, 28, 30, 31}) { + const size_t left = static_cast<size_t>(left_i) & ~(N1 - 1); + for (size_t ofs : {N, N + 1, N + 3, 2 * N, 2 * N + 2, 2 * N + 3, + 3 * N - 1, 4 * N - 3, 4 * N - 2}) { + const size_t len = (base_case_num + ofs) & ~(N1 - 1); + for (LaneType pivot1 : + {LaneType(0), LaneType(len / 3), LaneType(len / 2), + LaneType(2 * len / 3), LaneType(len)}) { + const LaneType pivot2[2] = {pivot1, 0}; + const auto pivot = st.SetKey(d, pivot2); + for (size_t misalign = 0; misalign < N; + misalign += st.LanesPerKey()) { + LaneType* HWY_RESTRICT lanes = aligned_lanes.get() + misalign; + const size_t right = left + len; + if (kDebug) { + printf( + "=========%s asc %d left %d len %d right %d piv %.0f %.0f\n", + st.KeyString().c_str(), asc, static_cast<int>(left), + static_cast<int>(len), static_cast<int>(right), + static_cast<double>(pivot2[1]), + static_cast<double>(pivot2[0])); + } + + for (size_t i = 0; i < misalign; ++i) { + aligned_lanes[i] = hwy::LowestValue<LaneType>(); + } + for (size_t i = 0; i < left; ++i) { + lanes[i] = hwy::LowestValue<LaneType>(); + } + std::unordered_map<LaneType, int> counts; + for (size_t i = left; i < right; ++i) { + lanes[i] = static_cast<LaneType>( + in_asc ? LaneType(i + 1) - static_cast<LaneType>(left) + : static_cast<LaneType>(right) - LaneType(i)); + ++counts[lanes[i]]; + if (kDebug >= 2) { + printf("%3zu: %f\n", i, static_cast<double>(lanes[i])); + } + } + for (size_t i = right; i < total - misalign; ++i) { + lanes[i] = hwy::LowestValue<LaneType>(); + } + + size_t border = + left + detail::Partition(d, st, lanes + left, right - left, + pivot, buf.get()); + + if (kDebug >= 2) { + printf("out>>>>>>\n"); + for (size_t i = left; i < right; ++i) { + printf("%3zu: %f\n", i, static_cast<double>(lanes[i])); + } + for (size_t i = right; i < total - misalign; ++i) { + printf("%3zu: sentinel %f\n", i, static_cast<double>(lanes[i])); + } + } + for (size_t i = left; i < right; ++i) { + --counts[lanes[i]]; + } + for (auto kv : counts) { + if (kv.second != 0) { + PrintValue(kv.first); + HWY_ABORT("Incorrect count %d\n", kv.second); + } + } + VerifyPartition(st, lanes, left, border, right, N1, pivot2); + for (size_t i = 0; i < misalign; ++i) { + if (aligned_lanes[i] != hwy::LowestValue<LaneType>()) + HWY_ABORT("Overrun misalign at %d\n", static_cast<int>(i)); + } + for (size_t i = 0; i < left; ++i) { + if (lanes[i] != hwy::LowestValue<LaneType>()) + HWY_ABORT("Overrun left at %d\n", static_cast<int>(i)); + } + for (size_t i = right; i < total - misalign; ++i) { + if (lanes[i] != hwy::LowestValue<LaneType>()) + HWY_ABORT("Overrun right at %d\n", static_cast<int>(i)); + } + } // misalign + } // pivot + } // len + } // left + } // asc +} + +HWY_NOINLINE void TestAllPartition() { + TestPartition<TraitsLane<OrderDescending<int32_t> > >(); + TestPartition<Traits128<OrderAscending128> >(); + +#if !HWY_IS_DEBUG_BUILD + TestPartition<TraitsLane<OrderAscending<int16_t> > >(); + TestPartition<TraitsLane<OrderAscending<int64_t> > >(); + TestPartition<TraitsLane<OrderDescending<float> > >(); +#if HWY_HAVE_FLOAT64 + TestPartition<TraitsLane<OrderDescending<double> > >(); +#endif + TestPartition<Traits128<OrderDescending128> >(); +#endif +} + +// (used for sample selection for choosing a pivot) +template <typename TU> +static HWY_NOINLINE void TestRandomGenerator() { + static_assert(!hwy::IsSigned<TU>(), ""); + SortTag<TU> du; + const size_t N = Lanes(du); + + detail::Generator rng(&N, N); + + const size_t lanes_per_block = HWY_MAX(64 / sizeof(TU), N); // power of two + + for (uint32_t num_blocks = 2; num_blocks < 100000; + num_blocks = 3 * num_blocks / 2) { + // Generate some numbers and ensure all are in range + uint64_t sum = 0; + constexpr size_t kReps = 10000; + for (size_t rep = 0; rep < kReps; ++rep) { + const uint32_t bits = rng() & 0xFFFFFFFF; + const size_t index = detail::RandomChunkIndex(num_blocks, bits); + HWY_ASSERT(((index + 1) * lanes_per_block) <= + num_blocks * lanes_per_block); + + sum += index; + } + + // Also ensure the mean is near the middle of the range + const double expected = (num_blocks - 1) / 2.0; + const double actual = static_cast<double>(sum) / kReps; + HWY_ASSERT(0.9 * expected <= actual && actual <= 1.1 * expected); + } +} + +HWY_NOINLINE void TestAllGenerator() { + TestRandomGenerator<uint32_t>(); + TestRandomGenerator<uint64_t>(); +} + +#else +static void TestAllMedian() {} +static void TestAllBaseCase() {} +static void TestAllPartition() {} +static void TestAllGenerator() {} +#endif // VQSORT_ENABLED + +// Remembers input, and compares results to that of a reference algorithm. +template <class Traits> +class CompareResults { + using LaneType = typename Traits::LaneType; + using KeyType = typename Traits::KeyType; + + public: + CompareResults(const LaneType* in, size_t num_lanes) { + copy_.resize(num_lanes); + memcpy(copy_.data(), in, num_lanes * sizeof(LaneType)); + } + + bool Verify(const LaneType* output) { +#if HAVE_PDQSORT + const Algo reference = Algo::kPDQ; +#else + const Algo reference = Algo::kStd; +#endif + SharedState shared; + using Order = typename Traits::Order; + const Traits st; + const size_t num_keys = copy_.size() / st.LanesPerKey(); + Run<Order>(reference, reinterpret_cast<KeyType*>(copy_.data()), num_keys, + shared, /*thread=*/0); +#if VQSORT_PRINT >= 3 + fprintf(stderr, "\nExpected:\n"); + for (size_t i = 0; i < copy_.size(); ++i) { + PrintValue(copy_[i]); + } + fprintf(stderr, "\n"); +#endif + for (size_t i = 0; i < copy_.size(); ++i) { + if (copy_[i] != output[i]) { + if (sizeof(KeyType) == 16) { + fprintf(stderr, + "%s Asc %d mismatch at %d of %d: %" PRIu64 " %" PRIu64 "\n", + st.KeyString().c_str(), Order().IsAscending(), + static_cast<int>(i), static_cast<int>(copy_.size()), + static_cast<uint64_t>(copy_[i]), + static_cast<uint64_t>(output[i])); + } else { + fprintf(stderr, "Type %s Asc %d mismatch at %d of %d: ", + st.KeyString().c_str(), Order().IsAscending(), + static_cast<int>(i), static_cast<int>(copy_.size())); + PrintValue(copy_[i]); + PrintValue(output[i]); + fprintf(stderr, "\n"); + } + return false; + } + } + return true; + } + + private: + std::vector<LaneType> copy_; +}; + +std::vector<Algo> AlgoForTest() { + return { +#if HAVE_AVX2SORT + Algo::kSEA, +#endif +#if HAVE_IPS4O + Algo::kIPS4O, +#endif +#if HAVE_PDQSORT + Algo::kPDQ, +#endif +#if HAVE_SORT512 + Algo::kSort512, +#endif + Algo::kHeap, Algo::kVQSort, + }; +} + +template <class Traits> +void TestSort(size_t num_lanes) { +// Workaround for stack overflow on clang-cl (/F 8388608 does not help). +#if defined(_MSC_VER) + return; +#endif + using Order = typename Traits::Order; + using LaneType = typename Traits::LaneType; + using KeyType = typename Traits::KeyType; + SharedState shared; + SharedTraits<Traits> st; + + // Round up to a whole number of keys. + num_lanes += (st.Is128() && (num_lanes & 1)); + const size_t num_keys = num_lanes / st.LanesPerKey(); + + constexpr size_t kMaxMisalign = 16; + auto aligned = + hwy::AllocateAligned<LaneType>(kMaxMisalign + num_lanes + kMaxMisalign); + for (Algo algo : AlgoForTest()) { + for (Dist dist : AllDist()) { + for (size_t misalign : {size_t{0}, size_t{st.LanesPerKey()}, + size_t{3 * st.LanesPerKey()}, kMaxMisalign / 2}) { + LaneType* lanes = aligned.get() + misalign; + + // Set up red zones before/after the keys to sort + for (size_t i = 0; i < misalign; ++i) { + aligned[i] = hwy::LowestValue<LaneType>(); + } + for (size_t i = 0; i < kMaxMisalign; ++i) { + lanes[num_lanes + i] = hwy::HighestValue<LaneType>(); + } +#if HWY_IS_MSAN + __msan_poison(aligned.get(), misalign * sizeof(LaneType)); + __msan_poison(lanes + num_lanes, kMaxMisalign * sizeof(LaneType)); +#endif + InputStats<LaneType> input_stats = + GenerateInput(dist, lanes, num_lanes); + + CompareResults<Traits> compare(lanes, num_lanes); + Run<Order>(algo, reinterpret_cast<KeyType*>(lanes), num_keys, shared, + /*thread=*/0); + HWY_ASSERT(compare.Verify(lanes)); + HWY_ASSERT(VerifySort(st, input_stats, lanes, num_lanes, "TestSort")); + + // Check red zones +#if HWY_IS_MSAN + __msan_unpoison(aligned.get(), misalign * sizeof(LaneType)); + __msan_unpoison(lanes + num_lanes, kMaxMisalign * sizeof(LaneType)); +#endif + for (size_t i = 0; i < misalign; ++i) { + if (aligned[i] != hwy::LowestValue<LaneType>()) + HWY_ABORT("Overrun left at %d\n", static_cast<int>(i)); + } + for (size_t i = num_lanes; i < num_lanes + kMaxMisalign; ++i) { + if (lanes[i] != hwy::HighestValue<LaneType>()) + HWY_ABORT("Overrun right at %d\n", static_cast<int>(i)); + } + } // misalign + } // dist + } // algo +} + +void TestAllSort() { + for (int num : {129, 504, 3 * 1000, 34567}) { + const size_t num_lanes = AdjustedReps(static_cast<size_t>(num)); + TestSort<TraitsLane<OrderAscending<int16_t> > >(num_lanes); + TestSort<TraitsLane<OrderDescending<uint16_t> > >(num_lanes); + + TestSort<TraitsLane<OrderDescending<int32_t> > >(num_lanes); + TestSort<TraitsLane<OrderDescending<uint32_t> > >(num_lanes); + + TestSort<TraitsLane<OrderAscending<int64_t> > >(num_lanes); + TestSort<TraitsLane<OrderAscending<uint64_t> > >(num_lanes); + + // WARNING: for float types, SIMD comparisons will flush denormals to + // zero, causing mismatches with scalar sorts. In this test, we avoid + // generating denormal inputs. + TestSort<TraitsLane<OrderAscending<float> > >(num_lanes); +#if HWY_HAVE_FLOAT64 // protects algo-inl's GenerateRandom + if (Sorter::HaveFloat64()) { + TestSort<TraitsLane<OrderDescending<double> > >(num_lanes); + } +#endif + +// Our HeapSort does not support 128-bit keys. +#if VQSORT_ENABLED + TestSort<Traits128<OrderAscending128> >(num_lanes); + TestSort<Traits128<OrderDescending128> >(num_lanes); + + TestSort<TraitsLane<OrderAscendingKV64> >(num_lanes); + TestSort<TraitsLane<OrderDescendingKV64> >(num_lanes); + + TestSort<Traits128<OrderAscendingKV128> >(num_lanes); + TestSort<Traits128<OrderDescendingKV128> >(num_lanes); +#endif + } +} + +} // namespace +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE + +namespace hwy { +namespace { +HWY_BEFORE_TEST(SortTest); +HWY_EXPORT_AND_TEST_P(SortTest, TestAllMedian); +HWY_EXPORT_AND_TEST_P(SortTest, TestAllBaseCase); +HWY_EXPORT_AND_TEST_P(SortTest, TestAllPartition); +HWY_EXPORT_AND_TEST_P(SortTest, TestAllGenerator); +HWY_EXPORT_AND_TEST_P(SortTest, TestAllSort); +} // namespace +} // namespace hwy + +#endif // HWY_ONCE diff --git a/third_party/highway/hwy/contrib/sort/sorting_networks-inl.h b/third_party/highway/hwy/contrib/sort/sorting_networks-inl.h new file mode 100644 index 0000000000..2615a04b68 --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/sorting_networks-inl.h @@ -0,0 +1,707 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +// Per-target +#if defined(HIGHWAY_HWY_CONTRIB_SORT_SORTING_NETWORKS_TOGGLE) == \ + defined(HWY_TARGET_TOGGLE) +#ifdef HIGHWAY_HWY_CONTRIB_SORT_SORTING_NETWORKS_TOGGLE +#undef HIGHWAY_HWY_CONTRIB_SORT_SORTING_NETWORKS_TOGGLE +#else +#define HIGHWAY_HWY_CONTRIB_SORT_SORTING_NETWORKS_TOGGLE +#endif + +#include "hwy/contrib/sort/shared-inl.h" // SortConstants +#include "hwy/highway.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { +namespace detail { + +#if VQSORT_ENABLED + +using Constants = hwy::SortConstants; + +// ------------------------------ SharedTraits + +// Code shared between all traits. It's unclear whether these can profitably be +// specialized for Lane vs Block, or optimized like SortPairsDistance1 using +// Compare/DupOdd. +template <class Base> +struct SharedTraits : public Base { + // Conditionally swaps lane 0 with 2, 1 with 3 etc. + template <class D> + HWY_INLINE Vec<D> SortPairsDistance2(D d, Vec<D> v) const { + const Base* base = static_cast<const Base*>(this); + Vec<D> swapped = base->SwapAdjacentPairs(d, v); + base->Sort2(d, v, swapped); + return base->OddEvenPairs(d, swapped, v); + } + + // Swaps with the vector formed by reversing contiguous groups of 8 keys. + template <class D> + HWY_INLINE Vec<D> SortPairsReverse8(D d, Vec<D> v) const { + const Base* base = static_cast<const Base*>(this); + Vec<D> swapped = base->ReverseKeys8(d, v); + base->Sort2(d, v, swapped); + return base->OddEvenQuads(d, swapped, v); + } + + // Swaps with the vector formed by reversing contiguous groups of 8 keys. + template <class D> + HWY_INLINE Vec<D> SortPairsReverse16(D d, Vec<D> v) const { + const Base* base = static_cast<const Base*>(this); + static_assert(Constants::kMaxCols <= 16, "Need actual Reverse16"); + Vec<D> swapped = base->ReverseKeys(d, v); + base->Sort2(d, v, swapped); + return ConcatUpperLower(d, swapped, v); // 8 = half of the vector + } +}; + +// ------------------------------ Sorting network + +// (Green's irregular) sorting network for independent columns in 16 vectors. +template <class D, class Traits, class V = Vec<D>> +HWY_INLINE void Sort16(D d, Traits st, V& v0, V& v1, V& v2, V& v3, V& v4, V& v5, + V& v6, V& v7, V& v8, V& v9, V& va, V& vb, V& vc, V& vd, + V& ve, V& vf) { + st.Sort2(d, v0, v1); + st.Sort2(d, v2, v3); + st.Sort2(d, v4, v5); + st.Sort2(d, v6, v7); + st.Sort2(d, v8, v9); + st.Sort2(d, va, vb); + st.Sort2(d, vc, vd); + st.Sort2(d, ve, vf); + st.Sort2(d, v0, v2); + st.Sort2(d, v1, v3); + st.Sort2(d, v4, v6); + st.Sort2(d, v5, v7); + st.Sort2(d, v8, va); + st.Sort2(d, v9, vb); + st.Sort2(d, vc, ve); + st.Sort2(d, vd, vf); + st.Sort2(d, v0, v4); + st.Sort2(d, v1, v5); + st.Sort2(d, v2, v6); + st.Sort2(d, v3, v7); + st.Sort2(d, v8, vc); + st.Sort2(d, v9, vd); + st.Sort2(d, va, ve); + st.Sort2(d, vb, vf); + st.Sort2(d, v0, v8); + st.Sort2(d, v1, v9); + st.Sort2(d, v2, va); + st.Sort2(d, v3, vb); + st.Sort2(d, v4, vc); + st.Sort2(d, v5, vd); + st.Sort2(d, v6, ve); + st.Sort2(d, v7, vf); + st.Sort2(d, v5, va); + st.Sort2(d, v6, v9); + st.Sort2(d, v3, vc); + st.Sort2(d, v7, vb); + st.Sort2(d, vd, ve); + st.Sort2(d, v4, v8); + st.Sort2(d, v1, v2); + st.Sort2(d, v1, v4); + st.Sort2(d, v7, vd); + st.Sort2(d, v2, v8); + st.Sort2(d, vb, ve); + st.Sort2(d, v2, v4); + st.Sort2(d, v5, v6); + st.Sort2(d, v9, va); + st.Sort2(d, vb, vd); + st.Sort2(d, v3, v8); + st.Sort2(d, v7, vc); + st.Sort2(d, v3, v5); + st.Sort2(d, v6, v8); + st.Sort2(d, v7, v9); + st.Sort2(d, va, vc); + st.Sort2(d, v3, v4); + st.Sort2(d, v5, v6); + st.Sort2(d, v7, v8); + st.Sort2(d, v9, va); + st.Sort2(d, vb, vc); + st.Sort2(d, v6, v7); + st.Sort2(d, v8, v9); +} + +// ------------------------------ Merging networks + +// Blacher's hybrid bitonic/odd-even networks, generated by print_network.cc. + +template <class D, class Traits, class V = Vec<D>> +HWY_INLINE void Merge2(D d, Traits st, V& v0, V& v1, V& v2, V& v3, V& v4, V& v5, + V& v6, V& v7, V& v8, V& v9, V& va, V& vb, V& vc, V& vd, + V& ve, V& vf) { + v8 = st.ReverseKeys2(d, v8); + v9 = st.ReverseKeys2(d, v9); + va = st.ReverseKeys2(d, va); + vb = st.ReverseKeys2(d, vb); + vc = st.ReverseKeys2(d, vc); + vd = st.ReverseKeys2(d, vd); + ve = st.ReverseKeys2(d, ve); + vf = st.ReverseKeys2(d, vf); + st.Sort2(d, v0, vf); + st.Sort2(d, v1, ve); + st.Sort2(d, v2, vd); + st.Sort2(d, v3, vc); + st.Sort2(d, v4, vb); + st.Sort2(d, v5, va); + st.Sort2(d, v6, v9); + st.Sort2(d, v7, v8); + v4 = st.ReverseKeys2(d, v4); + vc = st.ReverseKeys2(d, vc); + v5 = st.ReverseKeys2(d, v5); + vd = st.ReverseKeys2(d, vd); + v6 = st.ReverseKeys2(d, v6); + ve = st.ReverseKeys2(d, ve); + v7 = st.ReverseKeys2(d, v7); + vf = st.ReverseKeys2(d, vf); + st.Sort2(d, v0, v7); + st.Sort2(d, v8, vf); + st.Sort2(d, v1, v6); + st.Sort2(d, v9, ve); + st.Sort2(d, v2, v5); + st.Sort2(d, va, vd); + st.Sort2(d, v3, v4); + st.Sort2(d, vb, vc); + v2 = st.ReverseKeys2(d, v2); + v3 = st.ReverseKeys2(d, v3); + v6 = st.ReverseKeys2(d, v6); + v7 = st.ReverseKeys2(d, v7); + va = st.ReverseKeys2(d, va); + vb = st.ReverseKeys2(d, vb); + ve = st.ReverseKeys2(d, ve); + vf = st.ReverseKeys2(d, vf); + st.Sort2(d, v0, v3); + st.Sort2(d, v1, v2); + st.Sort2(d, v4, v7); + st.Sort2(d, v5, v6); + st.Sort2(d, v8, vb); + st.Sort2(d, v9, va); + st.Sort2(d, vc, vf); + st.Sort2(d, vd, ve); + v1 = st.ReverseKeys2(d, v1); + v3 = st.ReverseKeys2(d, v3); + v5 = st.ReverseKeys2(d, v5); + v7 = st.ReverseKeys2(d, v7); + v9 = st.ReverseKeys2(d, v9); + vb = st.ReverseKeys2(d, vb); + vd = st.ReverseKeys2(d, vd); + vf = st.ReverseKeys2(d, vf); + st.Sort2(d, v0, v1); + st.Sort2(d, v2, v3); + st.Sort2(d, v4, v5); + st.Sort2(d, v6, v7); + st.Sort2(d, v8, v9); + st.Sort2(d, va, vb); + st.Sort2(d, vc, vd); + st.Sort2(d, ve, vf); + v0 = st.SortPairsDistance1(d, v0); + v1 = st.SortPairsDistance1(d, v1); + v2 = st.SortPairsDistance1(d, v2); + v3 = st.SortPairsDistance1(d, v3); + v4 = st.SortPairsDistance1(d, v4); + v5 = st.SortPairsDistance1(d, v5); + v6 = st.SortPairsDistance1(d, v6); + v7 = st.SortPairsDistance1(d, v7); + v8 = st.SortPairsDistance1(d, v8); + v9 = st.SortPairsDistance1(d, v9); + va = st.SortPairsDistance1(d, va); + vb = st.SortPairsDistance1(d, vb); + vc = st.SortPairsDistance1(d, vc); + vd = st.SortPairsDistance1(d, vd); + ve = st.SortPairsDistance1(d, ve); + vf = st.SortPairsDistance1(d, vf); +} + +template <class D, class Traits, class V = Vec<D>> +HWY_INLINE void Merge4(D d, Traits st, V& v0, V& v1, V& v2, V& v3, V& v4, V& v5, + V& v6, V& v7, V& v8, V& v9, V& va, V& vb, V& vc, V& vd, + V& ve, V& vf) { + v8 = st.ReverseKeys4(d, v8); + v9 = st.ReverseKeys4(d, v9); + va = st.ReverseKeys4(d, va); + vb = st.ReverseKeys4(d, vb); + vc = st.ReverseKeys4(d, vc); + vd = st.ReverseKeys4(d, vd); + ve = st.ReverseKeys4(d, ve); + vf = st.ReverseKeys4(d, vf); + st.Sort2(d, v0, vf); + st.Sort2(d, v1, ve); + st.Sort2(d, v2, vd); + st.Sort2(d, v3, vc); + st.Sort2(d, v4, vb); + st.Sort2(d, v5, va); + st.Sort2(d, v6, v9); + st.Sort2(d, v7, v8); + v4 = st.ReverseKeys4(d, v4); + vc = st.ReverseKeys4(d, vc); + v5 = st.ReverseKeys4(d, v5); + vd = st.ReverseKeys4(d, vd); + v6 = st.ReverseKeys4(d, v6); + ve = st.ReverseKeys4(d, ve); + v7 = st.ReverseKeys4(d, v7); + vf = st.ReverseKeys4(d, vf); + st.Sort2(d, v0, v7); + st.Sort2(d, v8, vf); + st.Sort2(d, v1, v6); + st.Sort2(d, v9, ve); + st.Sort2(d, v2, v5); + st.Sort2(d, va, vd); + st.Sort2(d, v3, v4); + st.Sort2(d, vb, vc); + v2 = st.ReverseKeys4(d, v2); + v3 = st.ReverseKeys4(d, v3); + v6 = st.ReverseKeys4(d, v6); + v7 = st.ReverseKeys4(d, v7); + va = st.ReverseKeys4(d, va); + vb = st.ReverseKeys4(d, vb); + ve = st.ReverseKeys4(d, ve); + vf = st.ReverseKeys4(d, vf); + st.Sort2(d, v0, v3); + st.Sort2(d, v1, v2); + st.Sort2(d, v4, v7); + st.Sort2(d, v5, v6); + st.Sort2(d, v8, vb); + st.Sort2(d, v9, va); + st.Sort2(d, vc, vf); + st.Sort2(d, vd, ve); + v1 = st.ReverseKeys4(d, v1); + v3 = st.ReverseKeys4(d, v3); + v5 = st.ReverseKeys4(d, v5); + v7 = st.ReverseKeys4(d, v7); + v9 = st.ReverseKeys4(d, v9); + vb = st.ReverseKeys4(d, vb); + vd = st.ReverseKeys4(d, vd); + vf = st.ReverseKeys4(d, vf); + st.Sort2(d, v0, v1); + st.Sort2(d, v2, v3); + st.Sort2(d, v4, v5); + st.Sort2(d, v6, v7); + st.Sort2(d, v8, v9); + st.Sort2(d, va, vb); + st.Sort2(d, vc, vd); + st.Sort2(d, ve, vf); + v0 = st.SortPairsReverse4(d, v0); + v1 = st.SortPairsReverse4(d, v1); + v2 = st.SortPairsReverse4(d, v2); + v3 = st.SortPairsReverse4(d, v3); + v4 = st.SortPairsReverse4(d, v4); + v5 = st.SortPairsReverse4(d, v5); + v6 = st.SortPairsReverse4(d, v6); + v7 = st.SortPairsReverse4(d, v7); + v8 = st.SortPairsReverse4(d, v8); + v9 = st.SortPairsReverse4(d, v9); + va = st.SortPairsReverse4(d, va); + vb = st.SortPairsReverse4(d, vb); + vc = st.SortPairsReverse4(d, vc); + vd = st.SortPairsReverse4(d, vd); + ve = st.SortPairsReverse4(d, ve); + vf = st.SortPairsReverse4(d, vf); + v0 = st.SortPairsDistance1(d, v0); + v1 = st.SortPairsDistance1(d, v1); + v2 = st.SortPairsDistance1(d, v2); + v3 = st.SortPairsDistance1(d, v3); + v4 = st.SortPairsDistance1(d, v4); + v5 = st.SortPairsDistance1(d, v5); + v6 = st.SortPairsDistance1(d, v6); + v7 = st.SortPairsDistance1(d, v7); + v8 = st.SortPairsDistance1(d, v8); + v9 = st.SortPairsDistance1(d, v9); + va = st.SortPairsDistance1(d, va); + vb = st.SortPairsDistance1(d, vb); + vc = st.SortPairsDistance1(d, vc); + vd = st.SortPairsDistance1(d, vd); + ve = st.SortPairsDistance1(d, ve); + vf = st.SortPairsDistance1(d, vf); +} + +template <class D, class Traits, class V = Vec<D>> +HWY_INLINE void Merge8(D d, Traits st, V& v0, V& v1, V& v2, V& v3, V& v4, V& v5, + V& v6, V& v7, V& v8, V& v9, V& va, V& vb, V& vc, V& vd, + V& ve, V& vf) { + v8 = st.ReverseKeys8(d, v8); + v9 = st.ReverseKeys8(d, v9); + va = st.ReverseKeys8(d, va); + vb = st.ReverseKeys8(d, vb); + vc = st.ReverseKeys8(d, vc); + vd = st.ReverseKeys8(d, vd); + ve = st.ReverseKeys8(d, ve); + vf = st.ReverseKeys8(d, vf); + st.Sort2(d, v0, vf); + st.Sort2(d, v1, ve); + st.Sort2(d, v2, vd); + st.Sort2(d, v3, vc); + st.Sort2(d, v4, vb); + st.Sort2(d, v5, va); + st.Sort2(d, v6, v9); + st.Sort2(d, v7, v8); + v4 = st.ReverseKeys8(d, v4); + vc = st.ReverseKeys8(d, vc); + v5 = st.ReverseKeys8(d, v5); + vd = st.ReverseKeys8(d, vd); + v6 = st.ReverseKeys8(d, v6); + ve = st.ReverseKeys8(d, ve); + v7 = st.ReverseKeys8(d, v7); + vf = st.ReverseKeys8(d, vf); + st.Sort2(d, v0, v7); + st.Sort2(d, v8, vf); + st.Sort2(d, v1, v6); + st.Sort2(d, v9, ve); + st.Sort2(d, v2, v5); + st.Sort2(d, va, vd); + st.Sort2(d, v3, v4); + st.Sort2(d, vb, vc); + v2 = st.ReverseKeys8(d, v2); + v3 = st.ReverseKeys8(d, v3); + v6 = st.ReverseKeys8(d, v6); + v7 = st.ReverseKeys8(d, v7); + va = st.ReverseKeys8(d, va); + vb = st.ReverseKeys8(d, vb); + ve = st.ReverseKeys8(d, ve); + vf = st.ReverseKeys8(d, vf); + st.Sort2(d, v0, v3); + st.Sort2(d, v1, v2); + st.Sort2(d, v4, v7); + st.Sort2(d, v5, v6); + st.Sort2(d, v8, vb); + st.Sort2(d, v9, va); + st.Sort2(d, vc, vf); + st.Sort2(d, vd, ve); + v1 = st.ReverseKeys8(d, v1); + v3 = st.ReverseKeys8(d, v3); + v5 = st.ReverseKeys8(d, v5); + v7 = st.ReverseKeys8(d, v7); + v9 = st.ReverseKeys8(d, v9); + vb = st.ReverseKeys8(d, vb); + vd = st.ReverseKeys8(d, vd); + vf = st.ReverseKeys8(d, vf); + st.Sort2(d, v0, v1); + st.Sort2(d, v2, v3); + st.Sort2(d, v4, v5); + st.Sort2(d, v6, v7); + st.Sort2(d, v8, v9); + st.Sort2(d, va, vb); + st.Sort2(d, vc, vd); + st.Sort2(d, ve, vf); + v0 = st.SortPairsReverse8(d, v0); + v1 = st.SortPairsReverse8(d, v1); + v2 = st.SortPairsReverse8(d, v2); + v3 = st.SortPairsReverse8(d, v3); + v4 = st.SortPairsReverse8(d, v4); + v5 = st.SortPairsReverse8(d, v5); + v6 = st.SortPairsReverse8(d, v6); + v7 = st.SortPairsReverse8(d, v7); + v8 = st.SortPairsReverse8(d, v8); + v9 = st.SortPairsReverse8(d, v9); + va = st.SortPairsReverse8(d, va); + vb = st.SortPairsReverse8(d, vb); + vc = st.SortPairsReverse8(d, vc); + vd = st.SortPairsReverse8(d, vd); + ve = st.SortPairsReverse8(d, ve); + vf = st.SortPairsReverse8(d, vf); + v0 = st.SortPairsDistance2(d, v0); + v1 = st.SortPairsDistance2(d, v1); + v2 = st.SortPairsDistance2(d, v2); + v3 = st.SortPairsDistance2(d, v3); + v4 = st.SortPairsDistance2(d, v4); + v5 = st.SortPairsDistance2(d, v5); + v6 = st.SortPairsDistance2(d, v6); + v7 = st.SortPairsDistance2(d, v7); + v8 = st.SortPairsDistance2(d, v8); + v9 = st.SortPairsDistance2(d, v9); + va = st.SortPairsDistance2(d, va); + vb = st.SortPairsDistance2(d, vb); + vc = st.SortPairsDistance2(d, vc); + vd = st.SortPairsDistance2(d, vd); + ve = st.SortPairsDistance2(d, ve); + vf = st.SortPairsDistance2(d, vf); + v0 = st.SortPairsDistance1(d, v0); + v1 = st.SortPairsDistance1(d, v1); + v2 = st.SortPairsDistance1(d, v2); + v3 = st.SortPairsDistance1(d, v3); + v4 = st.SortPairsDistance1(d, v4); + v5 = st.SortPairsDistance1(d, v5); + v6 = st.SortPairsDistance1(d, v6); + v7 = st.SortPairsDistance1(d, v7); + v8 = st.SortPairsDistance1(d, v8); + v9 = st.SortPairsDistance1(d, v9); + va = st.SortPairsDistance1(d, va); + vb = st.SortPairsDistance1(d, vb); + vc = st.SortPairsDistance1(d, vc); + vd = st.SortPairsDistance1(d, vd); + ve = st.SortPairsDistance1(d, ve); + vf = st.SortPairsDistance1(d, vf); +} + +// Unused on MSVC, see below +#if !HWY_COMPILER_MSVC + +template <class D, class Traits, class V = Vec<D>> +HWY_INLINE void Merge16(D d, Traits st, V& v0, V& v1, V& v2, V& v3, V& v4, + V& v5, V& v6, V& v7, V& v8, V& v9, V& va, V& vb, V& vc, + V& vd, V& ve, V& vf) { + v8 = st.ReverseKeys16(d, v8); + v9 = st.ReverseKeys16(d, v9); + va = st.ReverseKeys16(d, va); + vb = st.ReverseKeys16(d, vb); + vc = st.ReverseKeys16(d, vc); + vd = st.ReverseKeys16(d, vd); + ve = st.ReverseKeys16(d, ve); + vf = st.ReverseKeys16(d, vf); + st.Sort2(d, v0, vf); + st.Sort2(d, v1, ve); + st.Sort2(d, v2, vd); + st.Sort2(d, v3, vc); + st.Sort2(d, v4, vb); + st.Sort2(d, v5, va); + st.Sort2(d, v6, v9); + st.Sort2(d, v7, v8); + v4 = st.ReverseKeys16(d, v4); + vc = st.ReverseKeys16(d, vc); + v5 = st.ReverseKeys16(d, v5); + vd = st.ReverseKeys16(d, vd); + v6 = st.ReverseKeys16(d, v6); + ve = st.ReverseKeys16(d, ve); + v7 = st.ReverseKeys16(d, v7); + vf = st.ReverseKeys16(d, vf); + st.Sort2(d, v0, v7); + st.Sort2(d, v8, vf); + st.Sort2(d, v1, v6); + st.Sort2(d, v9, ve); + st.Sort2(d, v2, v5); + st.Sort2(d, va, vd); + st.Sort2(d, v3, v4); + st.Sort2(d, vb, vc); + v2 = st.ReverseKeys16(d, v2); + v3 = st.ReverseKeys16(d, v3); + v6 = st.ReverseKeys16(d, v6); + v7 = st.ReverseKeys16(d, v7); + va = st.ReverseKeys16(d, va); + vb = st.ReverseKeys16(d, vb); + ve = st.ReverseKeys16(d, ve); + vf = st.ReverseKeys16(d, vf); + st.Sort2(d, v0, v3); + st.Sort2(d, v1, v2); + st.Sort2(d, v4, v7); + st.Sort2(d, v5, v6); + st.Sort2(d, v8, vb); + st.Sort2(d, v9, va); + st.Sort2(d, vc, vf); + st.Sort2(d, vd, ve); + v1 = st.ReverseKeys16(d, v1); + v3 = st.ReverseKeys16(d, v3); + v5 = st.ReverseKeys16(d, v5); + v7 = st.ReverseKeys16(d, v7); + v9 = st.ReverseKeys16(d, v9); + vb = st.ReverseKeys16(d, vb); + vd = st.ReverseKeys16(d, vd); + vf = st.ReverseKeys16(d, vf); + st.Sort2(d, v0, v1); + st.Sort2(d, v2, v3); + st.Sort2(d, v4, v5); + st.Sort2(d, v6, v7); + st.Sort2(d, v8, v9); + st.Sort2(d, va, vb); + st.Sort2(d, vc, vd); + st.Sort2(d, ve, vf); + v0 = st.SortPairsReverse16(d, v0); + v1 = st.SortPairsReverse16(d, v1); + v2 = st.SortPairsReverse16(d, v2); + v3 = st.SortPairsReverse16(d, v3); + v4 = st.SortPairsReverse16(d, v4); + v5 = st.SortPairsReverse16(d, v5); + v6 = st.SortPairsReverse16(d, v6); + v7 = st.SortPairsReverse16(d, v7); + v8 = st.SortPairsReverse16(d, v8); + v9 = st.SortPairsReverse16(d, v9); + va = st.SortPairsReverse16(d, va); + vb = st.SortPairsReverse16(d, vb); + vc = st.SortPairsReverse16(d, vc); + vd = st.SortPairsReverse16(d, vd); + ve = st.SortPairsReverse16(d, ve); + vf = st.SortPairsReverse16(d, vf); + v0 = st.SortPairsDistance4(d, v0); + v1 = st.SortPairsDistance4(d, v1); + v2 = st.SortPairsDistance4(d, v2); + v3 = st.SortPairsDistance4(d, v3); + v4 = st.SortPairsDistance4(d, v4); + v5 = st.SortPairsDistance4(d, v5); + v6 = st.SortPairsDistance4(d, v6); + v7 = st.SortPairsDistance4(d, v7); + v8 = st.SortPairsDistance4(d, v8); + v9 = st.SortPairsDistance4(d, v9); + va = st.SortPairsDistance4(d, va); + vb = st.SortPairsDistance4(d, vb); + vc = st.SortPairsDistance4(d, vc); + vd = st.SortPairsDistance4(d, vd); + ve = st.SortPairsDistance4(d, ve); + vf = st.SortPairsDistance4(d, vf); + v0 = st.SortPairsDistance2(d, v0); + v1 = st.SortPairsDistance2(d, v1); + v2 = st.SortPairsDistance2(d, v2); + v3 = st.SortPairsDistance2(d, v3); + v4 = st.SortPairsDistance2(d, v4); + v5 = st.SortPairsDistance2(d, v5); + v6 = st.SortPairsDistance2(d, v6); + v7 = st.SortPairsDistance2(d, v7); + v8 = st.SortPairsDistance2(d, v8); + v9 = st.SortPairsDistance2(d, v9); + va = st.SortPairsDistance2(d, va); + vb = st.SortPairsDistance2(d, vb); + vc = st.SortPairsDistance2(d, vc); + vd = st.SortPairsDistance2(d, vd); + ve = st.SortPairsDistance2(d, ve); + vf = st.SortPairsDistance2(d, vf); + v0 = st.SortPairsDistance1(d, v0); + v1 = st.SortPairsDistance1(d, v1); + v2 = st.SortPairsDistance1(d, v2); + v3 = st.SortPairsDistance1(d, v3); + v4 = st.SortPairsDistance1(d, v4); + v5 = st.SortPairsDistance1(d, v5); + v6 = st.SortPairsDistance1(d, v6); + v7 = st.SortPairsDistance1(d, v7); + v8 = st.SortPairsDistance1(d, v8); + v9 = st.SortPairsDistance1(d, v9); + va = st.SortPairsDistance1(d, va); + vb = st.SortPairsDistance1(d, vb); + vc = st.SortPairsDistance1(d, vc); + vd = st.SortPairsDistance1(d, vd); + ve = st.SortPairsDistance1(d, ve); + vf = st.SortPairsDistance1(d, vf); +} + +#endif // !HWY_COMPILER_MSVC + +// Reshapes `buf` into a matrix, sorts columns independently, and then merges +// into a sorted 1D array without transposing. +// +// `st` is SharedTraits<Traits*<Order*>>. This abstraction layer bridges +// differences in sort order and single-lane vs 128-bit keys. +// +// References: +// https://drops.dagstuhl.de/opus/volltexte/2021/13775/pdf/LIPIcs-SEA-2021-3.pdf +// https://github.com/simd-sorting/fast-and-robust/blob/master/avx2_sort_demo/avx2sort.h +// "Entwurf und Implementierung vektorisierter Sortieralgorithmen" (M. Blacher) +template <class Traits, class V> +HWY_INLINE void SortingNetwork(Traits st, size_t cols, V& v0, V& v1, V& v2, + V& v3, V& v4, V& v5, V& v6, V& v7, V& v8, V& v9, + V& va, V& vb, V& vc, V& vd, V& ve, V& vf) { + const CappedTag<typename Traits::LaneType, Constants::kMaxCols> d; + + HWY_DASSERT(cols <= Constants::kMaxCols); + + // The network width depends on the number of keys, not lanes. + constexpr size_t kLanesPerKey = st.LanesPerKey(); + const size_t keys = cols / kLanesPerKey; + constexpr size_t kMaxKeys = MaxLanes(d) / kLanesPerKey; + + Sort16(d, st, v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, va, vb, vc, vd, ve, vf); + + // Checking MaxLanes avoids generating HWY_ASSERT code for the unreachable + // code paths: if MaxLanes < 2, then keys <= cols < 2. + if (HWY_LIKELY(keys >= 2 && kMaxKeys >= 2)) { + Merge2(d, st, v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, va, vb, vc, vd, ve, + vf); + + if (HWY_LIKELY(keys >= 4 && kMaxKeys >= 4)) { + Merge4(d, st, v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, va, vb, vc, vd, ve, + vf); + + if (HWY_LIKELY(keys >= 8 && kMaxKeys >= 8)) { + Merge8(d, st, v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, va, vb, vc, vd, + ve, vf); + + // Avoids build timeout. Must match #if condition in kMaxCols. +#if !HWY_COMPILER_MSVC && !HWY_IS_DEBUG_BUILD + if (HWY_LIKELY(keys >= 16 && kMaxKeys >= 16)) { + Merge16(d, st, v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, va, vb, vc, vd, + ve, vf); + + static_assert(Constants::kMaxCols <= 16, "Add more branches"); + } +#endif + } + } + } +} + +// As above, but loads from/stores to `buf`. This ensures full vectors are +// aligned, and enables loads/stores without bounds checks. +// +// NOINLINE because this is large and called twice from vqsort-inl.h. +template <class Traits, typename T> +HWY_NOINLINE void SortingNetwork(Traits st, T* HWY_RESTRICT buf, size_t cols) { + const CappedTag<T, Constants::kMaxCols> d; + using V = decltype(Zero(d)); + + HWY_DASSERT(cols <= Constants::kMaxCols); + + // These are aligned iff cols == Lanes(d). We prefer unaligned/non-constexpr + // offsets to duplicating this code for every value of cols. + static_assert(Constants::kMaxRows == 16, "Update loads/stores/args"); + V v0 = LoadU(d, buf + 0x0 * cols); + V v1 = LoadU(d, buf + 0x1 * cols); + V v2 = LoadU(d, buf + 0x2 * cols); + V v3 = LoadU(d, buf + 0x3 * cols); + V v4 = LoadU(d, buf + 0x4 * cols); + V v5 = LoadU(d, buf + 0x5 * cols); + V v6 = LoadU(d, buf + 0x6 * cols); + V v7 = LoadU(d, buf + 0x7 * cols); + V v8 = LoadU(d, buf + 0x8 * cols); + V v9 = LoadU(d, buf + 0x9 * cols); + V va = LoadU(d, buf + 0xa * cols); + V vb = LoadU(d, buf + 0xb * cols); + V vc = LoadU(d, buf + 0xc * cols); + V vd = LoadU(d, buf + 0xd * cols); + V ve = LoadU(d, buf + 0xe * cols); + V vf = LoadU(d, buf + 0xf * cols); + + SortingNetwork(st, cols, v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, va, vb, vc, + vd, ve, vf); + + StoreU(v0, d, buf + 0x0 * cols); + StoreU(v1, d, buf + 0x1 * cols); + StoreU(v2, d, buf + 0x2 * cols); + StoreU(v3, d, buf + 0x3 * cols); + StoreU(v4, d, buf + 0x4 * cols); + StoreU(v5, d, buf + 0x5 * cols); + StoreU(v6, d, buf + 0x6 * cols); + StoreU(v7, d, buf + 0x7 * cols); + StoreU(v8, d, buf + 0x8 * cols); + StoreU(v9, d, buf + 0x9 * cols); + StoreU(va, d, buf + 0xa * cols); + StoreU(vb, d, buf + 0xb * cols); + StoreU(vc, d, buf + 0xc * cols); + StoreU(vd, d, buf + 0xd * cols); + StoreU(ve, d, buf + 0xe * cols); + StoreU(vf, d, buf + 0xf * cols); +} + +#else +template <class Base> +struct SharedTraits : public Base {}; +#endif // VQSORT_ENABLED + +} // namespace detail +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#endif // HIGHWAY_HWY_CONTRIB_SORT_SORTING_NETWORKS_TOGGLE diff --git a/third_party/highway/hwy/contrib/sort/traits-inl.h b/third_party/highway/hwy/contrib/sort/traits-inl.h new file mode 100644 index 0000000000..8dfc639bbd --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/traits-inl.h @@ -0,0 +1,568 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +// Per-target +#if defined(HIGHWAY_HWY_CONTRIB_SORT_TRAITS_TOGGLE) == \ + defined(HWY_TARGET_TOGGLE) +#ifdef HIGHWAY_HWY_CONTRIB_SORT_TRAITS_TOGGLE +#undef HIGHWAY_HWY_CONTRIB_SORT_TRAITS_TOGGLE +#else +#define HIGHWAY_HWY_CONTRIB_SORT_TRAITS_TOGGLE +#endif + +#include <string> + +#include "hwy/contrib/sort/shared-inl.h" // SortConstants +#include "hwy/contrib/sort/vqsort.h" // SortDescending +#include "hwy/highway.h" +#include "hwy/print.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { +namespace detail { + +#if VQSORT_ENABLED || HWY_IDE + +// Highway does not provide a lane type for 128-bit keys, so we use uint64_t +// along with an abstraction layer for single-lane vs. lane-pair, which is +// independent of the order. +template <typename T> +struct KeyLane { + static constexpr bool Is128() { return false; } + // False indicates the entire key (i.e. lane) should be compared. KV stands + // for key-value. + static constexpr bool IsKV() { return false; } + constexpr size_t LanesPerKey() const { return 1; } + + // What type bench_sort should allocate for generating inputs. + using LaneType = T; + // What type to pass to Sorter::operator(). + using KeyType = T; + + std::string KeyString() const { + char string100[100]; + hwy::detail::TypeName(hwy::detail::MakeTypeInfo<KeyType>(), 1, string100); + return string100; + } + + // For HeapSort + HWY_INLINE void Swap(T* a, T* b) const { + const T temp = *a; + *a = *b; + *b = temp; + } + + template <class V, class M> + HWY_INLINE V CompressKeys(V keys, M mask) const { + return CompressNot(keys, mask); + } + + // Broadcasts one key into a vector + template <class D> + HWY_INLINE Vec<D> SetKey(D d, const T* key) const { + return Set(d, *key); + } + + template <class D> + HWY_INLINE Mask<D> EqualKeys(D /*tag*/, Vec<D> a, Vec<D> b) const { + return Eq(a, b); + } + + template <class D> + HWY_INLINE Mask<D> NotEqualKeys(D /*tag*/, Vec<D> a, Vec<D> b) const { + return Ne(a, b); + } + + // For keys=lanes, any difference counts. + template <class D> + HWY_INLINE bool NoKeyDifference(D /*tag*/, Vec<D> diff) const { + // Must avoid floating-point comparisons (for -0) + const RebindToUnsigned<D> du; + return AllTrue(du, Eq(BitCast(du, diff), Zero(du))); + } + + HWY_INLINE bool Equal1(const T* a, const T* b) const { return *a == *b; } + + template <class D> + HWY_INLINE Vec<D> ReverseKeys(D d, Vec<D> v) const { + return Reverse(d, v); + } + + template <class D> + HWY_INLINE Vec<D> ReverseKeys2(D d, Vec<D> v) const { + return Reverse2(d, v); + } + + template <class D> + HWY_INLINE Vec<D> ReverseKeys4(D d, Vec<D> v) const { + return Reverse4(d, v); + } + + template <class D> + HWY_INLINE Vec<D> ReverseKeys8(D d, Vec<D> v) const { + return Reverse8(d, v); + } + + template <class D> + HWY_INLINE Vec<D> ReverseKeys16(D d, Vec<D> v) const { + static_assert(SortConstants::kMaxCols <= 16, "Assumes u32x16 = 512 bit"); + return ReverseKeys(d, v); + } + + template <class V> + HWY_INLINE V OddEvenKeys(const V odd, const V even) const { + return OddEven(odd, even); + } + + template <class D, HWY_IF_LANE_SIZE_D(D, 2)> + HWY_INLINE Vec<D> SwapAdjacentPairs(D d, const Vec<D> v) const { + const Repartition<uint32_t, D> du32; + return BitCast(d, Shuffle2301(BitCast(du32, v))); + } + template <class D, HWY_IF_LANE_SIZE_D(D, 4)> + HWY_INLINE Vec<D> SwapAdjacentPairs(D /* tag */, const Vec<D> v) const { + return Shuffle1032(v); + } + template <class D, HWY_IF_LANE_SIZE_D(D, 8)> + HWY_INLINE Vec<D> SwapAdjacentPairs(D /* tag */, const Vec<D> v) const { + return SwapAdjacentBlocks(v); + } + + template <class D, HWY_IF_NOT_LANE_SIZE_D(D, 8)> + HWY_INLINE Vec<D> SwapAdjacentQuads(D d, const Vec<D> v) const { +#if HWY_HAVE_FLOAT64 // in case D is float32 + const RepartitionToWide<D> dw; +#else + const RepartitionToWide<RebindToUnsigned<D> > dw; +#endif + return BitCast(d, SwapAdjacentPairs(dw, BitCast(dw, v))); + } + template <class D, HWY_IF_LANE_SIZE_D(D, 8)> + HWY_INLINE Vec<D> SwapAdjacentQuads(D d, const Vec<D> v) const { + // Assumes max vector size = 512 + return ConcatLowerUpper(d, v, v); + } + + template <class D, HWY_IF_NOT_LANE_SIZE_D(D, 8)> + HWY_INLINE Vec<D> OddEvenPairs(D d, const Vec<D> odd, + const Vec<D> even) const { +#if HWY_HAVE_FLOAT64 // in case D is float32 + const RepartitionToWide<D> dw; +#else + const RepartitionToWide<RebindToUnsigned<D> > dw; +#endif + return BitCast(d, OddEven(BitCast(dw, odd), BitCast(dw, even))); + } + template <class D, HWY_IF_LANE_SIZE_D(D, 8)> + HWY_INLINE Vec<D> OddEvenPairs(D /* tag */, Vec<D> odd, Vec<D> even) const { + return OddEvenBlocks(odd, even); + } + + template <class D, HWY_IF_NOT_LANE_SIZE_D(D, 8)> + HWY_INLINE Vec<D> OddEvenQuads(D d, Vec<D> odd, Vec<D> even) const { +#if HWY_HAVE_FLOAT64 // in case D is float32 + const RepartitionToWide<D> dw; +#else + const RepartitionToWide<RebindToUnsigned<D> > dw; +#endif + return BitCast(d, OddEvenPairs(dw, BitCast(dw, odd), BitCast(dw, even))); + } + template <class D, HWY_IF_LANE_SIZE_D(D, 8)> + HWY_INLINE Vec<D> OddEvenQuads(D d, Vec<D> odd, Vec<D> even) const { + return ConcatUpperLower(d, odd, even); + } +}; + +// Anything order-related depends on the key traits *and* the order (see +// FirstOfLanes). We cannot implement just one Compare function because Lt128 +// only compiles if the lane type is u64. Thus we need either overloaded +// functions with a tag type, class specializations, or separate classes. +// We avoid overloaded functions because we want all functions to be callable +// from a SortTraits without per-function wrappers. Specializing would work, but +// we are anyway going to specialize at a higher level. +template <typename T> +struct OrderAscending : public KeyLane<T> { + using Order = SortAscending; + + HWY_INLINE bool Compare1(const T* a, const T* b) { return *a < *b; } + + template <class D> + HWY_INLINE Mask<D> Compare(D /* tag */, Vec<D> a, Vec<D> b) const { + return Lt(a, b); + } + + // Two halves of Sort2, used in ScanMinMax. + template <class D> + HWY_INLINE Vec<D> First(D /* tag */, const Vec<D> a, const Vec<D> b) const { + return Min(a, b); + } + + template <class D> + HWY_INLINE Vec<D> Last(D /* tag */, const Vec<D> a, const Vec<D> b) const { + return Max(a, b); + } + + template <class D> + HWY_INLINE Vec<D> FirstOfLanes(D d, Vec<D> v, + T* HWY_RESTRICT /* buf */) const { + return MinOfLanes(d, v); + } + + template <class D> + HWY_INLINE Vec<D> LastOfLanes(D d, Vec<D> v, + T* HWY_RESTRICT /* buf */) const { + return MaxOfLanes(d, v); + } + + template <class D> + HWY_INLINE Vec<D> FirstValue(D d) const { + return Set(d, hwy::LowestValue<T>()); + } + + template <class D> + HWY_INLINE Vec<D> LastValue(D d) const { + return Set(d, hwy::HighestValue<T>()); + } + + template <class D> + HWY_INLINE Vec<D> PrevValue(D d, Vec<D> v) const { + return Sub(v, Set(d, hwy::Epsilon<T>())); + } +}; + +template <typename T> +struct OrderDescending : public KeyLane<T> { + using Order = SortDescending; + + HWY_INLINE bool Compare1(const T* a, const T* b) { return *b < *a; } + + template <class D> + HWY_INLINE Mask<D> Compare(D /* tag */, Vec<D> a, Vec<D> b) const { + return Lt(b, a); + } + + template <class D> + HWY_INLINE Vec<D> First(D /* tag */, const Vec<D> a, const Vec<D> b) const { + return Max(a, b); + } + + template <class D> + HWY_INLINE Vec<D> Last(D /* tag */, const Vec<D> a, const Vec<D> b) const { + return Min(a, b); + } + + template <class D> + HWY_INLINE Vec<D> FirstOfLanes(D d, Vec<D> v, + T* HWY_RESTRICT /* buf */) const { + return MaxOfLanes(d, v); + } + + template <class D> + HWY_INLINE Vec<D> LastOfLanes(D d, Vec<D> v, + T* HWY_RESTRICT /* buf */) const { + return MinOfLanes(d, v); + } + + template <class D> + HWY_INLINE Vec<D> FirstValue(D d) const { + return Set(d, hwy::HighestValue<T>()); + } + + template <class D> + HWY_INLINE Vec<D> LastValue(D d) const { + return Set(d, hwy::LowestValue<T>()); + } + + template <class D> + HWY_INLINE Vec<D> PrevValue(D d, Vec<D> v) const { + return Add(v, Set(d, hwy::Epsilon<T>())); + } +}; + +struct KeyValue64 : public KeyLane<uint64_t> { + // True indicates only part of the key (i.e. lane) should be compared. KV + // stands for key-value. + static constexpr bool IsKV() { return true; } + + template <class D> + HWY_INLINE Mask<D> EqualKeys(D /*tag*/, Vec<D> a, Vec<D> b) const { + return Eq(ShiftRight<32>(a), ShiftRight<32>(b)); + } + + template <class D> + HWY_INLINE Mask<D> NotEqualKeys(D /*tag*/, Vec<D> a, Vec<D> b) const { + return Ne(ShiftRight<32>(a), ShiftRight<32>(b)); + } + + HWY_INLINE bool Equal1(const uint64_t* a, const uint64_t* b) const { + return (*a >> 32) == (*b >> 32); + } + + // Only count differences in the actual key, not the value. + template <class D> + HWY_INLINE bool NoKeyDifference(D /*tag*/, Vec<D> diff) const { + // Must avoid floating-point comparisons (for -0) + const RebindToUnsigned<D> du; + const Vec<decltype(du)> zero = Zero(du); + const Vec<decltype(du)> keys = ShiftRight<32>(diff); // clear values + return AllTrue(du, Eq(BitCast(du, keys), zero)); + } +}; + +struct OrderAscendingKV64 : public KeyValue64 { + using Order = SortAscending; + + HWY_INLINE bool Compare1(const LaneType* a, const LaneType* b) { + return (*a >> 32) < (*b >> 32); + } + + template <class D> + HWY_INLINE Mask<D> Compare(D /* tag */, Vec<D> a, Vec<D> b) const { + return Lt(ShiftRight<32>(a), ShiftRight<32>(b)); + } + + // Not required to be stable (preserving the order of equivalent keys), so + // we can include the value in the comparison. + template <class D> + HWY_INLINE Vec<D> First(D /* tag */, const Vec<D> a, const Vec<D> b) const { + return Min(a, b); + } + + template <class D> + HWY_INLINE Vec<D> Last(D /* tag */, const Vec<D> a, const Vec<D> b) const { + return Max(a, b); + } + + template <class D> + HWY_INLINE Vec<D> FirstOfLanes(D d, Vec<D> v, + uint64_t* HWY_RESTRICT /* buf */) const { + return MinOfLanes(d, v); + } + + template <class D> + HWY_INLINE Vec<D> LastOfLanes(D d, Vec<D> v, + uint64_t* HWY_RESTRICT /* buf */) const { + return MaxOfLanes(d, v); + } + + // Same as for regular lanes. + template <class D> + HWY_INLINE Vec<D> FirstValue(D d) const { + return Set(d, hwy::LowestValue<TFromD<D> >()); + } + + template <class D> + HWY_INLINE Vec<D> LastValue(D d) const { + return Set(d, hwy::HighestValue<TFromD<D> >()); + } + + template <class D> + HWY_INLINE Vec<D> PrevValue(D d, Vec<D> v) const { + return Sub(v, Set(d, uint64_t{1})); + } +}; + +struct OrderDescendingKV64 : public KeyValue64 { + using Order = SortDescending; + + HWY_INLINE bool Compare1(const LaneType* a, const LaneType* b) { + return (*b >> 32) < (*a >> 32); + } + + template <class D> + HWY_INLINE Mask<D> Compare(D /* tag */, Vec<D> a, Vec<D> b) const { + return Lt(ShiftRight<32>(b), ShiftRight<32>(a)); + } + + // Not required to be stable (preserving the order of equivalent keys), so + // we can include the value in the comparison. + template <class D> + HWY_INLINE Vec<D> First(D /* tag */, const Vec<D> a, const Vec<D> b) const { + return Max(a, b); + } + + template <class D> + HWY_INLINE Vec<D> Last(D /* tag */, const Vec<D> a, const Vec<D> b) const { + return Min(a, b); + } + + template <class D> + HWY_INLINE Vec<D> FirstOfLanes(D d, Vec<D> v, + uint64_t* HWY_RESTRICT /* buf */) const { + return MaxOfLanes(d, v); + } + + template <class D> + HWY_INLINE Vec<D> LastOfLanes(D d, Vec<D> v, + uint64_t* HWY_RESTRICT /* buf */) const { + return MinOfLanes(d, v); + } + + template <class D> + HWY_INLINE Vec<D> FirstValue(D d) const { + return Set(d, hwy::HighestValue<TFromD<D> >()); + } + + template <class D> + HWY_INLINE Vec<D> LastValue(D d) const { + return Set(d, hwy::LowestValue<TFromD<D> >()); + } + + template <class D> + HWY_INLINE Vec<D> PrevValue(D d, Vec<D> v) const { + return Add(v, Set(d, uint64_t{1})); + } +}; + +// Shared code that depends on Order. +template <class Base> +struct TraitsLane : public Base { + // For each lane i: replaces a[i] with the first and b[i] with the second + // according to Base. + // Corresponds to a conditional swap, which is one "node" of a sorting + // network. Min/Max are cheaper than compare + blend at least for integers. + template <class D> + HWY_INLINE void Sort2(D d, Vec<D>& a, Vec<D>& b) const { + const Base* base = static_cast<const Base*>(this); + + const Vec<D> a_copy = a; + // Prior to AVX3, there is no native 64-bit Min/Max, so they compile to 4 + // instructions. We can reduce it to a compare + 2 IfThenElse. +#if HWY_AVX3 < HWY_TARGET && HWY_TARGET <= HWY_SSSE3 + if (sizeof(TFromD<D>) == 8) { + const Mask<D> cmp = base->Compare(d, a, b); + a = IfThenElse(cmp, a, b); + b = IfThenElse(cmp, b, a_copy); + return; + } +#endif + a = base->First(d, a, b); + b = base->Last(d, a_copy, b); + } + + // Conditionally swaps even-numbered lanes with their odd-numbered neighbor. + template <class D, HWY_IF_LANE_SIZE_D(D, 8)> + HWY_INLINE Vec<D> SortPairsDistance1(D d, Vec<D> v) const { + const Base* base = static_cast<const Base*>(this); + Vec<D> swapped = base->ReverseKeys2(d, v); + // Further to the above optimization, Sort2+OddEvenKeys compile to four + // instructions; we can save one by combining two blends. +#if HWY_AVX3 < HWY_TARGET && HWY_TARGET <= HWY_SSSE3 + const Vec<D> cmp = VecFromMask(d, base->Compare(d, v, swapped)); + return IfVecThenElse(DupOdd(cmp), swapped, v); +#else + Sort2(d, v, swapped); + return base->OddEvenKeys(swapped, v); +#endif + } + + // (See above - we use Sort2 for non-64-bit types.) + template <class D, HWY_IF_NOT_LANE_SIZE_D(D, 8)> + HWY_INLINE Vec<D> SortPairsDistance1(D d, Vec<D> v) const { + const Base* base = static_cast<const Base*>(this); + Vec<D> swapped = base->ReverseKeys2(d, v); + Sort2(d, v, swapped); + return base->OddEvenKeys(swapped, v); + } + + // Swaps with the vector formed by reversing contiguous groups of 4 keys. + template <class D> + HWY_INLINE Vec<D> SortPairsReverse4(D d, Vec<D> v) const { + const Base* base = static_cast<const Base*>(this); + Vec<D> swapped = base->ReverseKeys4(d, v); + Sort2(d, v, swapped); + return base->OddEvenPairs(d, swapped, v); + } + + // Conditionally swaps lane 0 with 4, 1 with 5 etc. + template <class D> + HWY_INLINE Vec<D> SortPairsDistance4(D d, Vec<D> v) const { + const Base* base = static_cast<const Base*>(this); + Vec<D> swapped = base->SwapAdjacentQuads(d, v); + // Only used in Merge16, so this will not be used on AVX2 (which only has 4 + // u64 lanes), so skip the above optimization for 64-bit AVX2. + Sort2(d, v, swapped); + return base->OddEvenQuads(d, swapped, v); + } +}; + +#else + +// Base class shared between OrderAscending, OrderDescending. +template <typename T> +struct KeyLane { + constexpr bool Is128() const { return false; } + constexpr size_t LanesPerKey() const { return 1; } + + using LaneType = T; + using KeyType = T; + + std::string KeyString() const { + char string100[100]; + hwy::detail::TypeName(hwy::detail::MakeTypeInfo<KeyType>(), 1, string100); + return string100; + } +}; + +template <typename T> +struct OrderAscending : public KeyLane<T> { + using Order = SortAscending; + + HWY_INLINE bool Compare1(const T* a, const T* b) { return *a < *b; } + + template <class D> + HWY_INLINE Mask<D> Compare(D /* tag */, Vec<D> a, Vec<D> b) { + return Lt(a, b); + } +}; + +template <typename T> +struct OrderDescending : public KeyLane<T> { + using Order = SortDescending; + + HWY_INLINE bool Compare1(const T* a, const T* b) { return *b < *a; } + + template <class D> + HWY_INLINE Mask<D> Compare(D /* tag */, Vec<D> a, Vec<D> b) { + return Lt(b, a); + } +}; + +template <class Order> +struct TraitsLane : public Order { + // For HeapSort + template <typename T> // MSVC doesn't find typename Order::LaneType. + HWY_INLINE void Swap(T* a, T* b) const { + const T temp = *a; + *a = *b; + *b = temp; + } + + template <class D> + HWY_INLINE Vec<D> SetKey(D d, const TFromD<D>* key) const { + return Set(d, *key); + } +}; + +#endif // VQSORT_ENABLED + +} // namespace detail +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#endif // HIGHWAY_HWY_CONTRIB_SORT_TRAITS_TOGGLE diff --git a/third_party/highway/hwy/contrib/sort/traits128-inl.h b/third_party/highway/hwy/contrib/sort/traits128-inl.h new file mode 100644 index 0000000000..d889140868 --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/traits128-inl.h @@ -0,0 +1,517 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +// Per-target +#if defined(HIGHWAY_HWY_CONTRIB_SORT_TRAITS128_TOGGLE) == \ + defined(HWY_TARGET_TOGGLE) +#ifdef HIGHWAY_HWY_CONTRIB_SORT_TRAITS128_TOGGLE +#undef HIGHWAY_HWY_CONTRIB_SORT_TRAITS128_TOGGLE +#else +#define HIGHWAY_HWY_CONTRIB_SORT_TRAITS128_TOGGLE +#endif + +#include <string> + +#include "hwy/contrib/sort/shared-inl.h" +#include "hwy/contrib/sort/vqsort.h" // SortDescending +#include "hwy/highway.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { +namespace detail { + +#if VQSORT_ENABLED || HWY_IDE + +// Highway does not provide a lane type for 128-bit keys, so we use uint64_t +// along with an abstraction layer for single-lane vs. lane-pair, which is +// independent of the order. +struct KeyAny128 { + static constexpr bool Is128() { return true; } + constexpr size_t LanesPerKey() const { return 2; } + + // What type bench_sort should allocate for generating inputs. + using LaneType = uint64_t; + // KeyType and KeyString are defined by derived classes. + + HWY_INLINE void Swap(LaneType* a, LaneType* b) const { + const FixedTag<LaneType, 2> d; + const auto temp = LoadU(d, a); + StoreU(LoadU(d, b), d, a); + StoreU(temp, d, b); + } + + template <class V, class M> + HWY_INLINE V CompressKeys(V keys, M mask) const { + return CompressBlocksNot(keys, mask); + } + + template <class D> + HWY_INLINE Vec<D> SetKey(D d, const TFromD<D>* key) const { + return LoadDup128(d, key); + } + + template <class D> + HWY_INLINE Vec<D> ReverseKeys(D d, Vec<D> v) const { + return ReverseBlocks(d, v); + } + + template <class D> + HWY_INLINE Vec<D> ReverseKeys2(D /* tag */, const Vec<D> v) const { + return SwapAdjacentBlocks(v); + } + + // Only called for 4 keys because we do not support >512-bit vectors. + template <class D> + HWY_INLINE Vec<D> ReverseKeys4(D d, const Vec<D> v) const { + HWY_DASSERT(Lanes(d) <= 64 / sizeof(TFromD<D>)); + return ReverseKeys(d, v); + } + + // Only called for 4 keys because we do not support >512-bit vectors. + template <class D> + HWY_INLINE Vec<D> OddEvenPairs(D d, const Vec<D> odd, + const Vec<D> even) const { + HWY_DASSERT(Lanes(d) <= 64 / sizeof(TFromD<D>)); + return ConcatUpperLower(d, odd, even); + } + + template <class V> + HWY_INLINE V OddEvenKeys(const V odd, const V even) const { + return OddEvenBlocks(odd, even); + } + + template <class D> + HWY_INLINE Vec<D> ReverseKeys8(D, Vec<D>) const { + HWY_ASSERT(0); // not supported: would require 1024-bit vectors + } + + template <class D> + HWY_INLINE Vec<D> ReverseKeys16(D, Vec<D>) const { + HWY_ASSERT(0); // not supported: would require 2048-bit vectors + } + + // This is only called for 8/16 col networks (not supported). + template <class D> + HWY_INLINE Vec<D> SwapAdjacentPairs(D, Vec<D>) const { + HWY_ASSERT(0); + } + + // This is only called for 16 col networks (not supported). + template <class D> + HWY_INLINE Vec<D> SwapAdjacentQuads(D, Vec<D>) const { + HWY_ASSERT(0); + } + + // This is only called for 8 col networks (not supported). + template <class D> + HWY_INLINE Vec<D> OddEvenQuads(D, Vec<D>, Vec<D>) const { + HWY_ASSERT(0); + } +}; + +// Base class shared between OrderAscending128, OrderDescending128. +struct Key128 : public KeyAny128 { + // False indicates the entire key should be compared. KV means key-value. + static constexpr bool IsKV() { return false; } + + // What type to pass to Sorter::operator(). + using KeyType = hwy::uint128_t; + + std::string KeyString() const { return "U128"; } + + template <class D> + HWY_INLINE Mask<D> EqualKeys(D d, Vec<D> a, Vec<D> b) const { + return Eq128(d, a, b); + } + + template <class D> + HWY_INLINE Mask<D> NotEqualKeys(D d, Vec<D> a, Vec<D> b) const { + return Ne128(d, a, b); + } + + // For keys=entire 128 bits, any difference counts. + template <class D> + HWY_INLINE bool NoKeyDifference(D /*tag*/, Vec<D> diff) const { + // Must avoid floating-point comparisons (for -0) + const RebindToUnsigned<D> du; + return AllTrue(du, Eq(BitCast(du, diff), Zero(du))); + } + + HWY_INLINE bool Equal1(const LaneType* a, const LaneType* b) const { + return a[0] == b[0] && a[1] == b[1]; + } +}; + +// Anything order-related depends on the key traits *and* the order (see +// FirstOfLanes). We cannot implement just one Compare function because Lt128 +// only compiles if the lane type is u64. Thus we need either overloaded +// functions with a tag type, class specializations, or separate classes. +// We avoid overloaded functions because we want all functions to be callable +// from a SortTraits without per-function wrappers. Specializing would work, but +// we are anyway going to specialize at a higher level. +struct OrderAscending128 : public Key128 { + using Order = SortAscending; + + HWY_INLINE bool Compare1(const LaneType* a, const LaneType* b) { + return (a[1] == b[1]) ? a[0] < b[0] : a[1] < b[1]; + } + + template <class D> + HWY_INLINE Mask<D> Compare(D d, Vec<D> a, Vec<D> b) const { + return Lt128(d, a, b); + } + + // Used by CompareTop + template <class V> + HWY_INLINE Mask<DFromV<V> > CompareLanes(V a, V b) const { + return Lt(a, b); + } + + template <class D> + HWY_INLINE Vec<D> First(D d, const Vec<D> a, const Vec<D> b) const { + return Min128(d, a, b); + } + + template <class D> + HWY_INLINE Vec<D> Last(D d, const Vec<D> a, const Vec<D> b) const { + return Max128(d, a, b); + } + + // Same as for regular lanes because 128-bit lanes are u64. + template <class D> + HWY_INLINE Vec<D> FirstValue(D d) const { + return Set(d, hwy::LowestValue<TFromD<D> >()); + } + + template <class D> + HWY_INLINE Vec<D> LastValue(D d) const { + return Set(d, hwy::HighestValue<TFromD<D> >()); + } + + template <class D> + HWY_INLINE Vec<D> PrevValue(D d, Vec<D> v) const { + const Vec<D> k0 = Zero(d); + const Vec<D> k1 = OddEven(k0, Set(d, uint64_t{1})); + const Mask<D> borrow = Eq(v, k0); // don't-care, lo == 0 + // lo == 0? 1 : 0, 0 + const Vec<D> adjust = ShiftLeftLanes<1>(IfThenElseZero(borrow, k1)); + return Sub(Sub(v, k1), adjust); + } +}; + +struct OrderDescending128 : public Key128 { + using Order = SortDescending; + + HWY_INLINE bool Compare1(const LaneType* a, const LaneType* b) { + return (a[1] == b[1]) ? b[0] < a[0] : b[1] < a[1]; + } + + template <class D> + HWY_INLINE Mask<D> Compare(D d, Vec<D> a, Vec<D> b) const { + return Lt128(d, b, a); + } + + // Used by CompareTop + template <class V> + HWY_INLINE Mask<DFromV<V> > CompareLanes(V a, V b) const { + return Lt(b, a); + } + + template <class D> + HWY_INLINE Vec<D> First(D d, const Vec<D> a, const Vec<D> b) const { + return Max128(d, a, b); + } + + template <class D> + HWY_INLINE Vec<D> Last(D d, const Vec<D> a, const Vec<D> b) const { + return Min128(d, a, b); + } + + // Same as for regular lanes because 128-bit lanes are u64. + template <class D> + HWY_INLINE Vec<D> FirstValue(D d) const { + return Set(d, hwy::HighestValue<TFromD<D> >()); + } + + template <class D> + HWY_INLINE Vec<D> LastValue(D d) const { + return Set(d, hwy::LowestValue<TFromD<D> >()); + } + + template <class D> + HWY_INLINE Vec<D> PrevValue(D d, Vec<D> v) const { + const Vec<D> k1 = OddEven(Zero(d), Set(d, uint64_t{1})); + const Vec<D> added = Add(v, k1); + const Mask<D> overflowed = Lt(added, v); // false, overflowed + // overflowed? 1 : 0, 0 + const Vec<D> adjust = ShiftLeftLanes<1>(IfThenElseZero(overflowed, k1)); + return Add(added, adjust); + } +}; + +// Base class shared between OrderAscendingKV128, OrderDescendingKV128. +struct KeyValue128 : public KeyAny128 { + // True indicates only part of the key (the more significant lane) should be + // compared. KV stands for key-value. + static constexpr bool IsKV() { return true; } + + // What type to pass to Sorter::operator(). + using KeyType = K64V64; + + std::string KeyString() const { return "KV128"; } + + template <class D> + HWY_INLINE Mask<D> EqualKeys(D d, Vec<D> a, Vec<D> b) const { + return Eq128Upper(d, a, b); + } + + template <class D> + HWY_INLINE Mask<D> NotEqualKeys(D d, Vec<D> a, Vec<D> b) const { + return Ne128Upper(d, a, b); + } + + // Only count differences in the actual key, not the value. + template <class D> + HWY_INLINE bool NoKeyDifference(D /*tag*/, Vec<D> diff) const { + // Must avoid floating-point comparisons (for -0) + const RebindToUnsigned<D> du; + const Vec<decltype(du)> zero = Zero(du); + const Vec<decltype(du)> keys = OddEven(diff, zero); // clear values + return AllTrue(du, Eq(BitCast(du, keys), zero)); + } + + HWY_INLINE bool Equal1(const LaneType* a, const LaneType* b) const { + return a[1] == b[1]; + } +}; + +struct OrderAscendingKV128 : public KeyValue128 { + using Order = SortAscending; + + HWY_INLINE bool Compare1(const LaneType* a, const LaneType* b) { + return a[1] < b[1]; + } + + template <class D> + HWY_INLINE Mask<D> Compare(D d, Vec<D> a, Vec<D> b) const { + return Lt128Upper(d, a, b); + } + + // Used by CompareTop + template <class V> + HWY_INLINE Mask<DFromV<V> > CompareLanes(V a, V b) const { + return Lt(a, b); + } + + template <class D> + HWY_INLINE Vec<D> First(D d, const Vec<D> a, const Vec<D> b) const { + return Min128Upper(d, a, b); + } + + template <class D> + HWY_INLINE Vec<D> Last(D d, const Vec<D> a, const Vec<D> b) const { + return Max128Upper(d, a, b); + } + + // Same as for regular lanes because 128-bit lanes are u64. + template <class D> + HWY_INLINE Vec<D> FirstValue(D d) const { + return Set(d, hwy::LowestValue<TFromD<D> >()); + } + + template <class D> + HWY_INLINE Vec<D> LastValue(D d) const { + return Set(d, hwy::HighestValue<TFromD<D> >()); + } + + template <class D> + HWY_INLINE Vec<D> PrevValue(D d, Vec<D> v) const { + const Vec<D> k1 = OddEven(Set(d, uint64_t{1}), Zero(d)); + return Sub(v, k1); + } +}; + +struct OrderDescendingKV128 : public KeyValue128 { + using Order = SortDescending; + + HWY_INLINE bool Compare1(const LaneType* a, const LaneType* b) { + return b[1] < a[1]; + } + + template <class D> + HWY_INLINE Mask<D> Compare(D d, Vec<D> a, Vec<D> b) const { + return Lt128Upper(d, b, a); + } + + // Used by CompareTop + template <class V> + HWY_INLINE Mask<DFromV<V> > CompareLanes(V a, V b) const { + return Lt(b, a); + } + + template <class D> + HWY_INLINE Vec<D> First(D d, const Vec<D> a, const Vec<D> b) const { + return Max128Upper(d, a, b); + } + + template <class D> + HWY_INLINE Vec<D> Last(D d, const Vec<D> a, const Vec<D> b) const { + return Min128Upper(d, a, b); + } + + // Same as for regular lanes because 128-bit lanes are u64. + template <class D> + HWY_INLINE Vec<D> FirstValue(D d) const { + return Set(d, hwy::HighestValue<TFromD<D> >()); + } + + template <class D> + HWY_INLINE Vec<D> LastValue(D d) const { + return Set(d, hwy::LowestValue<TFromD<D> >()); + } + + template <class D> + HWY_INLINE Vec<D> PrevValue(D d, Vec<D> v) const { + const Vec<D> k1 = OddEven(Set(d, uint64_t{1}), Zero(d)); + return Add(v, k1); + } +}; + +// Shared code that depends on Order. +template <class Base> +class Traits128 : public Base { + // Special case for >= 256 bit vectors +#if HWY_TARGET <= HWY_AVX2 || HWY_TARGET == HWY_SVE_256 + // Returns vector with only the top u64 lane valid. Useful when the next step + // is to replicate the mask anyway. + template <class D> + HWY_INLINE HWY_MAYBE_UNUSED Vec<D> CompareTop(D d, Vec<D> a, Vec<D> b) const { + const Base* base = static_cast<const Base*>(this); + const Mask<D> eqHL = Eq(a, b); + const Vec<D> ltHL = VecFromMask(d, base->CompareLanes(a, b)); +#if HWY_TARGET == HWY_SVE_256 + return IfThenElse(eqHL, DupEven(ltHL), ltHL); +#else + const Vec<D> ltLX = ShiftLeftLanes<1>(ltHL); + return OrAnd(ltHL, VecFromMask(d, eqHL), ltLX); +#endif + } + + // We want to swap 2 u128, i.e. 4 u64 lanes, based on the 0 or FF..FF mask in + // the most-significant of those lanes (the result of CompareTop), so + // replicate it 4x. Only called for >= 256-bit vectors. + template <class V> + HWY_INLINE V ReplicateTop4x(V v) const { +#if HWY_TARGET == HWY_SVE_256 + return svdup_lane_u64(v, 3); +#elif HWY_TARGET <= HWY_AVX3 + return V{_mm512_permutex_epi64(v.raw, _MM_SHUFFLE(3, 3, 3, 3))}; +#else // AVX2 + return V{_mm256_permute4x64_epi64(v.raw, _MM_SHUFFLE(3, 3, 3, 3))}; +#endif + } +#endif // HWY_TARGET + + public: + template <class D> + HWY_INLINE Vec<D> FirstOfLanes(D d, Vec<D> v, + TFromD<D>* HWY_RESTRICT buf) const { + const Base* base = static_cast<const Base*>(this); + const size_t N = Lanes(d); + Store(v, d, buf); + v = base->SetKey(d, buf + 0); // result must be broadcasted + for (size_t i = base->LanesPerKey(); i < N; i += base->LanesPerKey()) { + v = base->First(d, v, base->SetKey(d, buf + i)); + } + return v; + } + + template <class D> + HWY_INLINE Vec<D> LastOfLanes(D d, Vec<D> v, + TFromD<D>* HWY_RESTRICT buf) const { + const Base* base = static_cast<const Base*>(this); + const size_t N = Lanes(d); + Store(v, d, buf); + v = base->SetKey(d, buf + 0); // result must be broadcasted + for (size_t i = base->LanesPerKey(); i < N; i += base->LanesPerKey()) { + v = base->Last(d, v, base->SetKey(d, buf + i)); + } + return v; + } + + template <class D> + HWY_INLINE void Sort2(D d, Vec<D>& a, Vec<D>& b) const { + const Base* base = static_cast<const Base*>(this); + + const Vec<D> a_copy = a; + const auto lt = base->Compare(d, a, b); + a = IfThenElse(lt, a, b); + b = IfThenElse(lt, b, a_copy); + } + + // Conditionally swaps even-numbered lanes with their odd-numbered neighbor. + template <class D> + HWY_INLINE Vec<D> SortPairsDistance1(D d, Vec<D> v) const { + const Base* base = static_cast<const Base*>(this); + Vec<D> swapped = base->ReverseKeys2(d, v); + +#if HWY_TARGET <= HWY_AVX2 || HWY_TARGET == HWY_SVE_256 + const Vec<D> select = ReplicateTop4x(CompareTop(d, v, swapped)); + return IfVecThenElse(select, swapped, v); +#else + Sort2(d, v, swapped); + return base->OddEvenKeys(swapped, v); +#endif + } + + // Swaps with the vector formed by reversing contiguous groups of 4 keys. + template <class D> + HWY_INLINE Vec<D> SortPairsReverse4(D d, Vec<D> v) const { + const Base* base = static_cast<const Base*>(this); + Vec<D> swapped = base->ReverseKeys4(d, v); + + // Only specialize for AVX3 because this requires 512-bit vectors. +#if HWY_TARGET <= HWY_AVX3 + const Vec512<uint64_t> outHx = CompareTop(d, v, swapped); + // Similar to ReplicateTop4x, we want to gang together 2 comparison results + // (4 lanes). They are not contiguous, so use permute to replicate 4x. + alignas(64) uint64_t kIndices[8] = {7, 7, 5, 5, 5, 5, 7, 7}; + const Vec512<uint64_t> select = + TableLookupLanes(outHx, SetTableIndices(d, kIndices)); + return IfVecThenElse(select, swapped, v); +#else + Sort2(d, v, swapped); + return base->OddEvenPairs(d, swapped, v); +#endif + } + + // Conditionally swaps lane 0 with 4, 1 with 5 etc. + template <class D> + HWY_INLINE Vec<D> SortPairsDistance4(D, Vec<D>) const { + // Only used by Merge16, which would require 2048 bit vectors (unsupported). + HWY_ASSERT(0); + } +}; + +#endif // VQSORT_ENABLED + +} // namespace detail +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#endif // HIGHWAY_HWY_CONTRIB_SORT_TRAITS128_TOGGLE diff --git a/third_party/highway/hwy/contrib/sort/vqsort-inl.h b/third_party/highway/hwy/contrib/sort/vqsort-inl.h new file mode 100644 index 0000000000..edebe4af11 --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/vqsort-inl.h @@ -0,0 +1,1484 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +// Normal include guard for target-independent parts +#ifndef HIGHWAY_HWY_CONTRIB_SORT_VQSORT_INL_H_ +#define HIGHWAY_HWY_CONTRIB_SORT_VQSORT_INL_H_ + +#ifndef VQSORT_PRINT +#define VQSORT_PRINT 0 +#endif + +// Makes it harder for adversaries to predict our sampling locations, at the +// cost of 1-2% increased runtime. +#ifndef VQSORT_SECURE_RNG +#define VQSORT_SECURE_RNG 0 +#endif + +#if VQSORT_SECURE_RNG +#include "third_party/absl/random/random.h" +#endif + +#include <stdio.h> // unconditional #include so we can use if(VQSORT_PRINT). +#include <string.h> // memcpy + +#include "hwy/cache_control.h" // Prefetch +#include "hwy/contrib/sort/vqsort.h" // Fill24Bytes + +#if HWY_IS_MSAN +#include <sanitizer/msan_interface.h> +#endif + +#endif // HIGHWAY_HWY_CONTRIB_SORT_VQSORT_INL_H_ + +// Per-target +#if defined(HIGHWAY_HWY_CONTRIB_SORT_VQSORT_TOGGLE) == \ + defined(HWY_TARGET_TOGGLE) +#ifdef HIGHWAY_HWY_CONTRIB_SORT_VQSORT_TOGGLE +#undef HIGHWAY_HWY_CONTRIB_SORT_VQSORT_TOGGLE +#else +#define HIGHWAY_HWY_CONTRIB_SORT_VQSORT_TOGGLE +#endif + +#if VQSORT_PRINT +#include "hwy/print-inl.h" +#endif + +#include "hwy/contrib/sort/shared-inl.h" +#include "hwy/contrib/sort/sorting_networks-inl.h" +// Placeholder for internal instrumentation. Do not remove. +#include "hwy/highway.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { +namespace detail { + +using Constants = hwy::SortConstants; + +// Wrappers to avoid #if in user code (interferes with code folding) + +HWY_INLINE void UnpoisonIfMemorySanitizer(void* p, size_t bytes) { +#if HWY_IS_MSAN + __msan_unpoison(p, bytes); +#else + (void)p; + (void)bytes; +#endif +} + +template <class D> +HWY_INLINE void MaybePrintVector(D d, const char* label, Vec<D> v, + size_t start = 0, size_t max_lanes = 16) { +#if VQSORT_PRINT >= 2 // Print is only defined #if + Print(d, label, v, start, max_lanes); +#else + (void)d; + (void)label; + (void)v; + (void)start; + (void)max_lanes; +#endif +} + +// ------------------------------ HeapSort + +template <class Traits, typename T> +void SiftDown(Traits st, T* HWY_RESTRICT lanes, const size_t num_lanes, + size_t start) { + constexpr size_t N1 = st.LanesPerKey(); + const FixedTag<T, N1> d; + + while (start < num_lanes) { + const size_t left = 2 * start + N1; + const size_t right = 2 * start + 2 * N1; + if (left >= num_lanes) break; + size_t idx_larger = start; + const auto key_j = st.SetKey(d, lanes + start); + if (AllTrue(d, st.Compare(d, key_j, st.SetKey(d, lanes + left)))) { + idx_larger = left; + } + if (right < num_lanes && + AllTrue(d, st.Compare(d, st.SetKey(d, lanes + idx_larger), + st.SetKey(d, lanes + right)))) { + idx_larger = right; + } + if (idx_larger == start) break; + st.Swap(lanes + start, lanes + idx_larger); + start = idx_larger; + } +} + +// Heapsort: O(1) space, O(N*logN) worst-case comparisons. +// Based on LLVM sanitizer_common.h, licensed under Apache-2.0. +template <class Traits, typename T> +void HeapSort(Traits st, T* HWY_RESTRICT lanes, const size_t num_lanes) { + constexpr size_t N1 = st.LanesPerKey(); + + if (num_lanes < 2 * N1) return; + + // Build heap. + for (size_t i = ((num_lanes - N1) / N1 / 2) * N1; i != (~N1 + 1); i -= N1) { + SiftDown(st, lanes, num_lanes, i); + } + + for (size_t i = num_lanes - N1; i != 0; i -= N1) { + // Swap root with last + st.Swap(lanes + 0, lanes + i); + + // Sift down the new root. + SiftDown(st, lanes, i, 0); + } +} + +#if VQSORT_ENABLED || HWY_IDE + +// ------------------------------ BaseCase + +// Sorts `keys` within the range [0, num) via sorting network. +template <class D, class Traits, typename T> +HWY_INLINE void BaseCase(D d, Traits st, T* HWY_RESTRICT keys, + T* HWY_RESTRICT keys_end, size_t num, + T* HWY_RESTRICT buf) { + const size_t N = Lanes(d); + using V = decltype(Zero(d)); + + // _Nonzero32 requires num - 1 != 0. + if (HWY_UNLIKELY(num <= 1)) return; + + // Reshape into a matrix with kMaxRows rows, and columns limited by the + // 1D `num`, which is upper-bounded by the vector width (see BaseCaseNum). + const size_t num_pow2 = size_t{1} + << (32 - Num0BitsAboveMS1Bit_Nonzero32( + static_cast<uint32_t>(num - 1))); + HWY_DASSERT(num <= num_pow2 && num_pow2 <= Constants::BaseCaseNum(N)); + const size_t cols = + HWY_MAX(st.LanesPerKey(), num_pow2 >> Constants::kMaxRowsLog2); + HWY_DASSERT(cols <= N); + + // We can avoid padding and load/store directly to `keys` after checking the + // original input array has enough space. Except at the right border, it's OK + // to sort more than the current sub-array. Even if we sort across a previous + // partition point, we know that keys will not migrate across it. However, we + // must use the maximum size of the sorting network, because the StoreU of its + // last vector would otherwise write invalid data starting at kMaxRows * cols. + const size_t N_sn = Lanes(CappedTag<T, Constants::kMaxCols>()); + if (HWY_LIKELY(keys + N_sn * Constants::kMaxRows <= keys_end)) { + SortingNetwork(st, keys, N_sn); + return; + } + + // Copy `keys` to `buf`. + size_t i; + for (i = 0; i + N <= num; i += N) { + Store(LoadU(d, keys + i), d, buf + i); + } + SafeCopyN(num - i, d, keys + i, buf + i); + i = num; + + // Fill with padding - last in sort order, not copied to keys. + const V kPadding = st.LastValue(d); + // Initialize an extra vector because SortingNetwork loads full vectors, + // which may exceed cols*kMaxRows. + for (; i < (cols * Constants::kMaxRows + N); i += N) { + StoreU(kPadding, d, buf + i); + } + + SortingNetwork(st, buf, cols); + + for (i = 0; i + N <= num; i += N) { + StoreU(Load(d, buf + i), d, keys + i); + } + SafeCopyN(num - i, d, buf + i, keys + i); +} + +// ------------------------------ Partition + +// Consumes from `keys` until a multiple of kUnroll*N remains. +// Temporarily stores the right side into `buf`, then moves behind `num`. +// Returns the number of keys consumed from the left side. +template <class D, class Traits, class T> +HWY_INLINE size_t PartitionToMultipleOfUnroll(D d, Traits st, + T* HWY_RESTRICT keys, size_t& num, + const Vec<D> pivot, + T* HWY_RESTRICT buf) { + constexpr size_t kUnroll = Constants::kPartitionUnroll; + const size_t N = Lanes(d); + size_t readL = 0; + T* HWY_RESTRICT posL = keys; + size_t bufR = 0; + // Partition requires both a multiple of kUnroll*N and at least + // 2*kUnroll*N for the initial loads. If less, consume all here. + const size_t num_rem = + (num < 2 * kUnroll * N) ? num : (num & (kUnroll * N - 1)); + size_t i = 0; + for (; i + N <= num_rem; i += N) { + const Vec<D> vL = LoadU(d, keys + readL); + readL += N; + + const auto comp = st.Compare(d, pivot, vL); + posL += CompressBlendedStore(vL, Not(comp), d, posL); + bufR += CompressStore(vL, comp, d, buf + bufR); + } + // Last iteration: only use valid lanes. + if (HWY_LIKELY(i != num_rem)) { + const auto mask = FirstN(d, num_rem - i); + const Vec<D> vL = LoadU(d, keys + readL); + + const auto comp = st.Compare(d, pivot, vL); + posL += CompressBlendedStore(vL, AndNot(comp, mask), d, posL); + bufR += CompressStore(vL, And(comp, mask), d, buf + bufR); + } + + // MSAN seems not to understand CompressStore. buf[0, bufR) are valid. + UnpoisonIfMemorySanitizer(buf, bufR * sizeof(T)); + + // Everything we loaded was put into buf, or behind the current `posL`, after + // which there is space for bufR items. First move items from `keys + num` to + // `posL` to free up space, then copy `buf` into the vacated `keys + num`. + // A loop with masked loads from `buf` is insufficient - we would also need to + // mask from `keys + num`. Combining a loop with memcpy for the remainders is + // slower than just memcpy, so we use that for simplicity. + num -= bufR; + memcpy(posL, keys + num, bufR * sizeof(T)); + memcpy(keys + num, buf, bufR * sizeof(T)); + return static_cast<size_t>(posL - keys); // caller will shrink num by this. +} + +template <class V> +V OrXor(const V o, const V x1, const V x2) { + // TODO(janwas): add op so we can benefit from AVX-512 ternlog? + return Or(o, Xor(x1, x2)); +} + +// Note: we could track the OrXor of v and pivot to see if the entire left +// partition is equal, but that happens rarely and thus is a net loss. +template <class D, class Traits, typename T> +HWY_INLINE void StoreLeftRight(D d, Traits st, const Vec<D> v, + const Vec<D> pivot, T* HWY_RESTRICT keys, + size_t& writeL, size_t& remaining) { + const size_t N = Lanes(d); + + const auto comp = st.Compare(d, pivot, v); + + remaining -= N; + if (hwy::HWY_NAMESPACE::CompressIsPartition<T>::value || + (HWY_MAX_BYTES == 16 && st.Is128())) { + // Non-native Compress (e.g. AVX2): we are able to partition a vector using + // a single Compress+two StoreU instead of two Compress[Blended]Store. The + // latter are more expensive. Because we store entire vectors, the contents + // between the updated writeL and writeR are ignored and will be overwritten + // by subsequent calls. This works because writeL and writeR are at least + // two vectors apart. + const auto lr = st.CompressKeys(v, comp); + const size_t num_left = N - CountTrue(d, comp); + StoreU(lr, d, keys + writeL); + // Now write the right-side elements (if any), such that the previous writeR + // is one past the end of the newly written right elements, then advance. + StoreU(lr, d, keys + remaining + writeL); + writeL += num_left; + } else { + // Native Compress[Store] (e.g. AVX3), which only keep the left or right + // side, not both, hence we require two calls. + const size_t num_left = CompressStore(v, Not(comp), d, keys + writeL); + writeL += num_left; + + (void)CompressBlendedStore(v, comp, d, keys + remaining + writeL); + } +} + +template <class D, class Traits, typename T> +HWY_INLINE void StoreLeftRight4(D d, Traits st, const Vec<D> v0, + const Vec<D> v1, const Vec<D> v2, + const Vec<D> v3, const Vec<D> pivot, + T* HWY_RESTRICT keys, size_t& writeL, + size_t& remaining) { + StoreLeftRight(d, st, v0, pivot, keys, writeL, remaining); + StoreLeftRight(d, st, v1, pivot, keys, writeL, remaining); + StoreLeftRight(d, st, v2, pivot, keys, writeL, remaining); + StoreLeftRight(d, st, v3, pivot, keys, writeL, remaining); +} + +// Moves "<= pivot" keys to the front, and others to the back. pivot is +// broadcasted. Time-critical! +// +// Aligned loads do not seem to be worthwhile (not bottlenecked by load ports). +template <class D, class Traits, typename T> +HWY_INLINE size_t Partition(D d, Traits st, T* HWY_RESTRICT keys, size_t num, + const Vec<D> pivot, T* HWY_RESTRICT buf) { + using V = decltype(Zero(d)); + const size_t N = Lanes(d); + + // StoreLeftRight will CompressBlendedStore ending at `writeR`. Unless all + // lanes happen to be in the right-side partition, this will overrun `keys`, + // which triggers asan errors. Avoid by special-casing the last vector. + HWY_DASSERT(num > 2 * N); // ensured by HandleSpecialCases + num -= N; + size_t last = num; + const V vlast = LoadU(d, keys + last); + + const size_t consumedL = + PartitionToMultipleOfUnroll(d, st, keys, num, pivot, buf); + keys += consumedL; + last -= consumedL; + num -= consumedL; + constexpr size_t kUnroll = Constants::kPartitionUnroll; + + // Partition splits the vector into 3 sections, left to right: Elements + // smaller or equal to the pivot, unpartitioned elements and elements larger + // than the pivot. To write elements unconditionally on the loop body without + // overwriting existing data, we maintain two regions of the loop where all + // elements have been copied elsewhere (e.g. vector registers.). I call these + // bufferL and bufferR, for left and right respectively. + // + // These regions are tracked by the indices (writeL, writeR, left, right) as + // presented in the diagram below. + // + // writeL writeR + // \/ \/ + // | <= pivot | bufferL | unpartitioned | bufferR | > pivot | + // \/ \/ + // left right + // + // In the main loop body below we choose a side, load some elements out of the + // vector and move either `left` or `right`. Next we call into StoreLeftRight + // to partition the data, and the partitioned elements will be written either + // to writeR or writeL and the corresponding index will be moved accordingly. + // + // Note that writeR is not explicitly tracked as an optimization for platforms + // with conditional operations. Instead we track writeL and the number of + // elements left to process (`remaining`). From the diagram above we can see + // that: + // writeR - writeL = remaining => writeR = remaining + writeL + // + // Tracking `remaining` is advantageous because each iteration reduces the + // number of unpartitioned elements by a fixed amount, so we can compute + // `remaining` without data dependencies. + // + size_t writeL = 0; + size_t remaining = num; + + const T* HWY_RESTRICT readL = keys; + const T* HWY_RESTRICT readR = keys + num; + // Cannot load if there were fewer than 2 * kUnroll * N. + if (HWY_LIKELY(num != 0)) { + HWY_DASSERT(num >= 2 * kUnroll * N); + HWY_DASSERT((num & (kUnroll * N - 1)) == 0); + + // Make space for writing in-place by reading from readL/readR. + const V vL0 = LoadU(d, readL + 0 * N); + const V vL1 = LoadU(d, readL + 1 * N); + const V vL2 = LoadU(d, readL + 2 * N); + const V vL3 = LoadU(d, readL + 3 * N); + readL += kUnroll * N; + readR -= kUnroll * N; + const V vR0 = LoadU(d, readR + 0 * N); + const V vR1 = LoadU(d, readR + 1 * N); + const V vR2 = LoadU(d, readR + 2 * N); + const V vR3 = LoadU(d, readR + 3 * N); + + // readL/readR changed above, so check again before the loop. + while (readL != readR) { + V v0, v1, v2, v3; + + // Data-dependent but branching is faster than forcing branch-free. + const size_t capacityL = + static_cast<size_t>((readL - keys) - static_cast<ptrdiff_t>(writeL)); + HWY_DASSERT(capacityL <= num); // >= 0 + // Load data from the end of the vector with less data (front or back). + // The next paragraphs explain how this works. + // + // let block_size = (kUnroll * N) + // On the loop prelude we load block_size elements from the front of the + // vector and an additional block_size elements from the back. On each + // iteration k elements are written to the front of the vector and + // (block_size - k) to the back. + // + // This creates a loop invariant where the capacity on the front + // (capacityL) and on the back (capacityR) always add to 2 * block_size. + // In other words: + // capacityL + capacityR = 2 * block_size + // capacityR = 2 * block_size - capacityL + // + // This means that: + // capacityL < capacityR <=> + // capacityL < 2 * block_size - capacityL <=> + // 2 * capacityL < 2 * block_size <=> + // capacityL < block_size + // + // Thus the check on the next line is equivalent to capacityL > capacityR. + // + if (kUnroll * N < capacityL) { + readR -= kUnroll * N; + v0 = LoadU(d, readR + 0 * N); + v1 = LoadU(d, readR + 1 * N); + v2 = LoadU(d, readR + 2 * N); + v3 = LoadU(d, readR + 3 * N); + hwy::Prefetch(readR - 3 * kUnroll * N); + } else { + v0 = LoadU(d, readL + 0 * N); + v1 = LoadU(d, readL + 1 * N); + v2 = LoadU(d, readL + 2 * N); + v3 = LoadU(d, readL + 3 * N); + readL += kUnroll * N; + hwy::Prefetch(readL + 3 * kUnroll * N); + } + + StoreLeftRight4(d, st, v0, v1, v2, v3, pivot, keys, writeL, remaining); + } + + // Now finish writing the saved vectors to the middle. + StoreLeftRight4(d, st, vL0, vL1, vL2, vL3, pivot, keys, writeL, remaining); + StoreLeftRight4(d, st, vR0, vR1, vR2, vR3, pivot, keys, writeL, remaining); + } + + // We have partitioned [left, right) such that writeL is the boundary. + HWY_DASSERT(remaining == 0); + // Make space for inserting vlast: move up to N of the first right-side keys + // into the unused space starting at last. If we have fewer, ensure they are + // the last items in that vector by subtracting from the *load* address, + // which is safe because we have at least two vectors (checked above). + const size_t totalR = last - writeL; + const size_t startR = totalR < N ? writeL + totalR - N : writeL; + StoreU(LoadU(d, keys + startR), d, keys + last); + + // Partition vlast: write L, then R, into the single-vector gap at writeL. + const auto comp = st.Compare(d, pivot, vlast); + writeL += CompressBlendedStore(vlast, Not(comp), d, keys + writeL); + (void)CompressBlendedStore(vlast, comp, d, keys + writeL); + + return consumedL + writeL; +} + +// Returns true and partitions if [keys, keys + num) contains only {valueL, +// valueR}. Otherwise, sets third to the first differing value; keys may have +// been reordered and a regular Partition is still necessary. +// Called from two locations, hence NOINLINE. +template <class D, class Traits, typename T> +HWY_NOINLINE bool MaybePartitionTwoValue(D d, Traits st, T* HWY_RESTRICT keys, + size_t num, const Vec<D> valueL, + const Vec<D> valueR, Vec<D>& third, + T* HWY_RESTRICT buf) { + const size_t N = Lanes(d); + + size_t i = 0; + size_t writeL = 0; + + // As long as all lanes are equal to L or R, we can overwrite with valueL. + // This is faster than first counting, then backtracking to fill L and R. + for (; i + N <= num; i += N) { + const Vec<D> v = LoadU(d, keys + i); + // It is not clear how to apply OrXor here - that can check if *both* + // comparisons are true, but here we want *either*. Comparing the unsigned + // min of differences to zero works, but is expensive for u64 prior to AVX3. + const Mask<D> eqL = st.EqualKeys(d, v, valueL); + const Mask<D> eqR = st.EqualKeys(d, v, valueR); + // At least one other value present; will require a regular partition. + // On AVX-512, Or + AllTrue are folded into a single kortest if we are + // careful with the FindKnownFirstTrue argument, see below. + if (HWY_UNLIKELY(!AllTrue(d, Or(eqL, eqR)))) { + // If we repeat Or(eqL, eqR) here, the compiler will hoist it into the + // loop, which is a pessimization because this if-true branch is cold. + // We can defeat this via Not(Xor), which is equivalent because eqL and + // eqR cannot be true at the same time. Can we elide the additional Not? + // FindFirstFalse instructions are generally unavailable, but we can + // fuse Not and Xor/Or into one ExclusiveNeither. + const size_t lane = FindKnownFirstTrue(d, ExclusiveNeither(eqL, eqR)); + third = st.SetKey(d, keys + i + lane); + if (VQSORT_PRINT >= 2) { + fprintf(stderr, "found 3rd value at vec %zu; writeL %zu\n", i, writeL); + } + // 'Undo' what we did by filling the remainder of what we read with R. + for (; writeL + N <= i; writeL += N) { + StoreU(valueR, d, keys + writeL); + } + BlendedStore(valueR, FirstN(d, i - writeL), d, keys + writeL); + return false; + } + StoreU(valueL, d, keys + writeL); + writeL += CountTrue(d, eqL); + } + + // Final vector, masked comparison (no effect if i == num) + const size_t remaining = num - i; + SafeCopyN(remaining, d, keys + i, buf); + const Vec<D> v = Load(d, buf); + const Mask<D> valid = FirstN(d, remaining); + const Mask<D> eqL = And(st.EqualKeys(d, v, valueL), valid); + const Mask<D> eqR = st.EqualKeys(d, v, valueR); + // Invalid lanes are considered equal. + const Mask<D> eq = Or(Or(eqL, eqR), Not(valid)); + // At least one other value present; will require a regular partition. + if (HWY_UNLIKELY(!AllTrue(d, eq))) { + const size_t lane = FindKnownFirstTrue(d, Not(eq)); + third = st.SetKey(d, keys + i + lane); + if (VQSORT_PRINT >= 2) { + fprintf(stderr, "found 3rd value at partial vec %zu; writeL %zu\n", i, + writeL); + } + // 'Undo' what we did by filling the remainder of what we read with R. + for (; writeL + N <= i; writeL += N) { + StoreU(valueR, d, keys + writeL); + } + BlendedStore(valueR, FirstN(d, i - writeL), d, keys + writeL); + return false; + } + BlendedStore(valueL, valid, d, keys + writeL); + writeL += CountTrue(d, eqL); + + // Fill right side + i = writeL; + for (; i + N <= num; i += N) { + StoreU(valueR, d, keys + i); + } + BlendedStore(valueR, FirstN(d, num - i), d, keys + i); + + if (VQSORT_PRINT >= 2) { + fprintf(stderr, "Successful MaybePartitionTwoValue\n"); + } + return true; +} + +// Same as above, except that the pivot equals valueR, so scan right to left. +template <class D, class Traits, typename T> +HWY_INLINE bool MaybePartitionTwoValueR(D d, Traits st, T* HWY_RESTRICT keys, + size_t num, const Vec<D> valueL, + const Vec<D> valueR, Vec<D>& third, + T* HWY_RESTRICT buf) { + const size_t N = Lanes(d); + + HWY_DASSERT(num >= N); + size_t pos = num - N; // current read/write position + size_t countR = 0; // number of valueR found + + // For whole vectors, in descending address order: as long as all lanes are + // equal to L or R, overwrite with valueR. This is faster than counting, then + // filling both L and R. Loop terminates after unsigned wraparound. + for (; pos < num; pos -= N) { + const Vec<D> v = LoadU(d, keys + pos); + // It is not clear how to apply OrXor here - that can check if *both* + // comparisons are true, but here we want *either*. Comparing the unsigned + // min of differences to zero works, but is expensive for u64 prior to AVX3. + const Mask<D> eqL = st.EqualKeys(d, v, valueL); + const Mask<D> eqR = st.EqualKeys(d, v, valueR); + // If there is a third value, stop and undo what we've done. On AVX-512, + // Or + AllTrue are folded into a single kortest, but only if we are + // careful with the FindKnownFirstTrue argument - see prior comment on that. + if (HWY_UNLIKELY(!AllTrue(d, Or(eqL, eqR)))) { + const size_t lane = FindKnownFirstTrue(d, ExclusiveNeither(eqL, eqR)); + third = st.SetKey(d, keys + pos + lane); + if (VQSORT_PRINT >= 2) { + fprintf(stderr, "found 3rd value at vec %zu; countR %zu\n", pos, + countR); + MaybePrintVector(d, "third", third, 0, st.LanesPerKey()); + } + pos += N; // rewind: we haven't yet committed changes in this iteration. + // We have filled [pos, num) with R, but only countR of them should have + // been written. Rewrite [pos, num - countR) to L. + HWY_DASSERT(countR <= num - pos); + const size_t endL = num - countR; + for (; pos + N <= endL; pos += N) { + StoreU(valueL, d, keys + pos); + } + BlendedStore(valueL, FirstN(d, endL - pos), d, keys + pos); + return false; + } + StoreU(valueR, d, keys + pos); + countR += CountTrue(d, eqR); + } + + // Final partial (or empty) vector, masked comparison. + const size_t remaining = pos + N; + HWY_DASSERT(remaining <= N); + const Vec<D> v = LoadU(d, keys); // Safe because num >= N. + const Mask<D> valid = FirstN(d, remaining); + const Mask<D> eqL = st.EqualKeys(d, v, valueL); + const Mask<D> eqR = And(st.EqualKeys(d, v, valueR), valid); + // Invalid lanes are considered equal. + const Mask<D> eq = Or(Or(eqL, eqR), Not(valid)); + // At least one other value present; will require a regular partition. + if (HWY_UNLIKELY(!AllTrue(d, eq))) { + const size_t lane = FindKnownFirstTrue(d, Not(eq)); + third = st.SetKey(d, keys + lane); + if (VQSORT_PRINT >= 2) { + fprintf(stderr, "found 3rd value at partial vec %zu; writeR %zu\n", pos, + countR); + MaybePrintVector(d, "third", third, 0, st.LanesPerKey()); + } + pos += N; // rewind: we haven't yet committed changes in this iteration. + // We have filled [pos, num) with R, but only countR of them should have + // been written. Rewrite [pos, num - countR) to L. + HWY_DASSERT(countR <= num - pos); + const size_t endL = num - countR; + for (; pos + N <= endL; pos += N) { + StoreU(valueL, d, keys + pos); + } + BlendedStore(valueL, FirstN(d, endL - pos), d, keys + pos); + return false; + } + const size_t lastR = CountTrue(d, eqR); + countR += lastR; + + // First finish writing valueR - [0, N) lanes were not yet written. + StoreU(valueR, d, keys); // Safe because num >= N. + + // Fill left side (ascending order for clarity) + const size_t endL = num - countR; + size_t i = 0; + for (; i + N <= endL; i += N) { + StoreU(valueL, d, keys + i); + } + Store(valueL, d, buf); + SafeCopyN(endL - i, d, buf, keys + i); // avoids asan overrun + + if (VQSORT_PRINT >= 2) { + fprintf(stderr, + "MaybePartitionTwoValueR countR %zu pos %zu i %zu endL %zu\n", + countR, pos, i, endL); + } + + return true; +} + +// `idx_second` is `first_mismatch` from `AllEqual` and thus the index of the +// second key. This is the first path into `MaybePartitionTwoValue`, called +// when all samples are equal. Returns false if there are at least a third +// value and sets `third`. Otherwise, partitions the array and returns true. +template <class D, class Traits, typename T> +HWY_INLINE bool PartitionIfTwoKeys(D d, Traits st, const Vec<D> pivot, + T* HWY_RESTRICT keys, size_t num, + const size_t idx_second, const Vec<D> second, + Vec<D>& third, T* HWY_RESTRICT buf) { + // True if second comes before pivot. + const bool is_pivotR = AllFalse(d, st.Compare(d, pivot, second)); + if (VQSORT_PRINT >= 1) { + fprintf(stderr, "Samples all equal, diff at %zu, isPivotR %d\n", idx_second, + is_pivotR); + } + HWY_DASSERT(AllFalse(d, st.EqualKeys(d, second, pivot))); + + // If pivot is R, we scan backwards over the entire array. Otherwise, + // we already scanned up to idx_second and can leave those in place. + return is_pivotR ? MaybePartitionTwoValueR(d, st, keys, num, second, pivot, + third, buf) + : MaybePartitionTwoValue(d, st, keys + idx_second, + num - idx_second, pivot, second, + third, buf); +} + +// Second path into `MaybePartitionTwoValue`, called when not all samples are +// equal. `samples` is sorted. +template <class D, class Traits, typename T> +HWY_INLINE bool PartitionIfTwoSamples(D d, Traits st, T* HWY_RESTRICT keys, + size_t num, T* HWY_RESTRICT samples) { + constexpr size_t kSampleLanes = 3 * 64 / sizeof(T); + constexpr size_t N1 = st.LanesPerKey(); + const Vec<D> valueL = st.SetKey(d, samples); + const Vec<D> valueR = st.SetKey(d, samples + kSampleLanes - N1); + HWY_DASSERT(AllTrue(d, st.Compare(d, valueL, valueR))); + HWY_DASSERT(AllFalse(d, st.EqualKeys(d, valueL, valueR))); + const Vec<D> prev = st.PrevValue(d, valueR); + // If the sample has more than two values, then the keys have at least that + // many, and thus this special case is inapplicable. + if (HWY_UNLIKELY(!AllTrue(d, st.EqualKeys(d, valueL, prev)))) { + return false; + } + + // Must not overwrite samples because if this returns false, caller wants to + // read the original samples again. + T* HWY_RESTRICT buf = samples + kSampleLanes; + Vec<D> third; // unused + return MaybePartitionTwoValue(d, st, keys, num, valueL, valueR, third, buf); +} + +// ------------------------------ Pivot sampling + +template <class Traits, class V> +HWY_INLINE V MedianOf3(Traits st, V v0, V v1, V v2) { + const DFromV<V> d; + // Slightly faster for 128-bit, apparently because not serially dependent. + if (st.Is128()) { + // Median = XOR-sum 'minus' the first and last. Calling First twice is + // slightly faster than Compare + 2 IfThenElse or even IfThenElse + XOR. + const auto sum = Xor(Xor(v0, v1), v2); + const auto first = st.First(d, st.First(d, v0, v1), v2); + const auto last = st.Last(d, st.Last(d, v0, v1), v2); + return Xor(Xor(sum, first), last); + } + st.Sort2(d, v0, v2); + v1 = st.Last(d, v0, v1); + v1 = st.First(d, v1, v2); + return v1; +} + +#if VQSORT_SECURE_RNG +using Generator = absl::BitGen; +#else +// Based on https://github.com/numpy/numpy/issues/16313#issuecomment-641897028 +#pragma pack(push, 1) +class Generator { + public: + Generator(const void* heap, size_t num) { + Sorter::Fill24Bytes(heap, num, &a_); + k_ = 1; // stream index: must be odd + } + + explicit Generator(uint64_t seed) { + a_ = b_ = w_ = seed; + k_ = 1; + } + + uint64_t operator()() { + const uint64_t b = b_; + w_ += k_; + const uint64_t next = a_ ^ w_; + a_ = (b + (b << 3)) ^ (b >> 11); + const uint64_t rot = (b << 24) | (b >> 40); + b_ = rot + next; + return next; + } + + private: + uint64_t a_; + uint64_t b_; + uint64_t w_; + uint64_t k_; // increment +}; +#pragma pack(pop) + +#endif // !VQSORT_SECURE_RNG + +// Returns slightly biased random index of a chunk in [0, num_chunks). +// See https://www.pcg-random.org/posts/bounded-rands.html. +HWY_INLINE size_t RandomChunkIndex(const uint32_t num_chunks, uint32_t bits) { + const uint64_t chunk_index = (static_cast<uint64_t>(bits) * num_chunks) >> 32; + HWY_DASSERT(chunk_index < num_chunks); + return static_cast<size_t>(chunk_index); +} + +// Writes samples from `keys[0, num)` into `buf`. +template <class D, class Traits, typename T> +HWY_INLINE void DrawSamples(D d, Traits st, T* HWY_RESTRICT keys, size_t num, + T* HWY_RESTRICT buf, Generator& rng) { + using V = decltype(Zero(d)); + const size_t N = Lanes(d); + + // Power of two + constexpr size_t kLanesPerChunk = Constants::LanesPerChunk(sizeof(T)); + + // Align start of keys to chunks. We always have at least 2 chunks because the + // base case would have handled anything up to 16 vectors, i.e. >= 4 chunks. + HWY_DASSERT(num >= 2 * kLanesPerChunk); + const size_t misalign = + (reinterpret_cast<uintptr_t>(keys) / sizeof(T)) & (kLanesPerChunk - 1); + if (misalign != 0) { + const size_t consume = kLanesPerChunk - misalign; + keys += consume; + num -= consume; + } + + // Generate enough random bits for 9 uint32 + uint64_t* bits64 = reinterpret_cast<uint64_t*>(buf); + for (size_t i = 0; i < 5; ++i) { + bits64[i] = rng(); + } + const uint32_t* bits = reinterpret_cast<const uint32_t*>(buf); + + const size_t num_chunks64 = num / kLanesPerChunk; + // Clamp to uint32 for RandomChunkIndex + const uint32_t num_chunks = + static_cast<uint32_t>(HWY_MIN(num_chunks64, 0xFFFFFFFFull)); + + const size_t offset0 = RandomChunkIndex(num_chunks, bits[0]) * kLanesPerChunk; + const size_t offset1 = RandomChunkIndex(num_chunks, bits[1]) * kLanesPerChunk; + const size_t offset2 = RandomChunkIndex(num_chunks, bits[2]) * kLanesPerChunk; + const size_t offset3 = RandomChunkIndex(num_chunks, bits[3]) * kLanesPerChunk; + const size_t offset4 = RandomChunkIndex(num_chunks, bits[4]) * kLanesPerChunk; + const size_t offset5 = RandomChunkIndex(num_chunks, bits[5]) * kLanesPerChunk; + const size_t offset6 = RandomChunkIndex(num_chunks, bits[6]) * kLanesPerChunk; + const size_t offset7 = RandomChunkIndex(num_chunks, bits[7]) * kLanesPerChunk; + const size_t offset8 = RandomChunkIndex(num_chunks, bits[8]) * kLanesPerChunk; + for (size_t i = 0; i < kLanesPerChunk; i += N) { + const V v0 = Load(d, keys + offset0 + i); + const V v1 = Load(d, keys + offset1 + i); + const V v2 = Load(d, keys + offset2 + i); + const V medians0 = MedianOf3(st, v0, v1, v2); + Store(medians0, d, buf + i); + + const V v3 = Load(d, keys + offset3 + i); + const V v4 = Load(d, keys + offset4 + i); + const V v5 = Load(d, keys + offset5 + i); + const V medians1 = MedianOf3(st, v3, v4, v5); + Store(medians1, d, buf + i + kLanesPerChunk); + + const V v6 = Load(d, keys + offset6 + i); + const V v7 = Load(d, keys + offset7 + i); + const V v8 = Load(d, keys + offset8 + i); + const V medians2 = MedianOf3(st, v6, v7, v8); + Store(medians2, d, buf + i + kLanesPerChunk * 2); + } +} + +// For detecting inputs where (almost) all keys are equal. +template <class D, class Traits> +HWY_INLINE bool UnsortedSampleEqual(D d, Traits st, + const TFromD<D>* HWY_RESTRICT samples) { + constexpr size_t kSampleLanes = 3 * 64 / sizeof(TFromD<D>); + const size_t N = Lanes(d); + using V = Vec<D>; + + const V first = st.SetKey(d, samples); + // OR of XOR-difference may be faster than comparison. + V diff = Zero(d); + size_t i = 0; + for (; i + N <= kSampleLanes; i += N) { + const V v = Load(d, samples + i); + diff = OrXor(diff, first, v); + } + // Remainder, if any. + const V v = Load(d, samples + i); + const auto valid = FirstN(d, kSampleLanes - i); + diff = IfThenElse(valid, OrXor(diff, first, v), diff); + + return st.NoKeyDifference(d, diff); +} + +template <class D, class Traits, typename T> +HWY_INLINE void SortSamples(D d, Traits st, T* HWY_RESTRICT buf) { + // buf contains 192 bytes, so 16 128-bit vectors are necessary and sufficient. + constexpr size_t kSampleLanes = 3 * 64 / sizeof(T); + const CappedTag<T, 16 / sizeof(T)> d128; + const size_t N128 = Lanes(d128); + constexpr size_t kCols = HWY_MIN(16 / sizeof(T), Constants::kMaxCols); + constexpr size_t kBytes = kCols * Constants::kMaxRows * sizeof(T); + static_assert(192 <= kBytes, ""); + // Fill with padding - last in sort order. + const auto kPadding = st.LastValue(d128); + // Initialize an extra vector because SortingNetwork loads full vectors, + // which may exceed cols*kMaxRows. + for (size_t i = kSampleLanes; i <= kBytes / sizeof(T); i += N128) { + StoreU(kPadding, d128, buf + i); + } + + SortingNetwork(st, buf, kCols); + + if (VQSORT_PRINT >= 2) { + const size_t N = Lanes(d); + fprintf(stderr, "Samples:\n"); + for (size_t i = 0; i < kSampleLanes; i += N) { + MaybePrintVector(d, "", Load(d, buf + i), 0, N); + } + } +} + +// ------------------------------ Pivot selection + +enum class PivotResult { + kDone, // stop without partitioning (all equal, or two-value partition) + kNormal, // partition and recurse left and right + kIsFirst, // partition but skip left recursion + kWasLast, // partition but skip right recursion +}; + +HWY_INLINE const char* PivotResultString(PivotResult result) { + switch (result) { + case PivotResult::kDone: + return "done"; + case PivotResult::kNormal: + return "normal"; + case PivotResult::kIsFirst: + return "first"; + case PivotResult::kWasLast: + return "last"; + } + return "unknown"; +} + +template <class Traits, typename T> +HWY_INLINE size_t PivotRank(Traits st, const T* HWY_RESTRICT samples) { + constexpr size_t kSampleLanes = 3 * 64 / sizeof(T); + constexpr size_t N1 = st.LanesPerKey(); + + constexpr size_t kRankMid = kSampleLanes / 2; + static_assert(kRankMid % N1 == 0, "Mid is not an aligned key"); + + // Find the previous value not equal to the median. + size_t rank_prev = kRankMid - N1; + for (; st.Equal1(samples + rank_prev, samples + kRankMid); rank_prev -= N1) { + // All previous samples are equal to the median. + if (rank_prev == 0) return 0; + } + + size_t rank_next = rank_prev + N1; + for (; st.Equal1(samples + rank_next, samples + kRankMid); rank_next += N1) { + // The median is also the largest sample. If it is also the largest key, + // we'd end up with an empty right partition, so choose the previous key. + if (rank_next == kSampleLanes - N1) return rank_prev; + } + + // If we choose the median as pivot, the ratio of keys ending in the left + // partition will likely be rank_next/kSampleLanes (if the sample is + // representative). This is because equal-to-pivot values also land in the + // left - it's infeasible to do an in-place vectorized 3-way partition. + // Check whether prev would lead to a more balanced partition. + const size_t excess_if_median = rank_next - kRankMid; + const size_t excess_if_prev = kRankMid - rank_prev; + return excess_if_median < excess_if_prev ? kRankMid : rank_prev; +} + +// Returns pivot chosen from `samples`. It will never be the largest key +// (thus the right partition will never be empty). +template <class D, class Traits, typename T> +HWY_INLINE Vec<D> ChoosePivotByRank(D d, Traits st, + const T* HWY_RESTRICT samples) { + const size_t pivot_rank = PivotRank(st, samples); + const Vec<D> pivot = st.SetKey(d, samples + pivot_rank); + if (VQSORT_PRINT >= 2) { + fprintf(stderr, " Pivot rank %zu = %f\n", pivot_rank, + static_cast<double>(GetLane(pivot))); + } + // Verify pivot is not equal to the last sample. + constexpr size_t kSampleLanes = 3 * 64 / sizeof(T); + constexpr size_t N1 = st.LanesPerKey(); + const Vec<D> last = st.SetKey(d, samples + kSampleLanes - N1); + const bool all_neq = AllTrue(d, st.NotEqualKeys(d, pivot, last)); + (void)all_neq; + HWY_DASSERT(all_neq); + return pivot; +} + +// Returns true if all keys equal `pivot`, otherwise returns false and sets +// `*first_mismatch' to the index of the first differing key. +template <class D, class Traits, typename T> +HWY_INLINE bool AllEqual(D d, Traits st, const Vec<D> pivot, + const T* HWY_RESTRICT keys, size_t num, + size_t* HWY_RESTRICT first_mismatch) { + const size_t N = Lanes(d); + // Ensures we can use overlapping loads for the tail; see HandleSpecialCases. + HWY_DASSERT(num >= N); + const Vec<D> zero = Zero(d); + + // Vector-align keys + i. + const size_t misalign = + (reinterpret_cast<uintptr_t>(keys) / sizeof(T)) & (N - 1); + HWY_DASSERT(misalign % st.LanesPerKey() == 0); + const size_t consume = N - misalign; + { + const Vec<D> v = LoadU(d, keys); + // Only check masked lanes; consider others to be equal. + const Mask<D> diff = And(FirstN(d, consume), st.NotEqualKeys(d, v, pivot)); + if (HWY_UNLIKELY(!AllFalse(d, diff))) { + const size_t lane = FindKnownFirstTrue(d, diff); + *first_mismatch = lane; + return false; + } + } + size_t i = consume; + HWY_DASSERT(((reinterpret_cast<uintptr_t>(keys + i) / sizeof(T)) & (N - 1)) == + 0); + + // Sticky bits registering any difference between `keys` and the first key. + // We use vector XOR because it may be cheaper than comparisons, especially + // for 128-bit. 2x unrolled for more ILP. + Vec<D> diff0 = zero; + Vec<D> diff1 = zero; + + // We want to stop once a difference has been found, but without slowing + // down the loop by comparing during each iteration. The compromise is to + // compare after a 'group', which consists of kLoops times two vectors. + constexpr size_t kLoops = 8; + const size_t lanes_per_group = kLoops * 2 * N; + + for (; i + lanes_per_group <= num; i += lanes_per_group) { + HWY_DEFAULT_UNROLL + for (size_t loop = 0; loop < kLoops; ++loop) { + const Vec<D> v0 = Load(d, keys + i + loop * 2 * N); + const Vec<D> v1 = Load(d, keys + i + loop * 2 * N + N); + diff0 = OrXor(diff0, v0, pivot); + diff1 = OrXor(diff1, v1, pivot); + } + + // If there was a difference in the entire group: + if (HWY_UNLIKELY(!st.NoKeyDifference(d, Or(diff0, diff1)))) { + // .. then loop until the first one, with termination guarantee. + for (;; i += N) { + const Vec<D> v = Load(d, keys + i); + const Mask<D> diff = st.NotEqualKeys(d, v, pivot); + if (HWY_UNLIKELY(!AllFalse(d, diff))) { + const size_t lane = FindKnownFirstTrue(d, diff); + *first_mismatch = i + lane; + return false; + } + } + } + } + + // Whole vectors, no unrolling, compare directly + for (; i + N <= num; i += N) { + const Vec<D> v = Load(d, keys + i); + const Mask<D> diff = st.NotEqualKeys(d, v, pivot); + if (HWY_UNLIKELY(!AllFalse(d, diff))) { + const size_t lane = FindKnownFirstTrue(d, diff); + *first_mismatch = i + lane; + return false; + } + } + // Always re-check the last (unaligned) vector to reduce branching. + i = num - N; + const Vec<D> v = LoadU(d, keys + i); + const Mask<D> diff = st.NotEqualKeys(d, v, pivot); + if (HWY_UNLIKELY(!AllFalse(d, diff))) { + const size_t lane = FindKnownFirstTrue(d, diff); + *first_mismatch = i + lane; + return false; + } + + if (VQSORT_PRINT >= 1) { + fprintf(stderr, "All keys equal\n"); + } + return true; // all equal +} + +// Called from 'two locations', but only one is active (IsKV is constexpr). +template <class D, class Traits, typename T> +HWY_INLINE bool ExistsAnyBefore(D d, Traits st, const T* HWY_RESTRICT keys, + size_t num, const Vec<D> pivot) { + const size_t N = Lanes(d); + HWY_DASSERT(num >= N); // See HandleSpecialCases + + if (VQSORT_PRINT >= 2) { + fprintf(stderr, "Scanning for before\n"); + } + + size_t i = 0; + + constexpr size_t kLoops = 16; + const size_t lanes_per_group = kLoops * N; + + Vec<D> first = pivot; + + // Whole group, unrolled + for (; i + lanes_per_group <= num; i += lanes_per_group) { + HWY_DEFAULT_UNROLL + for (size_t loop = 0; loop < kLoops; ++loop) { + const Vec<D> curr = LoadU(d, keys + i + loop * N); + first = st.First(d, first, curr); + } + + if (HWY_UNLIKELY(!AllFalse(d, st.Compare(d, first, pivot)))) { + if (VQSORT_PRINT >= 2) { + fprintf(stderr, "Stopped scanning at end of group %zu\n", + i + lanes_per_group); + } + return true; + } + } + // Whole vectors, no unrolling + for (; i + N <= num; i += N) { + const Vec<D> curr = LoadU(d, keys + i); + if (HWY_UNLIKELY(!AllFalse(d, st.Compare(d, curr, pivot)))) { + if (VQSORT_PRINT >= 2) { + fprintf(stderr, "Stopped scanning at %zu\n", i); + } + return true; + } + } + // If there are remainders, re-check the last whole vector. + if (HWY_LIKELY(i != num)) { + const Vec<D> curr = LoadU(d, keys + num - N); + if (HWY_UNLIKELY(!AllFalse(d, st.Compare(d, curr, pivot)))) { + if (VQSORT_PRINT >= 2) { + fprintf(stderr, "Stopped scanning at last %zu\n", num - N); + } + return true; + } + } + + return false; // pivot is the first +} + +// Called from 'two locations', but only one is active (IsKV is constexpr). +template <class D, class Traits, typename T> +HWY_INLINE bool ExistsAnyAfter(D d, Traits st, const T* HWY_RESTRICT keys, + size_t num, const Vec<D> pivot) { + const size_t N = Lanes(d); + HWY_DASSERT(num >= N); // See HandleSpecialCases + + if (VQSORT_PRINT >= 2) { + fprintf(stderr, "Scanning for after\n"); + } + + size_t i = 0; + + constexpr size_t kLoops = 16; + const size_t lanes_per_group = kLoops * N; + + Vec<D> last = pivot; + + // Whole group, unrolled + for (; i + lanes_per_group <= num; i += lanes_per_group) { + HWY_DEFAULT_UNROLL + for (size_t loop = 0; loop < kLoops; ++loop) { + const Vec<D> curr = LoadU(d, keys + i + loop * N); + last = st.Last(d, last, curr); + } + + if (HWY_UNLIKELY(!AllFalse(d, st.Compare(d, pivot, last)))) { + if (VQSORT_PRINT >= 2) { + fprintf(stderr, "Stopped scanning at end of group %zu\n", + i + lanes_per_group); + } + return true; + } + } + // Whole vectors, no unrolling + for (; i + N <= num; i += N) { + const Vec<D> curr = LoadU(d, keys + i); + if (HWY_UNLIKELY(!AllFalse(d, st.Compare(d, pivot, curr)))) { + if (VQSORT_PRINT >= 2) { + fprintf(stderr, "Stopped scanning at %zu\n", i); + } + return true; + } + } + // If there are remainders, re-check the last whole vector. + if (HWY_LIKELY(i != num)) { + const Vec<D> curr = LoadU(d, keys + num - N); + if (HWY_UNLIKELY(!AllFalse(d, st.Compare(d, pivot, curr)))) { + if (VQSORT_PRINT >= 2) { + fprintf(stderr, "Stopped scanning at last %zu\n", num - N); + } + return true; + } + } + + return false; // pivot is the last +} + +// Returns pivot chosen from `keys[0, num)`. It will never be the largest key +// (thus the right partition will never be empty). +template <class D, class Traits, typename T> +HWY_INLINE Vec<D> ChoosePivotForEqualSamples(D d, Traits st, + T* HWY_RESTRICT keys, size_t num, + T* HWY_RESTRICT samples, + Vec<D> second, Vec<D> third, + PivotResult& result) { + const Vec<D> pivot = st.SetKey(d, samples); // the single unique sample + + // Early out for mostly-0 arrays, where pivot is often FirstValue. + if (HWY_UNLIKELY(AllTrue(d, st.EqualKeys(d, pivot, st.FirstValue(d))))) { + result = PivotResult::kIsFirst; + return pivot; + } + if (HWY_UNLIKELY(AllTrue(d, st.EqualKeys(d, pivot, st.LastValue(d))))) { + result = PivotResult::kWasLast; + return st.PrevValue(d, pivot); + } + + // If key-value, we didn't run PartitionIfTwo* and thus `third` is unknown and + // cannot be used. + if (st.IsKV()) { + // If true, pivot is either middle or last. + const bool before = !AllFalse(d, st.Compare(d, second, pivot)); + if (HWY_UNLIKELY(before)) { + // Not last, so middle. + if (HWY_UNLIKELY(ExistsAnyAfter(d, st, keys, num, pivot))) { + result = PivotResult::kNormal; + return pivot; + } + + // We didn't find anything after pivot, so it is the last. Because keys + // equal to the pivot go to the left partition, the right partition would + // be empty and Partition will not have changed anything. Instead use the + // previous value in sort order, which is not necessarily an actual key. + result = PivotResult::kWasLast; + return st.PrevValue(d, pivot); + } + + // Otherwise, pivot is first or middle. Rule out it being first: + if (HWY_UNLIKELY(ExistsAnyBefore(d, st, keys, num, pivot))) { + result = PivotResult::kNormal; + return pivot; + } + // It is first: fall through to shared code below. + } else { + // Check if pivot is between two known values. If so, it is not the first + // nor the last and we can avoid scanning. + st.Sort2(d, second, third); + HWY_DASSERT(AllTrue(d, st.Compare(d, second, third))); + const bool before = !AllFalse(d, st.Compare(d, second, pivot)); + const bool after = !AllFalse(d, st.Compare(d, pivot, third)); + // Only reached if there are three keys, which means pivot is either first, + // last, or in between. Thus there is another key that comes before or + // after. + HWY_DASSERT(before || after); + if (HWY_UNLIKELY(before)) { + // Neither first nor last. + if (HWY_UNLIKELY(after || ExistsAnyAfter(d, st, keys, num, pivot))) { + result = PivotResult::kNormal; + return pivot; + } + + // We didn't find anything after pivot, so it is the last. Because keys + // equal to the pivot go to the left partition, the right partition would + // be empty and Partition will not have changed anything. Instead use the + // previous value in sort order, which is not necessarily an actual key. + result = PivotResult::kWasLast; + return st.PrevValue(d, pivot); + } + + // Has after, and we found one before: in the middle. + if (HWY_UNLIKELY(ExistsAnyBefore(d, st, keys, num, pivot))) { + result = PivotResult::kNormal; + return pivot; + } + } + + // Pivot is first. We could consider a special partition mode that only + // reads from and writes to the right side, and later fills in the left + // side, which we know is equal to the pivot. However, that leads to more + // cache misses if the array is large, and doesn't save much, hence is a + // net loss. + result = PivotResult::kIsFirst; + return pivot; +} + +// ------------------------------ Quicksort recursion + +template <class D, class Traits, typename T> +HWY_NOINLINE void PrintMinMax(D d, Traits st, const T* HWY_RESTRICT keys, + size_t num, T* HWY_RESTRICT buf) { + if (VQSORT_PRINT >= 2) { + const size_t N = Lanes(d); + if (num < N) return; + + Vec<D> first = st.LastValue(d); + Vec<D> last = st.FirstValue(d); + + size_t i = 0; + for (; i + N <= num; i += N) { + const Vec<D> v = LoadU(d, keys + i); + first = st.First(d, v, first); + last = st.Last(d, v, last); + } + if (HWY_LIKELY(i != num)) { + HWY_DASSERT(num >= N); // See HandleSpecialCases + const Vec<D> v = LoadU(d, keys + num - N); + first = st.First(d, v, first); + last = st.Last(d, v, last); + } + + first = st.FirstOfLanes(d, first, buf); + last = st.LastOfLanes(d, last, buf); + MaybePrintVector(d, "first", first, 0, st.LanesPerKey()); + MaybePrintVector(d, "last", last, 0, st.LanesPerKey()); + } +} + +// keys_end is the end of the entire user input, not just the current subarray +// [keys, keys + num). +template <class D, class Traits, typename T> +HWY_NOINLINE void Recurse(D d, Traits st, T* HWY_RESTRICT keys, + T* HWY_RESTRICT keys_end, const size_t num, + T* HWY_RESTRICT buf, Generator& rng, + const size_t remaining_levels) { + HWY_DASSERT(num != 0); + + if (HWY_UNLIKELY(num <= Constants::BaseCaseNum(Lanes(d)))) { + BaseCase(d, st, keys, keys_end, num, buf); + return; + } + + // Move after BaseCase so we skip printing for small subarrays. + if (VQSORT_PRINT >= 1) { + fprintf(stderr, "\n\n=== Recurse depth=%zu len=%zu\n", remaining_levels, + num); + PrintMinMax(d, st, keys, num, buf); + } + + DrawSamples(d, st, keys, num, buf, rng); + + Vec<D> pivot; + PivotResult result = PivotResult::kNormal; + if (HWY_UNLIKELY(UnsortedSampleEqual(d, st, buf))) { + pivot = st.SetKey(d, buf); + size_t idx_second = 0; + if (HWY_UNLIKELY(AllEqual(d, st, pivot, keys, num, &idx_second))) { + return; + } + HWY_DASSERT(idx_second % st.LanesPerKey() == 0); + // Must capture the value before PartitionIfTwoKeys may overwrite it. + const Vec<D> second = st.SetKey(d, keys + idx_second); + MaybePrintVector(d, "pivot", pivot, 0, st.LanesPerKey()); + MaybePrintVector(d, "second", second, 0, st.LanesPerKey()); + + Vec<D> third; + // Not supported for key-value types because two 'keys' may be equivalent + // but not interchangeable (their values may differ). + if (HWY_UNLIKELY(!st.IsKV() && + PartitionIfTwoKeys(d, st, pivot, keys, num, idx_second, + second, third, buf))) { + return; // Done, skip recursion because each side has all-equal keys. + } + + // We can no longer start scanning from idx_second because + // PartitionIfTwoKeys may have reordered keys. + pivot = ChoosePivotForEqualSamples(d, st, keys, num, buf, second, third, + result); + // If kNormal, `pivot` is very common but not the first/last. It is + // tempting to do a 3-way partition (to avoid moving the =pivot keys a + // second time), but that is a net loss due to the extra comparisons. + } else { + SortSamples(d, st, buf); + + // Not supported for key-value types because two 'keys' may be equivalent + // but not interchangeable (their values may differ). + if (HWY_UNLIKELY(!st.IsKV() && + PartitionIfTwoSamples(d, st, keys, num, buf))) { + return; + } + + pivot = ChoosePivotByRank(d, st, buf); + } + + // Too many recursions. This is unlikely to happen because we select pivots + // from large (though still O(1)) samples. + if (HWY_UNLIKELY(remaining_levels == 0)) { + if (VQSORT_PRINT >= 1) { + fprintf(stderr, "HeapSort reached, size=%zu\n", num); + } + HeapSort(st, keys, num); // Slow but N*logN. + return; + } + + const size_t bound = Partition(d, st, keys, num, pivot, buf); + if (VQSORT_PRINT >= 2) { + fprintf(stderr, "bound %zu num %zu result %s\n", bound, num, + PivotResultString(result)); + } + // The left partition is not empty because the pivot is one of the keys + // (unless kWasLast, in which case the pivot is PrevValue, but we still + // have at least one value <= pivot because AllEqual ruled out the case of + // only one unique value, and there is exactly one value after pivot). + HWY_DASSERT(bound != 0); + // ChoosePivot* ensure pivot != last, so the right partition is never empty. + HWY_DASSERT(bound != num); + + if (HWY_LIKELY(result != PivotResult::kIsFirst)) { + Recurse(d, st, keys, keys_end, bound, buf, rng, remaining_levels - 1); + } + if (HWY_LIKELY(result != PivotResult::kWasLast)) { + Recurse(d, st, keys + bound, keys_end, num - bound, buf, rng, + remaining_levels - 1); + } +} + +// Returns true if sorting is finished. +template <class D, class Traits, typename T> +HWY_INLINE bool HandleSpecialCases(D d, Traits st, T* HWY_RESTRICT keys, + size_t num) { + const size_t N = Lanes(d); + const size_t base_case_num = Constants::BaseCaseNum(N); + + // 128-bit keys require vectors with at least two u64 lanes, which is always + // the case unless `d` requests partial vectors (e.g. fraction = 1/2) AND the + // hardware vector width is less than 128bit / fraction. + const bool partial_128 = !IsFull(d) && N < 2 && st.Is128(); + // Partition assumes its input is at least two vectors. If vectors are huge, + // base_case_num may actually be smaller. If so, which is only possible on + // RVV, pass a capped or partial d (LMUL < 1). Use HWY_MAX_BYTES instead of + // HWY_LANES to account for the largest possible LMUL. + constexpr bool kPotentiallyHuge = + HWY_MAX_BYTES / sizeof(T) > Constants::kMaxRows * Constants::kMaxCols; + const bool huge_vec = kPotentiallyHuge && (2 * N > base_case_num); + if (partial_128 || huge_vec) { + if (VQSORT_PRINT >= 1) { + fprintf(stderr, "WARNING: using slow HeapSort: partial %d huge %d\n", + partial_128, huge_vec); + } + HeapSort(st, keys, num); + return true; + } + + // Small arrays are already handled by Recurse. + + // We could also check for already sorted/reverse/equal, but that's probably + // counterproductive if vqsort is used as a base case. + + return false; // not finished sorting +} + +#endif // VQSORT_ENABLED +} // namespace detail + +// Sorts `keys[0..num-1]` according to the order defined by `st.Compare`. +// In-place i.e. O(1) additional storage. Worst-case N*logN comparisons. +// Non-stable (order of equal keys may change), except for the common case where +// the upper bits of T are the key, and the lower bits are a sequential or at +// least unique ID. +// There is no upper limit on `num`, but note that pivots may be chosen by +// sampling only from the first 256 GiB. +// +// `d` is typically SortTag<T> (chooses between full and partial vectors). +// `st` is SharedTraits<Traits*<Order*>>. This abstraction layer bridges +// differences in sort order and single-lane vs 128-bit keys. +template <class D, class Traits, typename T> +void Sort(D d, Traits st, T* HWY_RESTRICT keys, size_t num, + T* HWY_RESTRICT buf) { + if (VQSORT_PRINT >= 1) { + fprintf(stderr, "=============== Sort num %zu\n", num); + } + +#if VQSORT_ENABLED || HWY_IDE +#if !HWY_HAVE_SCALABLE + // On targets with fixed-size vectors, avoid _using_ the allocated memory. + // We avoid (potentially expensive for small input sizes) allocations on + // platforms where no targets are scalable. For 512-bit vectors, this fits on + // the stack (several KiB). + HWY_ALIGN T storage[SortConstants::BufNum<T>(HWY_LANES(T))] = {}; + static_assert(sizeof(storage) <= 8192, "Unexpectedly large, check size"); + buf = storage; +#endif // !HWY_HAVE_SCALABLE + + if (detail::HandleSpecialCases(d, st, keys, num)) return; + +#if HWY_MAX_BYTES > 64 + // sorting_networks-inl and traits assume no more than 512 bit vectors. + if (HWY_UNLIKELY(Lanes(d) > 64 / sizeof(T))) { + return Sort(CappedTag<T, 64 / sizeof(T)>(), st, keys, num, buf); + } +#endif // HWY_MAX_BYTES > 64 + + detail::Generator rng(keys, num); + + // Introspection: switch to worst-case N*logN heapsort after this many. + const size_t max_levels = 2 * hwy::CeilLog2(num) + 4; + detail::Recurse(d, st, keys, keys + num, num, buf, rng, max_levels); +#else + (void)d; + (void)buf; + if (VQSORT_PRINT >= 1) { + fprintf(stderr, "WARNING: using slow HeapSort because vqsort disabled\n"); + } + return detail::HeapSort(st, keys, num); +#endif // VQSORT_ENABLED +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#endif // HIGHWAY_HWY_CONTRIB_SORT_VQSORT_TOGGLE diff --git a/third_party/highway/hwy/contrib/sort/vqsort.cc b/third_party/highway/hwy/contrib/sort/vqsort.cc new file mode 100644 index 0000000000..b3bac0720a --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/vqsort.cc @@ -0,0 +1,184 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "hwy/contrib/sort/vqsort.h" + +#include <string.h> // memset + +#undef HWY_TARGET_INCLUDE +#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort.cc" +#include "hwy/foreach_target.h" // IWYU pragma: keep + +// After foreach_target +#include "hwy/contrib/sort/shared-inl.h" + +// Architectures for which we know HWY_HAVE_SCALABLE == 0. This opts into an +// optimization that replaces dynamic allocation with stack storage. +#ifndef VQSORT_STACK +#if HWY_ARCH_X86 || HWY_ARCH_WASM +#define VQSORT_STACK 1 +#else +#define VQSORT_STACK 0 +#endif +#endif // VQSORT_STACK + +#if !VQSORT_STACK +#include "hwy/aligned_allocator.h" +#endif + +// Check if we have sys/random.h. First skip some systems on which the check +// itself (features.h) might be problematic. +#if defined(ANDROID) || defined(__ANDROID__) || HWY_ARCH_RVV +#define VQSORT_GETRANDOM 0 +#endif + +#if !defined(VQSORT_GETRANDOM) && HWY_OS_LINUX +#include <features.h> + +// ---- which libc +#if defined(__UCLIBC__) +#define VQSORT_GETRANDOM 1 // added Mar 2015, before uclibc-ng 1.0 + +#elif defined(__GLIBC__) && defined(__GLIBC_PREREQ) +#if __GLIBC_PREREQ(2, 25) +#define VQSORT_GETRANDOM 1 +#else +#define VQSORT_GETRANDOM 0 +#endif + +#else +// Assume MUSL, which has getrandom since 2018. There is no macro to test, see +// https://www.openwall.com/lists/musl/2013/03/29/13. +#define VQSORT_GETRANDOM 1 + +#endif // ---- which libc +#endif // linux + +#if !defined(VQSORT_GETRANDOM) +#define VQSORT_GETRANDOM 0 +#endif + +// Seed source for SFC generator: 1=getrandom, 2=CryptGenRandom +// (not all Android support the getrandom wrapper) +#ifndef VQSORT_SECURE_SEED + +#if VQSORT_GETRANDOM +#define VQSORT_SECURE_SEED 1 +#elif defined(_WIN32) || defined(_WIN64) +#define VQSORT_SECURE_SEED 2 +#else +#define VQSORT_SECURE_SEED 0 +#endif + +#endif // VQSORT_SECURE_SEED + +#if !VQSORT_SECURE_RNG + +#include <time.h> +#if VQSORT_SECURE_SEED == 1 +#include <sys/random.h> +#elif VQSORT_SECURE_SEED == 2 +#include <windows.h> +#pragma comment(lib, "advapi32.lib") +// Must come after windows.h. +#include <wincrypt.h> +#endif // VQSORT_SECURE_SEED + +#endif // !VQSORT_SECURE_RNG + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +size_t VectorSize() { return Lanes(ScalableTag<uint8_t, 3>()); } +bool HaveFloat64() { return HWY_HAVE_FLOAT64; } + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE +namespace hwy { +namespace { +HWY_EXPORT(VectorSize); +HWY_EXPORT(HaveFloat64); + +} // namespace + +Sorter::Sorter() { +#if VQSORT_STACK + ptr_ = nullptr; // Sort will use stack storage instead +#else + // Determine the largest buffer size required for any type by trying them all. + // (The capping of N in BaseCaseNum means that smaller N but larger sizeof_t + // may require a larger buffer.) + const size_t vector_size = HWY_DYNAMIC_DISPATCH(VectorSize)(); + const size_t max_bytes = + HWY_MAX(HWY_MAX(SortConstants::BufBytes<uint16_t>(vector_size), + SortConstants::BufBytes<uint32_t>(vector_size)), + SortConstants::BufBytes<uint64_t>(vector_size)); + ptr_ = hwy::AllocateAlignedBytes(max_bytes, nullptr, nullptr); + + // Prevent msan errors by initializing. + memset(ptr_, 0, max_bytes); +#endif +} + +void Sorter::Delete() { +#if !VQSORT_STACK + FreeAlignedBytes(ptr_, nullptr, nullptr); + ptr_ = nullptr; +#endif +} + +#if !VQSORT_SECURE_RNG + +void Sorter::Fill24Bytes(const void* seed_heap, size_t seed_num, void* bytes) { +#if VQSORT_SECURE_SEED == 1 + // May block if urandom is not yet initialized. + const ssize_t ret = getrandom(bytes, 24, /*flags=*/0); + if (ret == 24) return; +#elif VQSORT_SECURE_SEED == 2 + HCRYPTPROV hProvider{}; + if (CryptAcquireContextA(&hProvider, nullptr, nullptr, PROV_RSA_FULL, + CRYPT_VERIFYCONTEXT)) { + const BOOL ok = + CryptGenRandom(hProvider, 24, reinterpret_cast<BYTE*>(bytes)); + CryptReleaseContext(hProvider, 0); + if (ok) return; + } +#endif + + // VQSORT_SECURE_SEED == 0, or one of the above failed. Get some entropy from + // stack/heap/code addresses and the clock() timer. + uint64_t* words = reinterpret_cast<uint64_t*>(bytes); + uint64_t** seed_stack = &words; + void (*seed_code)(const void*, size_t, void*) = &Fill24Bytes; + const uintptr_t bits_stack = reinterpret_cast<uintptr_t>(seed_stack); + const uintptr_t bits_heap = reinterpret_cast<uintptr_t>(seed_heap); + const uintptr_t bits_code = reinterpret_cast<uintptr_t>(seed_code); + const uint64_t bits_time = static_cast<uint64_t>(clock()); + words[0] = bits_stack ^ bits_time ^ seed_num; + words[1] = bits_heap ^ bits_time ^ seed_num; + words[2] = bits_code ^ bits_time ^ seed_num; +} + +#endif // !VQSORT_SECURE_RNG + +bool Sorter::HaveFloat64() { return HWY_DYNAMIC_DISPATCH(HaveFloat64)(); } + +} // namespace hwy +#endif // HWY_ONCE diff --git a/third_party/highway/hwy/contrib/sort/vqsort.h b/third_party/highway/hwy/contrib/sort/vqsort.h new file mode 100644 index 0000000000..88d78ac7f9 --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/vqsort.h @@ -0,0 +1,108 @@ +// Copyright 2022 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +// Interface to vectorized quicksort with dynamic dispatch. +// Blog post: https://tinyurl.com/vqsort-blog +// Paper with measurements: https://arxiv.org/abs/2205.05982 +// +// To ensure the overhead of using wide vectors (e.g. AVX2 or AVX-512) is +// worthwhile, we recommend using this code for sorting arrays whose size is at +// least 512 KiB. + +#ifndef HIGHWAY_HWY_CONTRIB_SORT_VQSORT_H_ +#define HIGHWAY_HWY_CONTRIB_SORT_VQSORT_H_ + +#include "hwy/base.h" + +namespace hwy { + +// Tag arguments that determine the sort order. +struct SortAscending { + constexpr bool IsAscending() const { return true; } +}; +struct SortDescending { + constexpr bool IsAscending() const { return false; } +}; + +// Allocates O(1) space. Type-erased RAII wrapper over hwy/aligned_allocator.h. +// This allows amortizing the allocation over multiple sorts. +class HWY_CONTRIB_DLLEXPORT Sorter { + public: + Sorter(); + ~Sorter() { Delete(); } + + // Move-only + Sorter(const Sorter&) = delete; + Sorter& operator=(const Sorter&) = delete; + Sorter(Sorter&& other) { + Delete(); + ptr_ = other.ptr_; + other.ptr_ = nullptr; + } + Sorter& operator=(Sorter&& other) { + Delete(); + ptr_ = other.ptr_; + other.ptr_ = nullptr; + return *this; + } + + // Sorts keys[0, n). Dispatches to the best available instruction set, + // and does not allocate memory. + void operator()(uint16_t* HWY_RESTRICT keys, size_t n, SortAscending) const; + void operator()(uint16_t* HWY_RESTRICT keys, size_t n, SortDescending) const; + void operator()(uint32_t* HWY_RESTRICT keys, size_t n, SortAscending) const; + void operator()(uint32_t* HWY_RESTRICT keys, size_t n, SortDescending) const; + void operator()(uint64_t* HWY_RESTRICT keys, size_t n, SortAscending) const; + void operator()(uint64_t* HWY_RESTRICT keys, size_t n, SortDescending) const; + + void operator()(int16_t* HWY_RESTRICT keys, size_t n, SortAscending) const; + void operator()(int16_t* HWY_RESTRICT keys, size_t n, SortDescending) const; + void operator()(int32_t* HWY_RESTRICT keys, size_t n, SortAscending) const; + void operator()(int32_t* HWY_RESTRICT keys, size_t n, SortDescending) const; + void operator()(int64_t* HWY_RESTRICT keys, size_t n, SortAscending) const; + void operator()(int64_t* HWY_RESTRICT keys, size_t n, SortDescending) const; + + void operator()(float* HWY_RESTRICT keys, size_t n, SortAscending) const; + void operator()(float* HWY_RESTRICT keys, size_t n, SortDescending) const; + void operator()(double* HWY_RESTRICT keys, size_t n, SortAscending) const; + void operator()(double* HWY_RESTRICT keys, size_t n, SortDescending) const; + + void operator()(uint128_t* HWY_RESTRICT keys, size_t n, SortAscending) const; + void operator()(uint128_t* HWY_RESTRICT keys, size_t n, SortDescending) const; + + void operator()(K64V64* HWY_RESTRICT keys, size_t n, SortAscending) const; + void operator()(K64V64* HWY_RESTRICT keys, size_t n, SortDescending) const; + + void operator()(K32V32* HWY_RESTRICT keys, size_t n, SortAscending) const; + void operator()(K32V32* HWY_RESTRICT keys, size_t n, SortDescending) const; + + // For internal use only + static void Fill24Bytes(const void* seed_heap, size_t seed_num, void* bytes); + static bool HaveFloat64(); + + private: + void Delete(); + + template <typename T> + T* Get() const { + return static_cast<T*>(ptr_); + } + + void* ptr_ = nullptr; +}; + +} // namespace hwy + +#endif // HIGHWAY_HWY_CONTRIB_SORT_VQSORT_H_ diff --git a/third_party/highway/hwy/contrib/sort/vqsort_128a.cc b/third_party/highway/hwy/contrib/sort/vqsort_128a.cc new file mode 100644 index 0000000000..40daea85c7 --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/vqsort_128a.cc @@ -0,0 +1,62 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "hwy/contrib/sort/vqsort.h" + +#undef HWY_TARGET_INCLUDE +#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_128a.cc" +#include "hwy/foreach_target.h" // IWYU pragma: keep + +// After foreach_target +#include "hwy/contrib/sort/traits128-inl.h" +#include "hwy/contrib/sort/vqsort-inl.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +void Sort128Asc(uint64_t* HWY_RESTRICT keys, size_t num, + uint64_t* HWY_RESTRICT buf) { +#if VQSORT_ENABLED + SortTag<uint64_t> d; + detail::SharedTraits<detail::Traits128<detail::OrderAscending128>> st; + Sort(d, st, keys, num, buf); +#else + (void) keys; + (void) num; + (void) buf; + HWY_ASSERT(0); +#endif +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE +namespace hwy { +namespace { +HWY_EXPORT(Sort128Asc); +} // namespace + +void Sorter::operator()(uint128_t* HWY_RESTRICT keys, size_t n, + SortAscending) const { + HWY_DYNAMIC_DISPATCH(Sort128Asc) + (reinterpret_cast<uint64_t*>(keys), n * 2, Get<uint64_t>()); +} + +} // namespace hwy +#endif // HWY_ONCE diff --git a/third_party/highway/hwy/contrib/sort/vqsort_128d.cc b/third_party/highway/hwy/contrib/sort/vqsort_128d.cc new file mode 100644 index 0000000000..357da840c1 --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/vqsort_128d.cc @@ -0,0 +1,62 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "hwy/contrib/sort/vqsort.h" + +#undef HWY_TARGET_INCLUDE +#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_128d.cc" +#include "hwy/foreach_target.h" // IWYU pragma: keep + +// After foreach_target +#include "hwy/contrib/sort/traits128-inl.h" +#include "hwy/contrib/sort/vqsort-inl.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +void Sort128Desc(uint64_t* HWY_RESTRICT keys, size_t num, + uint64_t* HWY_RESTRICT buf) { +#if VQSORT_ENABLED + SortTag<uint64_t> d; + detail::SharedTraits<detail::Traits128<detail::OrderDescending128>> st; + Sort(d, st, keys, num, buf); +#else + (void) keys; + (void) num; + (void) buf; + HWY_ASSERT(0); +#endif +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE +namespace hwy { +namespace { +HWY_EXPORT(Sort128Desc); +} // namespace + +void Sorter::operator()(uint128_t* HWY_RESTRICT keys, size_t n, + SortDescending) const { + HWY_DYNAMIC_DISPATCH(Sort128Desc) + (reinterpret_cast<uint64_t*>(keys), n * 2, Get<uint64_t>()); +} + +} // namespace hwy +#endif // HWY_ONCE diff --git a/third_party/highway/hwy/contrib/sort/vqsort_f32a.cc b/third_party/highway/hwy/contrib/sort/vqsort_f32a.cc new file mode 100644 index 0000000000..3856eea5dd --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/vqsort_f32a.cc @@ -0,0 +1,53 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "hwy/contrib/sort/vqsort.h" + +#undef HWY_TARGET_INCLUDE +#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_f32a.cc" +#include "hwy/foreach_target.h" // IWYU pragma: keep + +// After foreach_target +#include "hwy/contrib/sort/traits-inl.h" +#include "hwy/contrib/sort/vqsort-inl.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +void SortF32Asc(float* HWY_RESTRICT keys, size_t num, float* HWY_RESTRICT buf) { + SortTag<float> d; + detail::SharedTraits<detail::TraitsLane<detail::OrderAscending<float>>> st; + Sort(d, st, keys, num, buf); +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE +namespace hwy { +namespace { +HWY_EXPORT(SortF32Asc); +} // namespace + +void Sorter::operator()(float* HWY_RESTRICT keys, size_t n, + SortAscending) const { + HWY_DYNAMIC_DISPATCH(SortF32Asc)(keys, n, Get<float>()); +} + +} // namespace hwy +#endif // HWY_ONCE diff --git a/third_party/highway/hwy/contrib/sort/vqsort_f32d.cc b/third_party/highway/hwy/contrib/sort/vqsort_f32d.cc new file mode 100644 index 0000000000..7f5f97cdf2 --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/vqsort_f32d.cc @@ -0,0 +1,54 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "hwy/contrib/sort/vqsort.h" + +#undef HWY_TARGET_INCLUDE +#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_f32d.cc" +#include "hwy/foreach_target.h" // IWYU pragma: keep + +// After foreach_target +#include "hwy/contrib/sort/traits-inl.h" +#include "hwy/contrib/sort/vqsort-inl.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +void SortF32Desc(float* HWY_RESTRICT keys, size_t num, + float* HWY_RESTRICT buf) { + SortTag<float> d; + detail::SharedTraits<detail::TraitsLane<detail::OrderDescending<float>>> st; + Sort(d, st, keys, num, buf); +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE +namespace hwy { +namespace { +HWY_EXPORT(SortF32Desc); +} // namespace + +void Sorter::operator()(float* HWY_RESTRICT keys, size_t n, + SortDescending) const { + HWY_DYNAMIC_DISPATCH(SortF32Desc)(keys, n, Get<float>()); +} + +} // namespace hwy +#endif // HWY_ONCE diff --git a/third_party/highway/hwy/contrib/sort/vqsort_f64a.cc b/third_party/highway/hwy/contrib/sort/vqsort_f64a.cc new file mode 100644 index 0000000000..287d5214e5 --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/vqsort_f64a.cc @@ -0,0 +1,61 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "hwy/contrib/sort/vqsort.h" + +#undef HWY_TARGET_INCLUDE +#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_f64a.cc" +#include "hwy/foreach_target.h" // IWYU pragma: keep + +// After foreach_target +#include "hwy/contrib/sort/traits-inl.h" +#include "hwy/contrib/sort/vqsort-inl.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +void SortF64Asc(double* HWY_RESTRICT keys, size_t num, + double* HWY_RESTRICT buf) { +#if HWY_HAVE_FLOAT64 + SortTag<double> d; + detail::SharedTraits<detail::TraitsLane<detail::OrderAscending<double>>> st; + Sort(d, st, keys, num, buf); +#else + (void)keys; + (void)num; + (void)buf; + HWY_ASSERT(0); +#endif +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE +namespace hwy { +namespace { +HWY_EXPORT(SortF64Asc); +} // namespace + +void Sorter::operator()(double* HWY_RESTRICT keys, size_t n, + SortAscending) const { + HWY_DYNAMIC_DISPATCH(SortF64Asc)(keys, n, Get<double>()); +} + +} // namespace hwy +#endif // HWY_ONCE diff --git a/third_party/highway/hwy/contrib/sort/vqsort_f64d.cc b/third_party/highway/hwy/contrib/sort/vqsort_f64d.cc new file mode 100644 index 0000000000..74d40c1ed3 --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/vqsort_f64d.cc @@ -0,0 +1,61 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "hwy/contrib/sort/vqsort.h" + +#undef HWY_TARGET_INCLUDE +#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_f64d.cc" +#include "hwy/foreach_target.h" // IWYU pragma: keep + +// After foreach_target +#include "hwy/contrib/sort/traits-inl.h" +#include "hwy/contrib/sort/vqsort-inl.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +void SortF64Desc(double* HWY_RESTRICT keys, size_t num, + double* HWY_RESTRICT buf) { +#if HWY_HAVE_FLOAT64 + SortTag<double> d; + detail::SharedTraits<detail::TraitsLane<detail::OrderDescending<double>>> st; + Sort(d, st, keys, num, buf); +#else + (void)keys; + (void)num; + (void)buf; + HWY_ASSERT(0); +#endif +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE +namespace hwy { +namespace { +HWY_EXPORT(SortF64Desc); +} // namespace + +void Sorter::operator()(double* HWY_RESTRICT keys, size_t n, + SortDescending) const { + HWY_DYNAMIC_DISPATCH(SortF64Desc)(keys, n, Get<double>()); +} + +} // namespace hwy +#endif // HWY_ONCE diff --git a/third_party/highway/hwy/contrib/sort/vqsort_i16a.cc b/third_party/highway/hwy/contrib/sort/vqsort_i16a.cc new file mode 100644 index 0000000000..ef4bb75bc4 --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/vqsort_i16a.cc @@ -0,0 +1,54 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "hwy/contrib/sort/vqsort.h" + +#undef HWY_TARGET_INCLUDE +#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_i16a.cc" +#include "hwy/foreach_target.h" // IWYU pragma: keep + +// After foreach_target +#include "hwy/contrib/sort/traits-inl.h" +#include "hwy/contrib/sort/vqsort-inl.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +void SortI16Asc(int16_t* HWY_RESTRICT keys, size_t num, + int16_t* HWY_RESTRICT buf) { + SortTag<int16_t> d; + detail::SharedTraits<detail::TraitsLane<detail::OrderAscending<int16_t>>> st; + Sort(d, st, keys, num, buf); +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE +namespace hwy { +namespace { +HWY_EXPORT(SortI16Asc); +} // namespace + +void Sorter::operator()(int16_t* HWY_RESTRICT keys, size_t n, + SortAscending) const { + HWY_DYNAMIC_DISPATCH(SortI16Asc)(keys, n, Get<int16_t>()); +} + +} // namespace hwy +#endif // HWY_ONCE diff --git a/third_party/highway/hwy/contrib/sort/vqsort_i16d.cc b/third_party/highway/hwy/contrib/sort/vqsort_i16d.cc new file mode 100644 index 0000000000..6507ed6080 --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/vqsort_i16d.cc @@ -0,0 +1,54 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "hwy/contrib/sort/vqsort.h" + +#undef HWY_TARGET_INCLUDE +#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_i16d.cc" +#include "hwy/foreach_target.h" // IWYU pragma: keep + +// After foreach_target +#include "hwy/contrib/sort/traits-inl.h" +#include "hwy/contrib/sort/vqsort-inl.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +void SortI16Desc(int16_t* HWY_RESTRICT keys, size_t num, + int16_t* HWY_RESTRICT buf) { + SortTag<int16_t> d; + detail::SharedTraits<detail::TraitsLane<detail::OrderDescending<int16_t>>> st; + Sort(d, st, keys, num, buf); +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE +namespace hwy { +namespace { +HWY_EXPORT(SortI16Desc); +} // namespace + +void Sorter::operator()(int16_t* HWY_RESTRICT keys, size_t n, + SortDescending) const { + HWY_DYNAMIC_DISPATCH(SortI16Desc)(keys, n, Get<int16_t>()); +} + +} // namespace hwy +#endif // HWY_ONCE diff --git a/third_party/highway/hwy/contrib/sort/vqsort_i32a.cc b/third_party/highway/hwy/contrib/sort/vqsort_i32a.cc new file mode 100644 index 0000000000..ae65be997e --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/vqsort_i32a.cc @@ -0,0 +1,54 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "hwy/contrib/sort/vqsort.h" + +#undef HWY_TARGET_INCLUDE +#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_i32a.cc" +#include "hwy/foreach_target.h" // IWYU pragma: keep + +// After foreach_target +#include "hwy/contrib/sort/traits-inl.h" +#include "hwy/contrib/sort/vqsort-inl.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +void SortI32Asc(int32_t* HWY_RESTRICT keys, size_t num, + int32_t* HWY_RESTRICT buf) { + SortTag<int32_t> d; + detail::SharedTraits<detail::TraitsLane<detail::OrderAscending<int32_t>>> st; + Sort(d, st, keys, num, buf); +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE +namespace hwy { +namespace { +HWY_EXPORT(SortI32Asc); +} // namespace + +void Sorter::operator()(int32_t* HWY_RESTRICT keys, size_t n, + SortAscending) const { + HWY_DYNAMIC_DISPATCH(SortI32Asc)(keys, n, Get<int32_t>()); +} + +} // namespace hwy +#endif // HWY_ONCE diff --git a/third_party/highway/hwy/contrib/sort/vqsort_i32d.cc b/third_party/highway/hwy/contrib/sort/vqsort_i32d.cc new file mode 100644 index 0000000000..3ce276ee9c --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/vqsort_i32d.cc @@ -0,0 +1,54 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "hwy/contrib/sort/vqsort.h" + +#undef HWY_TARGET_INCLUDE +#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_i32d.cc" +#include "hwy/foreach_target.h" // IWYU pragma: keep + +// After foreach_target +#include "hwy/contrib/sort/traits-inl.h" +#include "hwy/contrib/sort/vqsort-inl.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +void SortI32Desc(int32_t* HWY_RESTRICT keys, size_t num, + int32_t* HWY_RESTRICT buf) { + SortTag<int32_t> d; + detail::SharedTraits<detail::TraitsLane<detail::OrderDescending<int32_t>>> st; + Sort(d, st, keys, num, buf); +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE +namespace hwy { +namespace { +HWY_EXPORT(SortI32Desc); +} // namespace + +void Sorter::operator()(int32_t* HWY_RESTRICT keys, size_t n, + SortDescending) const { + HWY_DYNAMIC_DISPATCH(SortI32Desc)(keys, n, Get<int32_t>()); +} + +} // namespace hwy +#endif // HWY_ONCE diff --git a/third_party/highway/hwy/contrib/sort/vqsort_i64a.cc b/third_party/highway/hwy/contrib/sort/vqsort_i64a.cc new file mode 100644 index 0000000000..901b8ead8a --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/vqsort_i64a.cc @@ -0,0 +1,54 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "hwy/contrib/sort/vqsort.h" + +#undef HWY_TARGET_INCLUDE +#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_i64a.cc" +#include "hwy/foreach_target.h" // IWYU pragma: keep + +// After foreach_target +#include "hwy/contrib/sort/traits-inl.h" +#include "hwy/contrib/sort/vqsort-inl.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +void SortI64Asc(int64_t* HWY_RESTRICT keys, size_t num, + int64_t* HWY_RESTRICT buf) { + SortTag<int64_t> d; + detail::SharedTraits<detail::TraitsLane<detail::OrderAscending<int64_t>>> st; + Sort(d, st, keys, num, buf); +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE +namespace hwy { +namespace { +HWY_EXPORT(SortI64Asc); +} // namespace + +void Sorter::operator()(int64_t* HWY_RESTRICT keys, size_t n, + SortAscending) const { + HWY_DYNAMIC_DISPATCH(SortI64Asc)(keys, n, Get<int64_t>()); +} + +} // namespace hwy +#endif // HWY_ONCE diff --git a/third_party/highway/hwy/contrib/sort/vqsort_i64d.cc b/third_party/highway/hwy/contrib/sort/vqsort_i64d.cc new file mode 100644 index 0000000000..7713f2eb89 --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/vqsort_i64d.cc @@ -0,0 +1,54 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "hwy/contrib/sort/vqsort.h" + +#undef HWY_TARGET_INCLUDE +#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_i64d.cc" +#include "hwy/foreach_target.h" // IWYU pragma: keep + +// After foreach_target +#include "hwy/contrib/sort/traits-inl.h" +#include "hwy/contrib/sort/vqsort-inl.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +void SortI64Desc(int64_t* HWY_RESTRICT keys, size_t num, + int64_t* HWY_RESTRICT buf) { + SortTag<int64_t> d; + detail::SharedTraits<detail::TraitsLane<detail::OrderDescending<int64_t>>> st; + Sort(d, st, keys, num, buf); +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE +namespace hwy { +namespace { +HWY_EXPORT(SortI64Desc); +} // namespace + +void Sorter::operator()(int64_t* HWY_RESTRICT keys, size_t n, + SortDescending) const { + HWY_DYNAMIC_DISPATCH(SortI64Desc)(keys, n, Get<int64_t>()); +} + +} // namespace hwy +#endif // HWY_ONCE diff --git a/third_party/highway/hwy/contrib/sort/vqsort_kv128a.cc b/third_party/highway/hwy/contrib/sort/vqsort_kv128a.cc new file mode 100644 index 0000000000..1e02742ef1 --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/vqsort_kv128a.cc @@ -0,0 +1,65 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "hwy/contrib/sort/vqsort.h" + +#undef HWY_TARGET_INCLUDE +// clang-format off +// (avoid line break, which would prevent Copybara rules from matching) +#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_kv128a.cc" //NOLINT +// clang-format on +#include "hwy/foreach_target.h" // IWYU pragma: keep + +// After foreach_target +#include "hwy/contrib/sort/traits128-inl.h" +#include "hwy/contrib/sort/vqsort-inl.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +void SortKV128Asc(uint64_t* HWY_RESTRICT keys, size_t num, + uint64_t* HWY_RESTRICT buf) { +#if VQSORT_ENABLED + SortTag<uint64_t> d; + detail::SharedTraits<detail::Traits128<detail::OrderAscendingKV128>> st; + Sort(d, st, keys, num, buf); +#else + (void) keys; + (void) num; + (void) buf; + HWY_ASSERT(0); +#endif +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE +namespace hwy { +namespace { +HWY_EXPORT(SortKV128Asc); +} // namespace + +void Sorter::operator()(K64V64* HWY_RESTRICT keys, size_t n, + SortAscending) const { + HWY_DYNAMIC_DISPATCH(SortKV128Asc) + (reinterpret_cast<uint64_t*>(keys), n * 2, Get<uint64_t>()); +} + +} // namespace hwy +#endif // HWY_ONCE diff --git a/third_party/highway/hwy/contrib/sort/vqsort_kv128d.cc b/third_party/highway/hwy/contrib/sort/vqsort_kv128d.cc new file mode 100644 index 0000000000..3dd53b5da3 --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/vqsort_kv128d.cc @@ -0,0 +1,65 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "hwy/contrib/sort/vqsort.h" + +#undef HWY_TARGET_INCLUDE +// clang-format off +// (avoid line break, which would prevent Copybara rules from matching) +#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_kv128d.cc" //NOLINT +// clang-format on +#include "hwy/foreach_target.h" // IWYU pragma: keep + +// After foreach_target +#include "hwy/contrib/sort/traits128-inl.h" +#include "hwy/contrib/sort/vqsort-inl.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +void SortKV128Desc(uint64_t* HWY_RESTRICT keys, size_t num, + uint64_t* HWY_RESTRICT buf) { +#if VQSORT_ENABLED + SortTag<uint64_t> d; + detail::SharedTraits<detail::Traits128<detail::OrderDescendingKV128>> st; + Sort(d, st, keys, num, buf); +#else + (void) keys; + (void) num; + (void) buf; + HWY_ASSERT(0); +#endif +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE +namespace hwy { +namespace { +HWY_EXPORT(SortKV128Desc); +} // namespace + +void Sorter::operator()(K64V64* HWY_RESTRICT keys, size_t n, + SortDescending) const { + HWY_DYNAMIC_DISPATCH(SortKV128Desc) + (reinterpret_cast<uint64_t*>(keys), n * 2, Get<uint64_t>()); +} + +} // namespace hwy +#endif // HWY_ONCE diff --git a/third_party/highway/hwy/contrib/sort/vqsort_kv64a.cc b/third_party/highway/hwy/contrib/sort/vqsort_kv64a.cc new file mode 100644 index 0000000000..c513e3c4ce --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/vqsort_kv64a.cc @@ -0,0 +1,65 @@ +// Copyright 2022 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "hwy/contrib/sort/vqsort.h" + +#undef HWY_TARGET_INCLUDE +// clang-format off +// (avoid line break, which would prevent Copybara rules from matching) +#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_kv64a.cc" //NOLINT +// clang-format on +#include "hwy/foreach_target.h" // IWYU pragma: keep + +// After foreach_target +#include "hwy/contrib/sort/traits-inl.h" +#include "hwy/contrib/sort/vqsort-inl.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +void SortKV64Asc(uint64_t* HWY_RESTRICT keys, size_t num, + uint64_t* HWY_RESTRICT buf) { +#if VQSORT_ENABLED + SortTag<uint64_t> d; + detail::SharedTraits<detail::TraitsLane<detail::OrderAscendingKV64>> st; + Sort(d, st, keys, num, buf); +#else + (void) keys; + (void) num; + (void) buf; + HWY_ASSERT(0); +#endif +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE +namespace hwy { +namespace { +HWY_EXPORT(SortKV64Asc); +} // namespace + +void Sorter::operator()(K32V32* HWY_RESTRICT keys, size_t n, + SortAscending) const { + HWY_DYNAMIC_DISPATCH(SortKV64Asc) + (reinterpret_cast<uint64_t*>(keys), n, Get<uint64_t>()); +} + +} // namespace hwy +#endif // HWY_ONCE diff --git a/third_party/highway/hwy/contrib/sort/vqsort_kv64d.cc b/third_party/highway/hwy/contrib/sort/vqsort_kv64d.cc new file mode 100644 index 0000000000..c6c5fdcf74 --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/vqsort_kv64d.cc @@ -0,0 +1,65 @@ +// Copyright 2022 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "hwy/contrib/sort/vqsort.h" + +#undef HWY_TARGET_INCLUDE +// clang-format off +// (avoid line break, which would prevent Copybara rules from matching) +#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_kv64d.cc" //NOLINT +// clang-format on +#include "hwy/foreach_target.h" // IWYU pragma: keep + +// After foreach_target +#include "hwy/contrib/sort/traits-inl.h" +#include "hwy/contrib/sort/vqsort-inl.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +void SortKV64Desc(uint64_t* HWY_RESTRICT keys, size_t num, + uint64_t* HWY_RESTRICT buf) { +#if VQSORT_ENABLED + SortTag<uint64_t> d; + detail::SharedTraits<detail::TraitsLane<detail::OrderDescendingKV64>> st; + Sort(d, st, keys, num, buf); +#else + (void) keys; + (void) num; + (void) buf; + HWY_ASSERT(0); +#endif +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE +namespace hwy { +namespace { +HWY_EXPORT(SortKV64Desc); +} // namespace + +void Sorter::operator()(K32V32* HWY_RESTRICT keys, size_t n, + SortDescending) const { + HWY_DYNAMIC_DISPATCH(SortKV64Desc) + (reinterpret_cast<uint64_t*>(keys), n, Get<uint64_t>()); +} + +} // namespace hwy +#endif // HWY_ONCE diff --git a/third_party/highway/hwy/contrib/sort/vqsort_u16a.cc b/third_party/highway/hwy/contrib/sort/vqsort_u16a.cc new file mode 100644 index 0000000000..0a97ffa923 --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/vqsort_u16a.cc @@ -0,0 +1,54 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "hwy/contrib/sort/vqsort.h" + +#undef HWY_TARGET_INCLUDE +#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_u16a.cc" +#include "hwy/foreach_target.h" // IWYU pragma: keep + +// After foreach_target +#include "hwy/contrib/sort/traits-inl.h" +#include "hwy/contrib/sort/vqsort-inl.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +void SortU16Asc(uint16_t* HWY_RESTRICT keys, size_t num, + uint16_t* HWY_RESTRICT buf) { + SortTag<uint16_t> d; + detail::SharedTraits<detail::TraitsLane<detail::OrderAscending<uint16_t>>> st; + Sort(d, st, keys, num, buf); +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE +namespace hwy { +namespace { +HWY_EXPORT(SortU16Asc); +} // namespace + +void Sorter::operator()(uint16_t* HWY_RESTRICT keys, size_t n, + SortAscending) const { + HWY_DYNAMIC_DISPATCH(SortU16Asc)(keys, n, Get<uint16_t>()); +} + +} // namespace hwy +#endif // HWY_ONCE diff --git a/third_party/highway/hwy/contrib/sort/vqsort_u16d.cc b/third_party/highway/hwy/contrib/sort/vqsort_u16d.cc new file mode 100644 index 0000000000..286ebbba65 --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/vqsort_u16d.cc @@ -0,0 +1,55 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "hwy/contrib/sort/vqsort.h" + +#undef HWY_TARGET_INCLUDE +#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_u16d.cc" +#include "hwy/foreach_target.h" // IWYU pragma: keep + +// After foreach_target +#include "hwy/contrib/sort/traits-inl.h" +#include "hwy/contrib/sort/vqsort-inl.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +void SortU16Desc(uint16_t* HWY_RESTRICT keys, size_t num, + uint16_t* HWY_RESTRICT buf) { + SortTag<uint16_t> d; + detail::SharedTraits<detail::TraitsLane<detail::OrderDescending<uint16_t>>> + st; + Sort(d, st, keys, num, buf); +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE +namespace hwy { +namespace { +HWY_EXPORT(SortU16Desc); +} // namespace + +void Sorter::operator()(uint16_t* HWY_RESTRICT keys, size_t n, + SortDescending) const { + HWY_DYNAMIC_DISPATCH(SortU16Desc)(keys, n, Get<uint16_t>()); +} + +} // namespace hwy +#endif // HWY_ONCE diff --git a/third_party/highway/hwy/contrib/sort/vqsort_u32a.cc b/third_party/highway/hwy/contrib/sort/vqsort_u32a.cc new file mode 100644 index 0000000000..b6a69e6e28 --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/vqsort_u32a.cc @@ -0,0 +1,54 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "hwy/contrib/sort/vqsort.h" + +#undef HWY_TARGET_INCLUDE +#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_u32a.cc" +#include "hwy/foreach_target.h" // IWYU pragma: keep + +// After foreach_target +#include "hwy/contrib/sort/traits-inl.h" +#include "hwy/contrib/sort/vqsort-inl.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +void SortU32Asc(uint32_t* HWY_RESTRICT keys, size_t num, + uint32_t* HWY_RESTRICT buf) { + SortTag<uint32_t> d; + detail::SharedTraits<detail::TraitsLane<detail::OrderAscending<uint32_t>>> st; + Sort(d, st, keys, num, buf); +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE +namespace hwy { +namespace { +HWY_EXPORT(SortU32Asc); +} // namespace + +void Sorter::operator()(uint32_t* HWY_RESTRICT keys, size_t n, + SortAscending) const { + HWY_DYNAMIC_DISPATCH(SortU32Asc)(keys, n, Get<uint32_t>()); +} + +} // namespace hwy +#endif // HWY_ONCE diff --git a/third_party/highway/hwy/contrib/sort/vqsort_u32d.cc b/third_party/highway/hwy/contrib/sort/vqsort_u32d.cc new file mode 100644 index 0000000000..38fc1e1bfe --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/vqsort_u32d.cc @@ -0,0 +1,55 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "hwy/contrib/sort/vqsort.h" + +#undef HWY_TARGET_INCLUDE +#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_u32d.cc" +#include "hwy/foreach_target.h" // IWYU pragma: keep + +// After foreach_target +#include "hwy/contrib/sort/traits-inl.h" +#include "hwy/contrib/sort/vqsort-inl.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +void SortU32Desc(uint32_t* HWY_RESTRICT keys, size_t num, + uint32_t* HWY_RESTRICT buf) { + SortTag<uint32_t> d; + detail::SharedTraits<detail::TraitsLane<detail::OrderDescending<uint32_t>>> + st; + Sort(d, st, keys, num, buf); +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE +namespace hwy { +namespace { +HWY_EXPORT(SortU32Desc); +} // namespace + +void Sorter::operator()(uint32_t* HWY_RESTRICT keys, size_t n, + SortDescending) const { + HWY_DYNAMIC_DISPATCH(SortU32Desc)(keys, n, Get<uint32_t>()); +} + +} // namespace hwy +#endif // HWY_ONCE diff --git a/third_party/highway/hwy/contrib/sort/vqsort_u64a.cc b/third_party/highway/hwy/contrib/sort/vqsort_u64a.cc new file mode 100644 index 0000000000..a29824a6f9 --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/vqsort_u64a.cc @@ -0,0 +1,54 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "hwy/contrib/sort/vqsort.h" + +#undef HWY_TARGET_INCLUDE +#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_u64a.cc" +#include "hwy/foreach_target.h" // IWYU pragma: keep + +// After foreach_target +#include "hwy/contrib/sort/traits-inl.h" +#include "hwy/contrib/sort/vqsort-inl.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +void SortU64Asc(uint64_t* HWY_RESTRICT keys, size_t num, + uint64_t* HWY_RESTRICT buf) { + SortTag<uint64_t> d; + detail::SharedTraits<detail::TraitsLane<detail::OrderAscending<uint64_t>>> st; + Sort(d, st, keys, num, buf); +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE +namespace hwy { +namespace { +HWY_EXPORT(SortU64Asc); +} // namespace + +void Sorter::operator()(uint64_t* HWY_RESTRICT keys, size_t n, + SortAscending) const { + HWY_DYNAMIC_DISPATCH(SortU64Asc)(keys, n, Get<uint64_t>()); +} + +} // namespace hwy +#endif // HWY_ONCE diff --git a/third_party/highway/hwy/contrib/sort/vqsort_u64d.cc b/third_party/highway/hwy/contrib/sort/vqsort_u64d.cc new file mode 100644 index 0000000000..d692458623 --- /dev/null +++ b/third_party/highway/hwy/contrib/sort/vqsort_u64d.cc @@ -0,0 +1,55 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "hwy/contrib/sort/vqsort.h" + +#undef HWY_TARGET_INCLUDE +#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_u64d.cc" +#include "hwy/foreach_target.h" // IWYU pragma: keep + +// After foreach_target +#include "hwy/contrib/sort/traits-inl.h" +#include "hwy/contrib/sort/vqsort-inl.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +void SortU64Desc(uint64_t* HWY_RESTRICT keys, size_t num, + uint64_t* HWY_RESTRICT buf) { + SortTag<uint64_t> d; + detail::SharedTraits<detail::TraitsLane<detail::OrderDescending<uint64_t>>> + st; + Sort(d, st, keys, num, buf); +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE +namespace hwy { +namespace { +HWY_EXPORT(SortU64Desc); +} // namespace + +void Sorter::operator()(uint64_t* HWY_RESTRICT keys, size_t n, + SortDescending) const { + HWY_DYNAMIC_DISPATCH(SortU64Desc)(keys, n, Get<uint64_t>()); +} + +} // namespace hwy +#endif // HWY_ONCE |