diff options
Diffstat (limited to 'third_party/rust/num-traits/src/cast.rs')
-rw-r--r-- | third_party/rust/num-traits/src/cast.rs | 814 |
1 files changed, 814 insertions, 0 deletions
diff --git a/third_party/rust/num-traits/src/cast.rs b/third_party/rust/num-traits/src/cast.rs new file mode 100644 index 0000000000..d38c338156 --- /dev/null +++ b/third_party/rust/num-traits/src/cast.rs @@ -0,0 +1,814 @@ +use core::mem::size_of; +use core::num::Wrapping; +use core::{f32, f64}; +#[cfg(has_i128)] +use core::{i128, u128}; +use core::{i16, i32, i64, i8, isize}; +use core::{u16, u32, u64, u8, usize}; + +/// A generic trait for converting a value to a number. +/// +/// A value can be represented by the target type when it lies within +/// the range of scalars supported by the target type. +/// For example, a negative integer cannot be represented by an unsigned +/// integer type, and an `i64` with a very high magnitude might not be +/// convertible to an `i32`. +/// On the other hand, conversions with possible precision loss or truncation +/// are admitted, like an `f32` with a decimal part to an integer type, or +/// even a large `f64` saturating to `f32` infinity. +pub trait ToPrimitive { + /// Converts the value of `self` to an `isize`. If the value cannot be + /// represented by an `isize`, then `None` is returned. + #[inline] + fn to_isize(&self) -> Option<isize> { + self.to_i64().as_ref().and_then(ToPrimitive::to_isize) + } + + /// Converts the value of `self` to an `i8`. If the value cannot be + /// represented by an `i8`, then `None` is returned. + #[inline] + fn to_i8(&self) -> Option<i8> { + self.to_i64().as_ref().and_then(ToPrimitive::to_i8) + } + + /// Converts the value of `self` to an `i16`. If the value cannot be + /// represented by an `i16`, then `None` is returned. + #[inline] + fn to_i16(&self) -> Option<i16> { + self.to_i64().as_ref().and_then(ToPrimitive::to_i16) + } + + /// Converts the value of `self` to an `i32`. If the value cannot be + /// represented by an `i32`, then `None` is returned. + #[inline] + fn to_i32(&self) -> Option<i32> { + self.to_i64().as_ref().and_then(ToPrimitive::to_i32) + } + + /// Converts the value of `self` to an `i64`. If the value cannot be + /// represented by an `i64`, then `None` is returned. + fn to_i64(&self) -> Option<i64>; + + /// Converts the value of `self` to an `i128`. If the value cannot be + /// represented by an `i128` (`i64` under the default implementation), then + /// `None` is returned. + /// + /// This method is only available with feature `i128` enabled on Rust >= 1.26. + /// + /// The default implementation converts through `to_i64()`. Types implementing + /// this trait should override this method if they can represent a greater range. + #[inline] + #[cfg(has_i128)] + fn to_i128(&self) -> Option<i128> { + self.to_i64().map(From::from) + } + + /// Converts the value of `self` to a `usize`. If the value cannot be + /// represented by a `usize`, then `None` is returned. + #[inline] + fn to_usize(&self) -> Option<usize> { + self.to_u64().as_ref().and_then(ToPrimitive::to_usize) + } + + /// Converts the value of `self` to a `u8`. If the value cannot be + /// represented by a `u8`, then `None` is returned. + #[inline] + fn to_u8(&self) -> Option<u8> { + self.to_u64().as_ref().and_then(ToPrimitive::to_u8) + } + + /// Converts the value of `self` to a `u16`. If the value cannot be + /// represented by a `u16`, then `None` is returned. + #[inline] + fn to_u16(&self) -> Option<u16> { + self.to_u64().as_ref().and_then(ToPrimitive::to_u16) + } + + /// Converts the value of `self` to a `u32`. If the value cannot be + /// represented by a `u32`, then `None` is returned. + #[inline] + fn to_u32(&self) -> Option<u32> { + self.to_u64().as_ref().and_then(ToPrimitive::to_u32) + } + + /// Converts the value of `self` to a `u64`. If the value cannot be + /// represented by a `u64`, then `None` is returned. + fn to_u64(&self) -> Option<u64>; + + /// Converts the value of `self` to a `u128`. If the value cannot be + /// represented by a `u128` (`u64` under the default implementation), then + /// `None` is returned. + /// + /// This method is only available with feature `i128` enabled on Rust >= 1.26. + /// + /// The default implementation converts through `to_u64()`. Types implementing + /// this trait should override this method if they can represent a greater range. + #[inline] + #[cfg(has_i128)] + fn to_u128(&self) -> Option<u128> { + self.to_u64().map(From::from) + } + + /// Converts the value of `self` to an `f32`. Overflows may map to positive + /// or negative inifinity, otherwise `None` is returned if the value cannot + /// be represented by an `f32`. + #[inline] + fn to_f32(&self) -> Option<f32> { + self.to_f64().as_ref().and_then(ToPrimitive::to_f32) + } + + /// Converts the value of `self` to an `f64`. Overflows may map to positive + /// or negative inifinity, otherwise `None` is returned if the value cannot + /// be represented by an `f64`. + /// + /// The default implementation tries to convert through `to_i64()`, and + /// failing that through `to_u64()`. Types implementing this trait should + /// override this method if they can represent a greater range. + #[inline] + fn to_f64(&self) -> Option<f64> { + match self.to_i64() { + Some(i) => i.to_f64(), + None => self.to_u64().as_ref().and_then(ToPrimitive::to_f64), + } + } +} + +macro_rules! impl_to_primitive_int_to_int { + ($SrcT:ident : $( $(#[$cfg:meta])* fn $method:ident -> $DstT:ident ; )*) => {$( + #[inline] + $(#[$cfg])* + fn $method(&self) -> Option<$DstT> { + let min = $DstT::MIN as $SrcT; + let max = $DstT::MAX as $SrcT; + if size_of::<$SrcT>() <= size_of::<$DstT>() || (min <= *self && *self <= max) { + Some(*self as $DstT) + } else { + None + } + } + )*} +} + +macro_rules! impl_to_primitive_int_to_uint { + ($SrcT:ident : $( $(#[$cfg:meta])* fn $method:ident -> $DstT:ident ; )*) => {$( + #[inline] + $(#[$cfg])* + fn $method(&self) -> Option<$DstT> { + let max = $DstT::MAX as $SrcT; + if 0 <= *self && (size_of::<$SrcT>() <= size_of::<$DstT>() || *self <= max) { + Some(*self as $DstT) + } else { + None + } + } + )*} +} + +macro_rules! impl_to_primitive_int { + ($T:ident) => { + impl ToPrimitive for $T { + impl_to_primitive_int_to_int! { $T: + fn to_isize -> isize; + fn to_i8 -> i8; + fn to_i16 -> i16; + fn to_i32 -> i32; + fn to_i64 -> i64; + #[cfg(has_i128)] + fn to_i128 -> i128; + } + + impl_to_primitive_int_to_uint! { $T: + fn to_usize -> usize; + fn to_u8 -> u8; + fn to_u16 -> u16; + fn to_u32 -> u32; + fn to_u64 -> u64; + #[cfg(has_i128)] + fn to_u128 -> u128; + } + + #[inline] + fn to_f32(&self) -> Option<f32> { + Some(*self as f32) + } + #[inline] + fn to_f64(&self) -> Option<f64> { + Some(*self as f64) + } + } + }; +} + +impl_to_primitive_int!(isize); +impl_to_primitive_int!(i8); +impl_to_primitive_int!(i16); +impl_to_primitive_int!(i32); +impl_to_primitive_int!(i64); +#[cfg(has_i128)] +impl_to_primitive_int!(i128); + +macro_rules! impl_to_primitive_uint_to_int { + ($SrcT:ident : $( $(#[$cfg:meta])* fn $method:ident -> $DstT:ident ; )*) => {$( + #[inline] + $(#[$cfg])* + fn $method(&self) -> Option<$DstT> { + let max = $DstT::MAX as $SrcT; + if size_of::<$SrcT>() < size_of::<$DstT>() || *self <= max { + Some(*self as $DstT) + } else { + None + } + } + )*} +} + +macro_rules! impl_to_primitive_uint_to_uint { + ($SrcT:ident : $( $(#[$cfg:meta])* fn $method:ident -> $DstT:ident ; )*) => {$( + #[inline] + $(#[$cfg])* + fn $method(&self) -> Option<$DstT> { + let max = $DstT::MAX as $SrcT; + if size_of::<$SrcT>() <= size_of::<$DstT>() || *self <= max { + Some(*self as $DstT) + } else { + None + } + } + )*} +} + +macro_rules! impl_to_primitive_uint { + ($T:ident) => { + impl ToPrimitive for $T { + impl_to_primitive_uint_to_int! { $T: + fn to_isize -> isize; + fn to_i8 -> i8; + fn to_i16 -> i16; + fn to_i32 -> i32; + fn to_i64 -> i64; + #[cfg(has_i128)] + fn to_i128 -> i128; + } + + impl_to_primitive_uint_to_uint! { $T: + fn to_usize -> usize; + fn to_u8 -> u8; + fn to_u16 -> u16; + fn to_u32 -> u32; + fn to_u64 -> u64; + #[cfg(has_i128)] + fn to_u128 -> u128; + } + + #[inline] + fn to_f32(&self) -> Option<f32> { + Some(*self as f32) + } + #[inline] + fn to_f64(&self) -> Option<f64> { + Some(*self as f64) + } + } + }; +} + +impl_to_primitive_uint!(usize); +impl_to_primitive_uint!(u8); +impl_to_primitive_uint!(u16); +impl_to_primitive_uint!(u32); +impl_to_primitive_uint!(u64); +#[cfg(has_i128)] +impl_to_primitive_uint!(u128); + +macro_rules! impl_to_primitive_float_to_float { + ($SrcT:ident : $( fn $method:ident -> $DstT:ident ; )*) => {$( + #[inline] + fn $method(&self) -> Option<$DstT> { + // We can safely cast all values, whether NaN, +-inf, or finite. + // Finite values that are reducing size may saturate to +-inf. + Some(*self as $DstT) + } + )*} +} + +#[cfg(has_to_int_unchecked)] +macro_rules! float_to_int_unchecked { + // SAFETY: Must not be NaN or infinite; must be representable as the integer after truncating. + // We already checked that the float is in the exclusive range `(MIN-1, MAX+1)`. + ($float:expr => $int:ty) => { + unsafe { $float.to_int_unchecked::<$int>() } + }; +} + +#[cfg(not(has_to_int_unchecked))] +macro_rules! float_to_int_unchecked { + ($float:expr => $int:ty) => { + $float as $int + }; +} + +macro_rules! impl_to_primitive_float_to_signed_int { + ($f:ident : $( $(#[$cfg:meta])* fn $method:ident -> $i:ident ; )*) => {$( + #[inline] + $(#[$cfg])* + fn $method(&self) -> Option<$i> { + // Float as int truncates toward zero, so we want to allow values + // in the exclusive range `(MIN-1, MAX+1)`. + if size_of::<$f>() > size_of::<$i>() { + // With a larger size, we can represent the range exactly. + const MIN_M1: $f = $i::MIN as $f - 1.0; + const MAX_P1: $f = $i::MAX as $f + 1.0; + if *self > MIN_M1 && *self < MAX_P1 { + return Some(float_to_int_unchecked!(*self => $i)); + } + } else { + // We can't represent `MIN-1` exactly, but there's no fractional part + // at this magnitude, so we can just use a `MIN` inclusive boundary. + const MIN: $f = $i::MIN as $f; + // We can't represent `MAX` exactly, but it will round up to exactly + // `MAX+1` (a power of two) when we cast it. + const MAX_P1: $f = $i::MAX as $f; + if *self >= MIN && *self < MAX_P1 { + return Some(float_to_int_unchecked!(*self => $i)); + } + } + None + } + )*} +} + +macro_rules! impl_to_primitive_float_to_unsigned_int { + ($f:ident : $( $(#[$cfg:meta])* fn $method:ident -> $u:ident ; )*) => {$( + #[inline] + $(#[$cfg])* + fn $method(&self) -> Option<$u> { + // Float as int truncates toward zero, so we want to allow values + // in the exclusive range `(-1, MAX+1)`. + if size_of::<$f>() > size_of::<$u>() { + // With a larger size, we can represent the range exactly. + const MAX_P1: $f = $u::MAX as $f + 1.0; + if *self > -1.0 && *self < MAX_P1 { + return Some(float_to_int_unchecked!(*self => $u)); + } + } else { + // We can't represent `MAX` exactly, but it will round up to exactly + // `MAX+1` (a power of two) when we cast it. + // (`u128::MAX as f32` is infinity, but this is still ok.) + const MAX_P1: $f = $u::MAX as $f; + if *self > -1.0 && *self < MAX_P1 { + return Some(float_to_int_unchecked!(*self => $u)); + } + } + None + } + )*} +} + +macro_rules! impl_to_primitive_float { + ($T:ident) => { + impl ToPrimitive for $T { + impl_to_primitive_float_to_signed_int! { $T: + fn to_isize -> isize; + fn to_i8 -> i8; + fn to_i16 -> i16; + fn to_i32 -> i32; + fn to_i64 -> i64; + #[cfg(has_i128)] + fn to_i128 -> i128; + } + + impl_to_primitive_float_to_unsigned_int! { $T: + fn to_usize -> usize; + fn to_u8 -> u8; + fn to_u16 -> u16; + fn to_u32 -> u32; + fn to_u64 -> u64; + #[cfg(has_i128)] + fn to_u128 -> u128; + } + + impl_to_primitive_float_to_float! { $T: + fn to_f32 -> f32; + fn to_f64 -> f64; + } + } + }; +} + +impl_to_primitive_float!(f32); +impl_to_primitive_float!(f64); + +/// A generic trait for converting a number to a value. +/// +/// A value can be represented by the target type when it lies within +/// the range of scalars supported by the target type. +/// For example, a negative integer cannot be represented by an unsigned +/// integer type, and an `i64` with a very high magnitude might not be +/// convertible to an `i32`. +/// On the other hand, conversions with possible precision loss or truncation +/// are admitted, like an `f32` with a decimal part to an integer type, or +/// even a large `f64` saturating to `f32` infinity. +pub trait FromPrimitive: Sized { + /// Converts an `isize` to return an optional value of this type. If the + /// value cannot be represented by this type, then `None` is returned. + #[inline] + fn from_isize(n: isize) -> Option<Self> { + n.to_i64().and_then(FromPrimitive::from_i64) + } + + /// Converts an `i8` to return an optional value of this type. If the + /// value cannot be represented by this type, then `None` is returned. + #[inline] + fn from_i8(n: i8) -> Option<Self> { + FromPrimitive::from_i64(From::from(n)) + } + + /// Converts an `i16` to return an optional value of this type. If the + /// value cannot be represented by this type, then `None` is returned. + #[inline] + fn from_i16(n: i16) -> Option<Self> { + FromPrimitive::from_i64(From::from(n)) + } + + /// Converts an `i32` to return an optional value of this type. If the + /// value cannot be represented by this type, then `None` is returned. + #[inline] + fn from_i32(n: i32) -> Option<Self> { + FromPrimitive::from_i64(From::from(n)) + } + + /// Converts an `i64` to return an optional value of this type. If the + /// value cannot be represented by this type, then `None` is returned. + fn from_i64(n: i64) -> Option<Self>; + + /// Converts an `i128` to return an optional value of this type. If the + /// value cannot be represented by this type, then `None` is returned. + /// + /// This method is only available with feature `i128` enabled on Rust >= 1.26. + /// + /// The default implementation converts through `from_i64()`. Types implementing + /// this trait should override this method if they can represent a greater range. + #[inline] + #[cfg(has_i128)] + fn from_i128(n: i128) -> Option<Self> { + n.to_i64().and_then(FromPrimitive::from_i64) + } + + /// Converts a `usize` to return an optional value of this type. If the + /// value cannot be represented by this type, then `None` is returned. + #[inline] + fn from_usize(n: usize) -> Option<Self> { + n.to_u64().and_then(FromPrimitive::from_u64) + } + + /// Converts an `u8` to return an optional value of this type. If the + /// value cannot be represented by this type, then `None` is returned. + #[inline] + fn from_u8(n: u8) -> Option<Self> { + FromPrimitive::from_u64(From::from(n)) + } + + /// Converts an `u16` to return an optional value of this type. If the + /// value cannot be represented by this type, then `None` is returned. + #[inline] + fn from_u16(n: u16) -> Option<Self> { + FromPrimitive::from_u64(From::from(n)) + } + + /// Converts an `u32` to return an optional value of this type. If the + /// value cannot be represented by this type, then `None` is returned. + #[inline] + fn from_u32(n: u32) -> Option<Self> { + FromPrimitive::from_u64(From::from(n)) + } + + /// Converts an `u64` to return an optional value of this type. If the + /// value cannot be represented by this type, then `None` is returned. + fn from_u64(n: u64) -> Option<Self>; + + /// Converts an `u128` to return an optional value of this type. If the + /// value cannot be represented by this type, then `None` is returned. + /// + /// This method is only available with feature `i128` enabled on Rust >= 1.26. + /// + /// The default implementation converts through `from_u64()`. Types implementing + /// this trait should override this method if they can represent a greater range. + #[inline] + #[cfg(has_i128)] + fn from_u128(n: u128) -> Option<Self> { + n.to_u64().and_then(FromPrimitive::from_u64) + } + + /// Converts a `f32` to return an optional value of this type. If the + /// value cannot be represented by this type, then `None` is returned. + #[inline] + fn from_f32(n: f32) -> Option<Self> { + FromPrimitive::from_f64(From::from(n)) + } + + /// Converts a `f64` to return an optional value of this type. If the + /// value cannot be represented by this type, then `None` is returned. + /// + /// The default implementation tries to convert through `from_i64()`, and + /// failing that through `from_u64()`. Types implementing this trait should + /// override this method if they can represent a greater range. + #[inline] + fn from_f64(n: f64) -> Option<Self> { + match n.to_i64() { + Some(i) => FromPrimitive::from_i64(i), + None => n.to_u64().and_then(FromPrimitive::from_u64), + } + } +} + +macro_rules! impl_from_primitive { + ($T:ty, $to_ty:ident) => { + #[allow(deprecated)] + impl FromPrimitive for $T { + #[inline] + fn from_isize(n: isize) -> Option<$T> { + n.$to_ty() + } + #[inline] + fn from_i8(n: i8) -> Option<$T> { + n.$to_ty() + } + #[inline] + fn from_i16(n: i16) -> Option<$T> { + n.$to_ty() + } + #[inline] + fn from_i32(n: i32) -> Option<$T> { + n.$to_ty() + } + #[inline] + fn from_i64(n: i64) -> Option<$T> { + n.$to_ty() + } + #[cfg(has_i128)] + #[inline] + fn from_i128(n: i128) -> Option<$T> { + n.$to_ty() + } + + #[inline] + fn from_usize(n: usize) -> Option<$T> { + n.$to_ty() + } + #[inline] + fn from_u8(n: u8) -> Option<$T> { + n.$to_ty() + } + #[inline] + fn from_u16(n: u16) -> Option<$T> { + n.$to_ty() + } + #[inline] + fn from_u32(n: u32) -> Option<$T> { + n.$to_ty() + } + #[inline] + fn from_u64(n: u64) -> Option<$T> { + n.$to_ty() + } + #[cfg(has_i128)] + #[inline] + fn from_u128(n: u128) -> Option<$T> { + n.$to_ty() + } + + #[inline] + fn from_f32(n: f32) -> Option<$T> { + n.$to_ty() + } + #[inline] + fn from_f64(n: f64) -> Option<$T> { + n.$to_ty() + } + } + }; +} + +impl_from_primitive!(isize, to_isize); +impl_from_primitive!(i8, to_i8); +impl_from_primitive!(i16, to_i16); +impl_from_primitive!(i32, to_i32); +impl_from_primitive!(i64, to_i64); +#[cfg(has_i128)] +impl_from_primitive!(i128, to_i128); +impl_from_primitive!(usize, to_usize); +impl_from_primitive!(u8, to_u8); +impl_from_primitive!(u16, to_u16); +impl_from_primitive!(u32, to_u32); +impl_from_primitive!(u64, to_u64); +#[cfg(has_i128)] +impl_from_primitive!(u128, to_u128); +impl_from_primitive!(f32, to_f32); +impl_from_primitive!(f64, to_f64); + +macro_rules! impl_to_primitive_wrapping { + ($( $(#[$cfg:meta])* fn $method:ident -> $i:ident ; )*) => {$( + #[inline] + $(#[$cfg])* + fn $method(&self) -> Option<$i> { + (self.0).$method() + } + )*} +} + +impl<T: ToPrimitive> ToPrimitive for Wrapping<T> { + impl_to_primitive_wrapping! { + fn to_isize -> isize; + fn to_i8 -> i8; + fn to_i16 -> i16; + fn to_i32 -> i32; + fn to_i64 -> i64; + #[cfg(has_i128)] + fn to_i128 -> i128; + + fn to_usize -> usize; + fn to_u8 -> u8; + fn to_u16 -> u16; + fn to_u32 -> u32; + fn to_u64 -> u64; + #[cfg(has_i128)] + fn to_u128 -> u128; + + fn to_f32 -> f32; + fn to_f64 -> f64; + } +} + +macro_rules! impl_from_primitive_wrapping { + ($( $(#[$cfg:meta])* fn $method:ident ( $i:ident ); )*) => {$( + #[inline] + $(#[$cfg])* + fn $method(n: $i) -> Option<Self> { + T::$method(n).map(Wrapping) + } + )*} +} + +impl<T: FromPrimitive> FromPrimitive for Wrapping<T> { + impl_from_primitive_wrapping! { + fn from_isize(isize); + fn from_i8(i8); + fn from_i16(i16); + fn from_i32(i32); + fn from_i64(i64); + #[cfg(has_i128)] + fn from_i128(i128); + + fn from_usize(usize); + fn from_u8(u8); + fn from_u16(u16); + fn from_u32(u32); + fn from_u64(u64); + #[cfg(has_i128)] + fn from_u128(u128); + + fn from_f32(f32); + fn from_f64(f64); + } +} + +/// Cast from one machine scalar to another. +/// +/// # Examples +/// +/// ``` +/// # use num_traits as num; +/// let twenty: f32 = num::cast(0x14).unwrap(); +/// assert_eq!(twenty, 20f32); +/// ``` +/// +#[inline] +pub fn cast<T: NumCast, U: NumCast>(n: T) -> Option<U> { + NumCast::from(n) +} + +/// An interface for casting between machine scalars. +pub trait NumCast: Sized + ToPrimitive { + /// Creates a number from another value that can be converted into + /// a primitive via the `ToPrimitive` trait. If the source value cannot be + /// represented by the target type, then `None` is returned. + /// + /// A value can be represented by the target type when it lies within + /// the range of scalars supported by the target type. + /// For example, a negative integer cannot be represented by an unsigned + /// integer type, and an `i64` with a very high magnitude might not be + /// convertible to an `i32`. + /// On the other hand, conversions with possible precision loss or truncation + /// are admitted, like an `f32` with a decimal part to an integer type, or + /// even a large `f64` saturating to `f32` infinity. + fn from<T: ToPrimitive>(n: T) -> Option<Self>; +} + +macro_rules! impl_num_cast { + ($T:ty, $conv:ident) => { + impl NumCast for $T { + #[inline] + #[allow(deprecated)] + fn from<N: ToPrimitive>(n: N) -> Option<$T> { + // `$conv` could be generated using `concat_idents!`, but that + // macro seems to be broken at the moment + n.$conv() + } + } + }; +} + +impl_num_cast!(u8, to_u8); +impl_num_cast!(u16, to_u16); +impl_num_cast!(u32, to_u32); +impl_num_cast!(u64, to_u64); +#[cfg(has_i128)] +impl_num_cast!(u128, to_u128); +impl_num_cast!(usize, to_usize); +impl_num_cast!(i8, to_i8); +impl_num_cast!(i16, to_i16); +impl_num_cast!(i32, to_i32); +impl_num_cast!(i64, to_i64); +#[cfg(has_i128)] +impl_num_cast!(i128, to_i128); +impl_num_cast!(isize, to_isize); +impl_num_cast!(f32, to_f32); +impl_num_cast!(f64, to_f64); + +impl<T: NumCast> NumCast for Wrapping<T> { + fn from<U: ToPrimitive>(n: U) -> Option<Self> { + T::from(n).map(Wrapping) + } +} + +/// A generic interface for casting between machine scalars with the +/// `as` operator, which admits narrowing and precision loss. +/// Implementers of this trait `AsPrimitive` should behave like a primitive +/// numeric type (e.g. a newtype around another primitive), and the +/// intended conversion must never fail. +/// +/// # Examples +/// +/// ``` +/// # use num_traits::AsPrimitive; +/// let three: i32 = (3.14159265f32).as_(); +/// assert_eq!(three, 3); +/// ``` +/// +/// # Safety +/// +/// **In Rust versions before 1.45.0**, some uses of the `as` operator were not entirely safe. +/// In particular, it was undefined behavior if +/// a truncated floating point value could not fit in the target integer +/// type ([#10184](https://github.com/rust-lang/rust/issues/10184)). +/// +/// ```ignore +/// # use num_traits::AsPrimitive; +/// let x: u8 = (1.04E+17).as_(); // UB +/// ``` +/// +pub trait AsPrimitive<T>: 'static + Copy +where + T: 'static + Copy, +{ + /// Convert a value to another, using the `as` operator. + fn as_(self) -> T; +} + +macro_rules! impl_as_primitive { + (@ $T: ty => $(#[$cfg:meta])* impl $U: ty ) => { + $(#[$cfg])* + impl AsPrimitive<$U> for $T { + #[inline] fn as_(self) -> $U { self as $U } + } + }; + (@ $T: ty => { $( $U: ty ),* } ) => {$( + impl_as_primitive!(@ $T => impl $U); + )*}; + ($T: ty => { $( $U: ty ),* } ) => { + impl_as_primitive!(@ $T => { $( $U ),* }); + impl_as_primitive!(@ $T => { u8, u16, u32, u64, usize }); + impl_as_primitive!(@ $T => #[cfg(has_i128)] impl u128); + impl_as_primitive!(@ $T => { i8, i16, i32, i64, isize }); + impl_as_primitive!(@ $T => #[cfg(has_i128)] impl i128); + }; +} + +impl_as_primitive!(u8 => { char, f32, f64 }); +impl_as_primitive!(i8 => { f32, f64 }); +impl_as_primitive!(u16 => { f32, f64 }); +impl_as_primitive!(i16 => { f32, f64 }); +impl_as_primitive!(u32 => { f32, f64 }); +impl_as_primitive!(i32 => { f32, f64 }); +impl_as_primitive!(u64 => { f32, f64 }); +impl_as_primitive!(i64 => { f32, f64 }); +#[cfg(has_i128)] +impl_as_primitive!(u128 => { f32, f64 }); +#[cfg(has_i128)] +impl_as_primitive!(i128 => { f32, f64 }); +impl_as_primitive!(usize => { f32, f64 }); +impl_as_primitive!(isize => { f32, f64 }); +impl_as_primitive!(f32 => { f32, f64 }); +impl_as_primitive!(f64 => { f32, f64 }); +impl_as_primitive!(char => { char }); +impl_as_primitive!(bool => {}); |