summaryrefslogtreecommitdiffstats
path: root/third_party/rust/num-traits/src/cast.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/rust/num-traits/src/cast.rs
parentInitial commit. (diff)
downloadfirefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz
firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/num-traits/src/cast.rs')
-rw-r--r--third_party/rust/num-traits/src/cast.rs814
1 files changed, 814 insertions, 0 deletions
diff --git a/third_party/rust/num-traits/src/cast.rs b/third_party/rust/num-traits/src/cast.rs
new file mode 100644
index 0000000000..d38c338156
--- /dev/null
+++ b/third_party/rust/num-traits/src/cast.rs
@@ -0,0 +1,814 @@
+use core::mem::size_of;
+use core::num::Wrapping;
+use core::{f32, f64};
+#[cfg(has_i128)]
+use core::{i128, u128};
+use core::{i16, i32, i64, i8, isize};
+use core::{u16, u32, u64, u8, usize};
+
+/// A generic trait for converting a value to a number.
+///
+/// A value can be represented by the target type when it lies within
+/// the range of scalars supported by the target type.
+/// For example, a negative integer cannot be represented by an unsigned
+/// integer type, and an `i64` with a very high magnitude might not be
+/// convertible to an `i32`.
+/// On the other hand, conversions with possible precision loss or truncation
+/// are admitted, like an `f32` with a decimal part to an integer type, or
+/// even a large `f64` saturating to `f32` infinity.
+pub trait ToPrimitive {
+ /// Converts the value of `self` to an `isize`. If the value cannot be
+ /// represented by an `isize`, then `None` is returned.
+ #[inline]
+ fn to_isize(&self) -> Option<isize> {
+ self.to_i64().as_ref().and_then(ToPrimitive::to_isize)
+ }
+
+ /// Converts the value of `self` to an `i8`. If the value cannot be
+ /// represented by an `i8`, then `None` is returned.
+ #[inline]
+ fn to_i8(&self) -> Option<i8> {
+ self.to_i64().as_ref().and_then(ToPrimitive::to_i8)
+ }
+
+ /// Converts the value of `self` to an `i16`. If the value cannot be
+ /// represented by an `i16`, then `None` is returned.
+ #[inline]
+ fn to_i16(&self) -> Option<i16> {
+ self.to_i64().as_ref().and_then(ToPrimitive::to_i16)
+ }
+
+ /// Converts the value of `self` to an `i32`. If the value cannot be
+ /// represented by an `i32`, then `None` is returned.
+ #[inline]
+ fn to_i32(&self) -> Option<i32> {
+ self.to_i64().as_ref().and_then(ToPrimitive::to_i32)
+ }
+
+ /// Converts the value of `self` to an `i64`. If the value cannot be
+ /// represented by an `i64`, then `None` is returned.
+ fn to_i64(&self) -> Option<i64>;
+
+ /// Converts the value of `self` to an `i128`. If the value cannot be
+ /// represented by an `i128` (`i64` under the default implementation), then
+ /// `None` is returned.
+ ///
+ /// This method is only available with feature `i128` enabled on Rust >= 1.26.
+ ///
+ /// The default implementation converts through `to_i64()`. Types implementing
+ /// this trait should override this method if they can represent a greater range.
+ #[inline]
+ #[cfg(has_i128)]
+ fn to_i128(&self) -> Option<i128> {
+ self.to_i64().map(From::from)
+ }
+
+ /// Converts the value of `self` to a `usize`. If the value cannot be
+ /// represented by a `usize`, then `None` is returned.
+ #[inline]
+ fn to_usize(&self) -> Option<usize> {
+ self.to_u64().as_ref().and_then(ToPrimitive::to_usize)
+ }
+
+ /// Converts the value of `self` to a `u8`. If the value cannot be
+ /// represented by a `u8`, then `None` is returned.
+ #[inline]
+ fn to_u8(&self) -> Option<u8> {
+ self.to_u64().as_ref().and_then(ToPrimitive::to_u8)
+ }
+
+ /// Converts the value of `self` to a `u16`. If the value cannot be
+ /// represented by a `u16`, then `None` is returned.
+ #[inline]
+ fn to_u16(&self) -> Option<u16> {
+ self.to_u64().as_ref().and_then(ToPrimitive::to_u16)
+ }
+
+ /// Converts the value of `self` to a `u32`. If the value cannot be
+ /// represented by a `u32`, then `None` is returned.
+ #[inline]
+ fn to_u32(&self) -> Option<u32> {
+ self.to_u64().as_ref().and_then(ToPrimitive::to_u32)
+ }
+
+ /// Converts the value of `self` to a `u64`. If the value cannot be
+ /// represented by a `u64`, then `None` is returned.
+ fn to_u64(&self) -> Option<u64>;
+
+ /// Converts the value of `self` to a `u128`. If the value cannot be
+ /// represented by a `u128` (`u64` under the default implementation), then
+ /// `None` is returned.
+ ///
+ /// This method is only available with feature `i128` enabled on Rust >= 1.26.
+ ///
+ /// The default implementation converts through `to_u64()`. Types implementing
+ /// this trait should override this method if they can represent a greater range.
+ #[inline]
+ #[cfg(has_i128)]
+ fn to_u128(&self) -> Option<u128> {
+ self.to_u64().map(From::from)
+ }
+
+ /// Converts the value of `self` to an `f32`. Overflows may map to positive
+ /// or negative inifinity, otherwise `None` is returned if the value cannot
+ /// be represented by an `f32`.
+ #[inline]
+ fn to_f32(&self) -> Option<f32> {
+ self.to_f64().as_ref().and_then(ToPrimitive::to_f32)
+ }
+
+ /// Converts the value of `self` to an `f64`. Overflows may map to positive
+ /// or negative inifinity, otherwise `None` is returned if the value cannot
+ /// be represented by an `f64`.
+ ///
+ /// The default implementation tries to convert through `to_i64()`, and
+ /// failing that through `to_u64()`. Types implementing this trait should
+ /// override this method if they can represent a greater range.
+ #[inline]
+ fn to_f64(&self) -> Option<f64> {
+ match self.to_i64() {
+ Some(i) => i.to_f64(),
+ None => self.to_u64().as_ref().and_then(ToPrimitive::to_f64),
+ }
+ }
+}
+
+macro_rules! impl_to_primitive_int_to_int {
+ ($SrcT:ident : $( $(#[$cfg:meta])* fn $method:ident -> $DstT:ident ; )*) => {$(
+ #[inline]
+ $(#[$cfg])*
+ fn $method(&self) -> Option<$DstT> {
+ let min = $DstT::MIN as $SrcT;
+ let max = $DstT::MAX as $SrcT;
+ if size_of::<$SrcT>() <= size_of::<$DstT>() || (min <= *self && *self <= max) {
+ Some(*self as $DstT)
+ } else {
+ None
+ }
+ }
+ )*}
+}
+
+macro_rules! impl_to_primitive_int_to_uint {
+ ($SrcT:ident : $( $(#[$cfg:meta])* fn $method:ident -> $DstT:ident ; )*) => {$(
+ #[inline]
+ $(#[$cfg])*
+ fn $method(&self) -> Option<$DstT> {
+ let max = $DstT::MAX as $SrcT;
+ if 0 <= *self && (size_of::<$SrcT>() <= size_of::<$DstT>() || *self <= max) {
+ Some(*self as $DstT)
+ } else {
+ None
+ }
+ }
+ )*}
+}
+
+macro_rules! impl_to_primitive_int {
+ ($T:ident) => {
+ impl ToPrimitive for $T {
+ impl_to_primitive_int_to_int! { $T:
+ fn to_isize -> isize;
+ fn to_i8 -> i8;
+ fn to_i16 -> i16;
+ fn to_i32 -> i32;
+ fn to_i64 -> i64;
+ #[cfg(has_i128)]
+ fn to_i128 -> i128;
+ }
+
+ impl_to_primitive_int_to_uint! { $T:
+ fn to_usize -> usize;
+ fn to_u8 -> u8;
+ fn to_u16 -> u16;
+ fn to_u32 -> u32;
+ fn to_u64 -> u64;
+ #[cfg(has_i128)]
+ fn to_u128 -> u128;
+ }
+
+ #[inline]
+ fn to_f32(&self) -> Option<f32> {
+ Some(*self as f32)
+ }
+ #[inline]
+ fn to_f64(&self) -> Option<f64> {
+ Some(*self as f64)
+ }
+ }
+ };
+}
+
+impl_to_primitive_int!(isize);
+impl_to_primitive_int!(i8);
+impl_to_primitive_int!(i16);
+impl_to_primitive_int!(i32);
+impl_to_primitive_int!(i64);
+#[cfg(has_i128)]
+impl_to_primitive_int!(i128);
+
+macro_rules! impl_to_primitive_uint_to_int {
+ ($SrcT:ident : $( $(#[$cfg:meta])* fn $method:ident -> $DstT:ident ; )*) => {$(
+ #[inline]
+ $(#[$cfg])*
+ fn $method(&self) -> Option<$DstT> {
+ let max = $DstT::MAX as $SrcT;
+ if size_of::<$SrcT>() < size_of::<$DstT>() || *self <= max {
+ Some(*self as $DstT)
+ } else {
+ None
+ }
+ }
+ )*}
+}
+
+macro_rules! impl_to_primitive_uint_to_uint {
+ ($SrcT:ident : $( $(#[$cfg:meta])* fn $method:ident -> $DstT:ident ; )*) => {$(
+ #[inline]
+ $(#[$cfg])*
+ fn $method(&self) -> Option<$DstT> {
+ let max = $DstT::MAX as $SrcT;
+ if size_of::<$SrcT>() <= size_of::<$DstT>() || *self <= max {
+ Some(*self as $DstT)
+ } else {
+ None
+ }
+ }
+ )*}
+}
+
+macro_rules! impl_to_primitive_uint {
+ ($T:ident) => {
+ impl ToPrimitive for $T {
+ impl_to_primitive_uint_to_int! { $T:
+ fn to_isize -> isize;
+ fn to_i8 -> i8;
+ fn to_i16 -> i16;
+ fn to_i32 -> i32;
+ fn to_i64 -> i64;
+ #[cfg(has_i128)]
+ fn to_i128 -> i128;
+ }
+
+ impl_to_primitive_uint_to_uint! { $T:
+ fn to_usize -> usize;
+ fn to_u8 -> u8;
+ fn to_u16 -> u16;
+ fn to_u32 -> u32;
+ fn to_u64 -> u64;
+ #[cfg(has_i128)]
+ fn to_u128 -> u128;
+ }
+
+ #[inline]
+ fn to_f32(&self) -> Option<f32> {
+ Some(*self as f32)
+ }
+ #[inline]
+ fn to_f64(&self) -> Option<f64> {
+ Some(*self as f64)
+ }
+ }
+ };
+}
+
+impl_to_primitive_uint!(usize);
+impl_to_primitive_uint!(u8);
+impl_to_primitive_uint!(u16);
+impl_to_primitive_uint!(u32);
+impl_to_primitive_uint!(u64);
+#[cfg(has_i128)]
+impl_to_primitive_uint!(u128);
+
+macro_rules! impl_to_primitive_float_to_float {
+ ($SrcT:ident : $( fn $method:ident -> $DstT:ident ; )*) => {$(
+ #[inline]
+ fn $method(&self) -> Option<$DstT> {
+ // We can safely cast all values, whether NaN, +-inf, or finite.
+ // Finite values that are reducing size may saturate to +-inf.
+ Some(*self as $DstT)
+ }
+ )*}
+}
+
+#[cfg(has_to_int_unchecked)]
+macro_rules! float_to_int_unchecked {
+ // SAFETY: Must not be NaN or infinite; must be representable as the integer after truncating.
+ // We already checked that the float is in the exclusive range `(MIN-1, MAX+1)`.
+ ($float:expr => $int:ty) => {
+ unsafe { $float.to_int_unchecked::<$int>() }
+ };
+}
+
+#[cfg(not(has_to_int_unchecked))]
+macro_rules! float_to_int_unchecked {
+ ($float:expr => $int:ty) => {
+ $float as $int
+ };
+}
+
+macro_rules! impl_to_primitive_float_to_signed_int {
+ ($f:ident : $( $(#[$cfg:meta])* fn $method:ident -> $i:ident ; )*) => {$(
+ #[inline]
+ $(#[$cfg])*
+ fn $method(&self) -> Option<$i> {
+ // Float as int truncates toward zero, so we want to allow values
+ // in the exclusive range `(MIN-1, MAX+1)`.
+ if size_of::<$f>() > size_of::<$i>() {
+ // With a larger size, we can represent the range exactly.
+ const MIN_M1: $f = $i::MIN as $f - 1.0;
+ const MAX_P1: $f = $i::MAX as $f + 1.0;
+ if *self > MIN_M1 && *self < MAX_P1 {
+ return Some(float_to_int_unchecked!(*self => $i));
+ }
+ } else {
+ // We can't represent `MIN-1` exactly, but there's no fractional part
+ // at this magnitude, so we can just use a `MIN` inclusive boundary.
+ const MIN: $f = $i::MIN as $f;
+ // We can't represent `MAX` exactly, but it will round up to exactly
+ // `MAX+1` (a power of two) when we cast it.
+ const MAX_P1: $f = $i::MAX as $f;
+ if *self >= MIN && *self < MAX_P1 {
+ return Some(float_to_int_unchecked!(*self => $i));
+ }
+ }
+ None
+ }
+ )*}
+}
+
+macro_rules! impl_to_primitive_float_to_unsigned_int {
+ ($f:ident : $( $(#[$cfg:meta])* fn $method:ident -> $u:ident ; )*) => {$(
+ #[inline]
+ $(#[$cfg])*
+ fn $method(&self) -> Option<$u> {
+ // Float as int truncates toward zero, so we want to allow values
+ // in the exclusive range `(-1, MAX+1)`.
+ if size_of::<$f>() > size_of::<$u>() {
+ // With a larger size, we can represent the range exactly.
+ const MAX_P1: $f = $u::MAX as $f + 1.0;
+ if *self > -1.0 && *self < MAX_P1 {
+ return Some(float_to_int_unchecked!(*self => $u));
+ }
+ } else {
+ // We can't represent `MAX` exactly, but it will round up to exactly
+ // `MAX+1` (a power of two) when we cast it.
+ // (`u128::MAX as f32` is infinity, but this is still ok.)
+ const MAX_P1: $f = $u::MAX as $f;
+ if *self > -1.0 && *self < MAX_P1 {
+ return Some(float_to_int_unchecked!(*self => $u));
+ }
+ }
+ None
+ }
+ )*}
+}
+
+macro_rules! impl_to_primitive_float {
+ ($T:ident) => {
+ impl ToPrimitive for $T {
+ impl_to_primitive_float_to_signed_int! { $T:
+ fn to_isize -> isize;
+ fn to_i8 -> i8;
+ fn to_i16 -> i16;
+ fn to_i32 -> i32;
+ fn to_i64 -> i64;
+ #[cfg(has_i128)]
+ fn to_i128 -> i128;
+ }
+
+ impl_to_primitive_float_to_unsigned_int! { $T:
+ fn to_usize -> usize;
+ fn to_u8 -> u8;
+ fn to_u16 -> u16;
+ fn to_u32 -> u32;
+ fn to_u64 -> u64;
+ #[cfg(has_i128)]
+ fn to_u128 -> u128;
+ }
+
+ impl_to_primitive_float_to_float! { $T:
+ fn to_f32 -> f32;
+ fn to_f64 -> f64;
+ }
+ }
+ };
+}
+
+impl_to_primitive_float!(f32);
+impl_to_primitive_float!(f64);
+
+/// A generic trait for converting a number to a value.
+///
+/// A value can be represented by the target type when it lies within
+/// the range of scalars supported by the target type.
+/// For example, a negative integer cannot be represented by an unsigned
+/// integer type, and an `i64` with a very high magnitude might not be
+/// convertible to an `i32`.
+/// On the other hand, conversions with possible precision loss or truncation
+/// are admitted, like an `f32` with a decimal part to an integer type, or
+/// even a large `f64` saturating to `f32` infinity.
+pub trait FromPrimitive: Sized {
+ /// Converts an `isize` to return an optional value of this type. If the
+ /// value cannot be represented by this type, then `None` is returned.
+ #[inline]
+ fn from_isize(n: isize) -> Option<Self> {
+ n.to_i64().and_then(FromPrimitive::from_i64)
+ }
+
+ /// Converts an `i8` to return an optional value of this type. If the
+ /// value cannot be represented by this type, then `None` is returned.
+ #[inline]
+ fn from_i8(n: i8) -> Option<Self> {
+ FromPrimitive::from_i64(From::from(n))
+ }
+
+ /// Converts an `i16` to return an optional value of this type. If the
+ /// value cannot be represented by this type, then `None` is returned.
+ #[inline]
+ fn from_i16(n: i16) -> Option<Self> {
+ FromPrimitive::from_i64(From::from(n))
+ }
+
+ /// Converts an `i32` to return an optional value of this type. If the
+ /// value cannot be represented by this type, then `None` is returned.
+ #[inline]
+ fn from_i32(n: i32) -> Option<Self> {
+ FromPrimitive::from_i64(From::from(n))
+ }
+
+ /// Converts an `i64` to return an optional value of this type. If the
+ /// value cannot be represented by this type, then `None` is returned.
+ fn from_i64(n: i64) -> Option<Self>;
+
+ /// Converts an `i128` to return an optional value of this type. If the
+ /// value cannot be represented by this type, then `None` is returned.
+ ///
+ /// This method is only available with feature `i128` enabled on Rust >= 1.26.
+ ///
+ /// The default implementation converts through `from_i64()`. Types implementing
+ /// this trait should override this method if they can represent a greater range.
+ #[inline]
+ #[cfg(has_i128)]
+ fn from_i128(n: i128) -> Option<Self> {
+ n.to_i64().and_then(FromPrimitive::from_i64)
+ }
+
+ /// Converts a `usize` to return an optional value of this type. If the
+ /// value cannot be represented by this type, then `None` is returned.
+ #[inline]
+ fn from_usize(n: usize) -> Option<Self> {
+ n.to_u64().and_then(FromPrimitive::from_u64)
+ }
+
+ /// Converts an `u8` to return an optional value of this type. If the
+ /// value cannot be represented by this type, then `None` is returned.
+ #[inline]
+ fn from_u8(n: u8) -> Option<Self> {
+ FromPrimitive::from_u64(From::from(n))
+ }
+
+ /// Converts an `u16` to return an optional value of this type. If the
+ /// value cannot be represented by this type, then `None` is returned.
+ #[inline]
+ fn from_u16(n: u16) -> Option<Self> {
+ FromPrimitive::from_u64(From::from(n))
+ }
+
+ /// Converts an `u32` to return an optional value of this type. If the
+ /// value cannot be represented by this type, then `None` is returned.
+ #[inline]
+ fn from_u32(n: u32) -> Option<Self> {
+ FromPrimitive::from_u64(From::from(n))
+ }
+
+ /// Converts an `u64` to return an optional value of this type. If the
+ /// value cannot be represented by this type, then `None` is returned.
+ fn from_u64(n: u64) -> Option<Self>;
+
+ /// Converts an `u128` to return an optional value of this type. If the
+ /// value cannot be represented by this type, then `None` is returned.
+ ///
+ /// This method is only available with feature `i128` enabled on Rust >= 1.26.
+ ///
+ /// The default implementation converts through `from_u64()`. Types implementing
+ /// this trait should override this method if they can represent a greater range.
+ #[inline]
+ #[cfg(has_i128)]
+ fn from_u128(n: u128) -> Option<Self> {
+ n.to_u64().and_then(FromPrimitive::from_u64)
+ }
+
+ /// Converts a `f32` to return an optional value of this type. If the
+ /// value cannot be represented by this type, then `None` is returned.
+ #[inline]
+ fn from_f32(n: f32) -> Option<Self> {
+ FromPrimitive::from_f64(From::from(n))
+ }
+
+ /// Converts a `f64` to return an optional value of this type. If the
+ /// value cannot be represented by this type, then `None` is returned.
+ ///
+ /// The default implementation tries to convert through `from_i64()`, and
+ /// failing that through `from_u64()`. Types implementing this trait should
+ /// override this method if they can represent a greater range.
+ #[inline]
+ fn from_f64(n: f64) -> Option<Self> {
+ match n.to_i64() {
+ Some(i) => FromPrimitive::from_i64(i),
+ None => n.to_u64().and_then(FromPrimitive::from_u64),
+ }
+ }
+}
+
+macro_rules! impl_from_primitive {
+ ($T:ty, $to_ty:ident) => {
+ #[allow(deprecated)]
+ impl FromPrimitive for $T {
+ #[inline]
+ fn from_isize(n: isize) -> Option<$T> {
+ n.$to_ty()
+ }
+ #[inline]
+ fn from_i8(n: i8) -> Option<$T> {
+ n.$to_ty()
+ }
+ #[inline]
+ fn from_i16(n: i16) -> Option<$T> {
+ n.$to_ty()
+ }
+ #[inline]
+ fn from_i32(n: i32) -> Option<$T> {
+ n.$to_ty()
+ }
+ #[inline]
+ fn from_i64(n: i64) -> Option<$T> {
+ n.$to_ty()
+ }
+ #[cfg(has_i128)]
+ #[inline]
+ fn from_i128(n: i128) -> Option<$T> {
+ n.$to_ty()
+ }
+
+ #[inline]
+ fn from_usize(n: usize) -> Option<$T> {
+ n.$to_ty()
+ }
+ #[inline]
+ fn from_u8(n: u8) -> Option<$T> {
+ n.$to_ty()
+ }
+ #[inline]
+ fn from_u16(n: u16) -> Option<$T> {
+ n.$to_ty()
+ }
+ #[inline]
+ fn from_u32(n: u32) -> Option<$T> {
+ n.$to_ty()
+ }
+ #[inline]
+ fn from_u64(n: u64) -> Option<$T> {
+ n.$to_ty()
+ }
+ #[cfg(has_i128)]
+ #[inline]
+ fn from_u128(n: u128) -> Option<$T> {
+ n.$to_ty()
+ }
+
+ #[inline]
+ fn from_f32(n: f32) -> Option<$T> {
+ n.$to_ty()
+ }
+ #[inline]
+ fn from_f64(n: f64) -> Option<$T> {
+ n.$to_ty()
+ }
+ }
+ };
+}
+
+impl_from_primitive!(isize, to_isize);
+impl_from_primitive!(i8, to_i8);
+impl_from_primitive!(i16, to_i16);
+impl_from_primitive!(i32, to_i32);
+impl_from_primitive!(i64, to_i64);
+#[cfg(has_i128)]
+impl_from_primitive!(i128, to_i128);
+impl_from_primitive!(usize, to_usize);
+impl_from_primitive!(u8, to_u8);
+impl_from_primitive!(u16, to_u16);
+impl_from_primitive!(u32, to_u32);
+impl_from_primitive!(u64, to_u64);
+#[cfg(has_i128)]
+impl_from_primitive!(u128, to_u128);
+impl_from_primitive!(f32, to_f32);
+impl_from_primitive!(f64, to_f64);
+
+macro_rules! impl_to_primitive_wrapping {
+ ($( $(#[$cfg:meta])* fn $method:ident -> $i:ident ; )*) => {$(
+ #[inline]
+ $(#[$cfg])*
+ fn $method(&self) -> Option<$i> {
+ (self.0).$method()
+ }
+ )*}
+}
+
+impl<T: ToPrimitive> ToPrimitive for Wrapping<T> {
+ impl_to_primitive_wrapping! {
+ fn to_isize -> isize;
+ fn to_i8 -> i8;
+ fn to_i16 -> i16;
+ fn to_i32 -> i32;
+ fn to_i64 -> i64;
+ #[cfg(has_i128)]
+ fn to_i128 -> i128;
+
+ fn to_usize -> usize;
+ fn to_u8 -> u8;
+ fn to_u16 -> u16;
+ fn to_u32 -> u32;
+ fn to_u64 -> u64;
+ #[cfg(has_i128)]
+ fn to_u128 -> u128;
+
+ fn to_f32 -> f32;
+ fn to_f64 -> f64;
+ }
+}
+
+macro_rules! impl_from_primitive_wrapping {
+ ($( $(#[$cfg:meta])* fn $method:ident ( $i:ident ); )*) => {$(
+ #[inline]
+ $(#[$cfg])*
+ fn $method(n: $i) -> Option<Self> {
+ T::$method(n).map(Wrapping)
+ }
+ )*}
+}
+
+impl<T: FromPrimitive> FromPrimitive for Wrapping<T> {
+ impl_from_primitive_wrapping! {
+ fn from_isize(isize);
+ fn from_i8(i8);
+ fn from_i16(i16);
+ fn from_i32(i32);
+ fn from_i64(i64);
+ #[cfg(has_i128)]
+ fn from_i128(i128);
+
+ fn from_usize(usize);
+ fn from_u8(u8);
+ fn from_u16(u16);
+ fn from_u32(u32);
+ fn from_u64(u64);
+ #[cfg(has_i128)]
+ fn from_u128(u128);
+
+ fn from_f32(f32);
+ fn from_f64(f64);
+ }
+}
+
+/// Cast from one machine scalar to another.
+///
+/// # Examples
+///
+/// ```
+/// # use num_traits as num;
+/// let twenty: f32 = num::cast(0x14).unwrap();
+/// assert_eq!(twenty, 20f32);
+/// ```
+///
+#[inline]
+pub fn cast<T: NumCast, U: NumCast>(n: T) -> Option<U> {
+ NumCast::from(n)
+}
+
+/// An interface for casting between machine scalars.
+pub trait NumCast: Sized + ToPrimitive {
+ /// Creates a number from another value that can be converted into
+ /// a primitive via the `ToPrimitive` trait. If the source value cannot be
+ /// represented by the target type, then `None` is returned.
+ ///
+ /// A value can be represented by the target type when it lies within
+ /// the range of scalars supported by the target type.
+ /// For example, a negative integer cannot be represented by an unsigned
+ /// integer type, and an `i64` with a very high magnitude might not be
+ /// convertible to an `i32`.
+ /// On the other hand, conversions with possible precision loss or truncation
+ /// are admitted, like an `f32` with a decimal part to an integer type, or
+ /// even a large `f64` saturating to `f32` infinity.
+ fn from<T: ToPrimitive>(n: T) -> Option<Self>;
+}
+
+macro_rules! impl_num_cast {
+ ($T:ty, $conv:ident) => {
+ impl NumCast for $T {
+ #[inline]
+ #[allow(deprecated)]
+ fn from<N: ToPrimitive>(n: N) -> Option<$T> {
+ // `$conv` could be generated using `concat_idents!`, but that
+ // macro seems to be broken at the moment
+ n.$conv()
+ }
+ }
+ };
+}
+
+impl_num_cast!(u8, to_u8);
+impl_num_cast!(u16, to_u16);
+impl_num_cast!(u32, to_u32);
+impl_num_cast!(u64, to_u64);
+#[cfg(has_i128)]
+impl_num_cast!(u128, to_u128);
+impl_num_cast!(usize, to_usize);
+impl_num_cast!(i8, to_i8);
+impl_num_cast!(i16, to_i16);
+impl_num_cast!(i32, to_i32);
+impl_num_cast!(i64, to_i64);
+#[cfg(has_i128)]
+impl_num_cast!(i128, to_i128);
+impl_num_cast!(isize, to_isize);
+impl_num_cast!(f32, to_f32);
+impl_num_cast!(f64, to_f64);
+
+impl<T: NumCast> NumCast for Wrapping<T> {
+ fn from<U: ToPrimitive>(n: U) -> Option<Self> {
+ T::from(n).map(Wrapping)
+ }
+}
+
+/// A generic interface for casting between machine scalars with the
+/// `as` operator, which admits narrowing and precision loss.
+/// Implementers of this trait `AsPrimitive` should behave like a primitive
+/// numeric type (e.g. a newtype around another primitive), and the
+/// intended conversion must never fail.
+///
+/// # Examples
+///
+/// ```
+/// # use num_traits::AsPrimitive;
+/// let three: i32 = (3.14159265f32).as_();
+/// assert_eq!(three, 3);
+/// ```
+///
+/// # Safety
+///
+/// **In Rust versions before 1.45.0**, some uses of the `as` operator were not entirely safe.
+/// In particular, it was undefined behavior if
+/// a truncated floating point value could not fit in the target integer
+/// type ([#10184](https://github.com/rust-lang/rust/issues/10184)).
+///
+/// ```ignore
+/// # use num_traits::AsPrimitive;
+/// let x: u8 = (1.04E+17).as_(); // UB
+/// ```
+///
+pub trait AsPrimitive<T>: 'static + Copy
+where
+ T: 'static + Copy,
+{
+ /// Convert a value to another, using the `as` operator.
+ fn as_(self) -> T;
+}
+
+macro_rules! impl_as_primitive {
+ (@ $T: ty => $(#[$cfg:meta])* impl $U: ty ) => {
+ $(#[$cfg])*
+ impl AsPrimitive<$U> for $T {
+ #[inline] fn as_(self) -> $U { self as $U }
+ }
+ };
+ (@ $T: ty => { $( $U: ty ),* } ) => {$(
+ impl_as_primitive!(@ $T => impl $U);
+ )*};
+ ($T: ty => { $( $U: ty ),* } ) => {
+ impl_as_primitive!(@ $T => { $( $U ),* });
+ impl_as_primitive!(@ $T => { u8, u16, u32, u64, usize });
+ impl_as_primitive!(@ $T => #[cfg(has_i128)] impl u128);
+ impl_as_primitive!(@ $T => { i8, i16, i32, i64, isize });
+ impl_as_primitive!(@ $T => #[cfg(has_i128)] impl i128);
+ };
+}
+
+impl_as_primitive!(u8 => { char, f32, f64 });
+impl_as_primitive!(i8 => { f32, f64 });
+impl_as_primitive!(u16 => { f32, f64 });
+impl_as_primitive!(i16 => { f32, f64 });
+impl_as_primitive!(u32 => { f32, f64 });
+impl_as_primitive!(i32 => { f32, f64 });
+impl_as_primitive!(u64 => { f32, f64 });
+impl_as_primitive!(i64 => { f32, f64 });
+#[cfg(has_i128)]
+impl_as_primitive!(u128 => { f32, f64 });
+#[cfg(has_i128)]
+impl_as_primitive!(i128 => { f32, f64 });
+impl_as_primitive!(usize => { f32, f64 });
+impl_as_primitive!(isize => { f32, f64 });
+impl_as_primitive!(f32 => { f32, f64 });
+impl_as_primitive!(f64 => { f32, f64 });
+impl_as_primitive!(char => { char });
+impl_as_primitive!(bool => {});