summaryrefslogtreecommitdiffstats
path: root/third_party/rust/tokio-util/src/time
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/rust/tokio-util/src/time
parentInitial commit. (diff)
downloadfirefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz
firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/tokio-util/src/time')
-rw-r--r--third_party/rust/tokio-util/src/time/delay_queue.rs1221
-rw-r--r--third_party/rust/tokio-util/src/time/mod.rs47
-rw-r--r--third_party/rust/tokio-util/src/time/wheel/level.rs253
-rw-r--r--third_party/rust/tokio-util/src/time/wheel/mod.rs314
-rw-r--r--third_party/rust/tokio-util/src/time/wheel/stack.rs28
5 files changed, 1863 insertions, 0 deletions
diff --git a/third_party/rust/tokio-util/src/time/delay_queue.rs b/third_party/rust/tokio-util/src/time/delay_queue.rs
new file mode 100644
index 0000000000..a0c5e5c5b0
--- /dev/null
+++ b/third_party/rust/tokio-util/src/time/delay_queue.rs
@@ -0,0 +1,1221 @@
+//! A queue of delayed elements.
+//!
+//! See [`DelayQueue`] for more details.
+//!
+//! [`DelayQueue`]: struct@DelayQueue
+
+use crate::time::wheel::{self, Wheel};
+
+use futures_core::ready;
+use tokio::time::{sleep_until, Duration, Instant, Sleep};
+
+use core::ops::{Index, IndexMut};
+use slab::Slab;
+use std::cmp;
+use std::collections::HashMap;
+use std::convert::From;
+use std::fmt;
+use std::fmt::Debug;
+use std::future::Future;
+use std::marker::PhantomData;
+use std::pin::Pin;
+use std::task::{self, Poll, Waker};
+
+/// A queue of delayed elements.
+///
+/// Once an element is inserted into the `DelayQueue`, it is yielded once the
+/// specified deadline has been reached.
+///
+/// # Usage
+///
+/// Elements are inserted into `DelayQueue` using the [`insert`] or
+/// [`insert_at`] methods. A deadline is provided with the item and a [`Key`] is
+/// returned. The key is used to remove the entry or to change the deadline at
+/// which it should be yielded back.
+///
+/// Once delays have been configured, the `DelayQueue` is used via its
+/// [`Stream`] implementation. [`poll_expired`] is called. If an entry has reached its
+/// deadline, it is returned. If not, `Poll::Pending` is returned indicating that the
+/// current task will be notified once the deadline has been reached.
+///
+/// # `Stream` implementation
+///
+/// Items are retrieved from the queue via [`DelayQueue::poll_expired`]. If no delays have
+/// expired, no items are returned. In this case, `Poll::Pending` is returned and the
+/// current task is registered to be notified once the next item's delay has
+/// expired.
+///
+/// If no items are in the queue, i.e. `is_empty()` returns `true`, then `poll`
+/// returns `Poll::Ready(None)`. This indicates that the stream has reached an end.
+/// However, if a new item is inserted *after*, `poll` will once again start
+/// returning items or `Poll::Pending`.
+///
+/// Items are returned ordered by their expirations. Items that are configured
+/// to expire first will be returned first. There are no ordering guarantees
+/// for items configured to expire at the same instant. Also note that delays are
+/// rounded to the closest millisecond.
+///
+/// # Implementation
+///
+/// The [`DelayQueue`] is backed by a separate instance of a timer wheel similar to that used internally
+/// by Tokio's standalone timer utilities such as [`sleep`]. Because of this, it offers the same
+/// performance and scalability benefits.
+///
+/// State associated with each entry is stored in a [`slab`]. This amortizes the cost of allocation,
+/// and allows reuse of the memory allocated for expired entires.
+///
+/// Capacity can be checked using [`capacity`] and allocated preemptively by using
+/// the [`reserve`] method.
+///
+/// # Usage
+///
+/// Using `DelayQueue` to manage cache entries.
+///
+/// ```rust,no_run
+/// use tokio_util::time::{DelayQueue, delay_queue};
+///
+/// use futures::ready;
+/// use std::collections::HashMap;
+/// use std::task::{Context, Poll};
+/// use std::time::Duration;
+/// # type CacheKey = String;
+/// # type Value = String;
+///
+/// struct Cache {
+/// entries: HashMap<CacheKey, (Value, delay_queue::Key)>,
+/// expirations: DelayQueue<CacheKey>,
+/// }
+///
+/// const TTL_SECS: u64 = 30;
+///
+/// impl Cache {
+/// fn insert(&mut self, key: CacheKey, value: Value) {
+/// let delay = self.expirations
+/// .insert(key.clone(), Duration::from_secs(TTL_SECS));
+///
+/// self.entries.insert(key, (value, delay));
+/// }
+///
+/// fn get(&self, key: &CacheKey) -> Option<&Value> {
+/// self.entries.get(key)
+/// .map(|&(ref v, _)| v)
+/// }
+///
+/// fn remove(&mut self, key: &CacheKey) {
+/// if let Some((_, cache_key)) = self.entries.remove(key) {
+/// self.expirations.remove(&cache_key);
+/// }
+/// }
+///
+/// fn poll_purge(&mut self, cx: &mut Context<'_>) -> Poll<()> {
+/// while let Some(entry) = ready!(self.expirations.poll_expired(cx)) {
+/// self.entries.remove(entry.get_ref());
+/// }
+///
+/// Poll::Ready(())
+/// }
+/// }
+/// ```
+///
+/// [`insert`]: method@Self::insert
+/// [`insert_at`]: method@Self::insert_at
+/// [`Key`]: struct@Key
+/// [`Stream`]: https://docs.rs/futures/0.1/futures/stream/trait.Stream.html
+/// [`poll_expired`]: method@Self::poll_expired
+/// [`Stream::poll_expired`]: method@Self::poll_expired
+/// [`DelayQueue`]: struct@DelayQueue
+/// [`sleep`]: fn@tokio::time::sleep
+/// [`slab`]: slab
+/// [`capacity`]: method@Self::capacity
+/// [`reserve`]: method@Self::reserve
+#[derive(Debug)]
+pub struct DelayQueue<T> {
+ /// Stores data associated with entries
+ slab: SlabStorage<T>,
+
+ /// Lookup structure tracking all delays in the queue
+ wheel: Wheel<Stack<T>>,
+
+ /// Delays that were inserted when already expired. These cannot be stored
+ /// in the wheel
+ expired: Stack<T>,
+
+ /// Delay expiring when the *first* item in the queue expires
+ delay: Option<Pin<Box<Sleep>>>,
+
+ /// Wheel polling state
+ wheel_now: u64,
+
+ /// Instant at which the timer starts
+ start: Instant,
+
+ /// Waker that is invoked when we potentially need to reset the timer.
+ /// Because we lazily create the timer when the first entry is created, we
+ /// need to awaken any poller that polled us before that point.
+ waker: Option<Waker>,
+}
+
+#[derive(Default)]
+struct SlabStorage<T> {
+ inner: Slab<Data<T>>,
+
+ // A `compact` call requires a re-mapping of the `Key`s that were changed
+ // during the `compact` call of the `slab`. Since the keys that were given out
+ // cannot be changed retroactively we need to keep track of these re-mappings.
+ // The keys of `key_map` correspond to the old keys that were given out and
+ // the values to the `Key`s that were re-mapped by the `compact` call.
+ key_map: HashMap<Key, KeyInternal>,
+
+ // Index used to create new keys to hand out.
+ next_key_index: usize,
+
+ // Whether `compact` has been called, necessary in order to decide whether
+ // to include keys in `key_map`.
+ compact_called: bool,
+}
+
+impl<T> SlabStorage<T> {
+ pub(crate) fn with_capacity(capacity: usize) -> SlabStorage<T> {
+ SlabStorage {
+ inner: Slab::with_capacity(capacity),
+ key_map: HashMap::new(),
+ next_key_index: 0,
+ compact_called: false,
+ }
+ }
+
+ // Inserts data into the inner slab and re-maps keys if necessary
+ pub(crate) fn insert(&mut self, val: Data<T>) -> Key {
+ let mut key = KeyInternal::new(self.inner.insert(val));
+ let key_contained = self.key_map.contains_key(&key.into());
+
+ if key_contained {
+ // It's possible that a `compact` call creates capacitiy in `self.inner` in
+ // such a way that a `self.inner.insert` call creates a `key` which was
+ // previously given out during an `insert` call prior to the `compact` call.
+ // If `key` is contained in `self.key_map`, we have encountered this exact situation,
+ // We need to create a new key `key_to_give_out` and include the relation
+ // `key_to_give_out` -> `key` in `self.key_map`.
+ let key_to_give_out = self.create_new_key();
+ assert!(!self.key_map.contains_key(&key_to_give_out.into()));
+ self.key_map.insert(key_to_give_out.into(), key);
+ key = key_to_give_out;
+ } else if self.compact_called {
+ // Include an identity mapping in `self.key_map` in order to allow us to
+ // panic if a key that was handed out is removed more than once.
+ self.key_map.insert(key.into(), key);
+ }
+
+ key.into()
+ }
+
+ // Re-map the key in case compact was previously called.
+ // Note: Since we include identity mappings in key_map after compact was called,
+ // we have information about all keys that were handed out. In the case in which
+ // compact was called and we try to remove a Key that was previously removed
+ // we can detect invalid keys if no key is found in `key_map`. This is necessary
+ // in order to prevent situations in which a previously removed key
+ // corresponds to a re-mapped key internally and which would then be incorrectly
+ // removed from the slab.
+ //
+ // Example to illuminate this problem:
+ //
+ // Let's assume our `key_map` is {1 -> 2, 2 -> 1} and we call remove(1). If we
+ // were to remove 1 again, we would not find it inside `key_map` anymore.
+ // If we were to imply from this that no re-mapping was necessary, we would
+ // incorrectly remove 1 from `self.slab.inner`, which corresponds to the
+ // handed-out key 2.
+ pub(crate) fn remove(&mut self, key: &Key) -> Data<T> {
+ let remapped_key = if self.compact_called {
+ match self.key_map.remove(key) {
+ Some(key_internal) => key_internal,
+ None => panic!("invalid key"),
+ }
+ } else {
+ (*key).into()
+ };
+
+ self.inner.remove(remapped_key.index)
+ }
+
+ pub(crate) fn shrink_to_fit(&mut self) {
+ self.inner.shrink_to_fit();
+ self.key_map.shrink_to_fit();
+ }
+
+ pub(crate) fn compact(&mut self) {
+ if !self.compact_called {
+ for (key, _) in self.inner.iter() {
+ self.key_map.insert(Key::new(key), KeyInternal::new(key));
+ }
+ }
+
+ let mut remapping = HashMap::new();
+ self.inner.compact(|_, from, to| {
+ remapping.insert(from, to);
+ true
+ });
+
+ // At this point `key_map` contains a mapping for every element.
+ for internal_key in self.key_map.values_mut() {
+ if let Some(new_internal_key) = remapping.get(&internal_key.index) {
+ *internal_key = KeyInternal::new(*new_internal_key);
+ }
+ }
+
+ if self.key_map.capacity() > 2 * self.key_map.len() {
+ self.key_map.shrink_to_fit();
+ }
+
+ self.compact_called = true;
+ }
+
+ // Tries to re-map a `Key` that was given out to the user to its
+ // corresponding internal key.
+ fn remap_key(&self, key: &Key) -> Option<KeyInternal> {
+ let key_map = &self.key_map;
+ if self.compact_called {
+ key_map.get(&*key).copied()
+ } else {
+ Some((*key).into())
+ }
+ }
+
+ fn create_new_key(&mut self) -> KeyInternal {
+ while self.key_map.contains_key(&Key::new(self.next_key_index)) {
+ self.next_key_index = self.next_key_index.wrapping_add(1);
+ }
+
+ KeyInternal::new(self.next_key_index)
+ }
+
+ pub(crate) fn len(&self) -> usize {
+ self.inner.len()
+ }
+
+ pub(crate) fn capacity(&self) -> usize {
+ self.inner.capacity()
+ }
+
+ pub(crate) fn clear(&mut self) {
+ self.inner.clear();
+ self.key_map.clear();
+ self.compact_called = false;
+ }
+
+ pub(crate) fn reserve(&mut self, additional: usize) {
+ self.inner.reserve(additional);
+
+ if self.compact_called {
+ self.key_map.reserve(additional);
+ }
+ }
+
+ pub(crate) fn is_empty(&self) -> bool {
+ self.inner.is_empty()
+ }
+
+ pub(crate) fn contains(&self, key: &Key) -> bool {
+ let remapped_key = self.remap_key(key);
+
+ match remapped_key {
+ Some(internal_key) => self.inner.contains(internal_key.index),
+ None => false,
+ }
+ }
+}
+
+impl<T> fmt::Debug for SlabStorage<T>
+where
+ T: fmt::Debug,
+{
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ if fmt.alternate() {
+ fmt.debug_map().entries(self.inner.iter()).finish()
+ } else {
+ fmt.debug_struct("Slab")
+ .field("len", &self.len())
+ .field("cap", &self.capacity())
+ .finish()
+ }
+ }
+}
+
+impl<T> Index<Key> for SlabStorage<T> {
+ type Output = Data<T>;
+
+ fn index(&self, key: Key) -> &Self::Output {
+ let remapped_key = self.remap_key(&key);
+
+ match remapped_key {
+ Some(internal_key) => &self.inner[internal_key.index],
+ None => panic!("Invalid index {}", key.index),
+ }
+ }
+}
+
+impl<T> IndexMut<Key> for SlabStorage<T> {
+ fn index_mut(&mut self, key: Key) -> &mut Data<T> {
+ let remapped_key = self.remap_key(&key);
+
+ match remapped_key {
+ Some(internal_key) => &mut self.inner[internal_key.index],
+ None => panic!("Invalid index {}", key.index),
+ }
+ }
+}
+
+/// An entry in `DelayQueue` that has expired and been removed.
+///
+/// Values are returned by [`DelayQueue::poll_expired`].
+///
+/// [`DelayQueue::poll_expired`]: method@DelayQueue::poll_expired
+#[derive(Debug)]
+pub struct Expired<T> {
+ /// The data stored in the queue
+ data: T,
+
+ /// The expiration time
+ deadline: Instant,
+
+ /// The key associated with the entry
+ key: Key,
+}
+
+/// Token to a value stored in a `DelayQueue`.
+///
+/// Instances of `Key` are returned by [`DelayQueue::insert`]. See [`DelayQueue`]
+/// documentation for more details.
+///
+/// [`DelayQueue`]: struct@DelayQueue
+/// [`DelayQueue::insert`]: method@DelayQueue::insert
+#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
+pub struct Key {
+ index: usize,
+}
+
+// Whereas `Key` is given out to users that use `DelayQueue`, internally we use
+// `KeyInternal` as the key type in order to make the logic of mapping between keys
+// as a result of `compact` calls clearer.
+#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
+struct KeyInternal {
+ index: usize,
+}
+
+#[derive(Debug)]
+struct Stack<T> {
+ /// Head of the stack
+ head: Option<Key>,
+ _p: PhantomData<fn() -> T>,
+}
+
+#[derive(Debug)]
+struct Data<T> {
+ /// The data being stored in the queue and will be returned at the requested
+ /// instant.
+ inner: T,
+
+ /// The instant at which the item is returned.
+ when: u64,
+
+ /// Set to true when stored in the `expired` queue
+ expired: bool,
+
+ /// Next entry in the stack
+ next: Option<Key>,
+
+ /// Previous entry in the stack
+ prev: Option<Key>,
+}
+
+/// Maximum number of entries the queue can handle
+const MAX_ENTRIES: usize = (1 << 30) - 1;
+
+impl<T> DelayQueue<T> {
+ /// Creates a new, empty, `DelayQueue`.
+ ///
+ /// The queue will not allocate storage until items are inserted into it.
+ ///
+ /// # Examples
+ ///
+ /// ```rust
+ /// # use tokio_util::time::DelayQueue;
+ /// let delay_queue: DelayQueue<u32> = DelayQueue::new();
+ /// ```
+ pub fn new() -> DelayQueue<T> {
+ DelayQueue::with_capacity(0)
+ }
+
+ /// Creates a new, empty, `DelayQueue` with the specified capacity.
+ ///
+ /// The queue will be able to hold at least `capacity` elements without
+ /// reallocating. If `capacity` is 0, the queue will not allocate for
+ /// storage.
+ ///
+ /// # Examples
+ ///
+ /// ```rust
+ /// # use tokio_util::time::DelayQueue;
+ /// # use std::time::Duration;
+ ///
+ /// # #[tokio::main]
+ /// # async fn main() {
+ /// let mut delay_queue = DelayQueue::with_capacity(10);
+ ///
+ /// // These insertions are done without further allocation
+ /// for i in 0..10 {
+ /// delay_queue.insert(i, Duration::from_secs(i));
+ /// }
+ ///
+ /// // This will make the queue allocate additional storage
+ /// delay_queue.insert(11, Duration::from_secs(11));
+ /// # }
+ /// ```
+ pub fn with_capacity(capacity: usize) -> DelayQueue<T> {
+ DelayQueue {
+ wheel: Wheel::new(),
+ slab: SlabStorage::with_capacity(capacity),
+ expired: Stack::default(),
+ delay: None,
+ wheel_now: 0,
+ start: Instant::now(),
+ waker: None,
+ }
+ }
+
+ /// Inserts `value` into the queue set to expire at a specific instant in
+ /// time.
+ ///
+ /// This function is identical to `insert`, but takes an `Instant` instead
+ /// of a `Duration`.
+ ///
+ /// `value` is stored in the queue until `when` is reached. At which point,
+ /// `value` will be returned from [`poll_expired`]. If `when` has already been
+ /// reached, then `value` is immediately made available to poll.
+ ///
+ /// The return value represents the insertion and is used as an argument to
+ /// [`remove`] and [`reset`]. Note that [`Key`] is a token and is reused once
+ /// `value` is removed from the queue either by calling [`poll_expired`] after
+ /// `when` is reached or by calling [`remove`]. At this point, the caller
+ /// must take care to not use the returned [`Key`] again as it may reference
+ /// a different item in the queue.
+ ///
+ /// See [type] level documentation for more details.
+ ///
+ /// # Panics
+ ///
+ /// This function panics if `when` is too far in the future.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage
+ ///
+ /// ```rust
+ /// use tokio::time::{Duration, Instant};
+ /// use tokio_util::time::DelayQueue;
+ ///
+ /// # #[tokio::main]
+ /// # async fn main() {
+ /// let mut delay_queue = DelayQueue::new();
+ /// let key = delay_queue.insert_at(
+ /// "foo", Instant::now() + Duration::from_secs(5));
+ ///
+ /// // Remove the entry
+ /// let item = delay_queue.remove(&key);
+ /// assert_eq!(*item.get_ref(), "foo");
+ /// # }
+ /// ```
+ ///
+ /// [`poll_expired`]: method@Self::poll_expired
+ /// [`remove`]: method@Self::remove
+ /// [`reset`]: method@Self::reset
+ /// [`Key`]: struct@Key
+ /// [type]: #
+ pub fn insert_at(&mut self, value: T, when: Instant) -> Key {
+ assert!(self.slab.len() < MAX_ENTRIES, "max entries exceeded");
+
+ // Normalize the deadline. Values cannot be set to expire in the past.
+ let when = self.normalize_deadline(when);
+
+ // Insert the value in the store
+ let key = self.slab.insert(Data {
+ inner: value,
+ when,
+ expired: false,
+ next: None,
+ prev: None,
+ });
+
+ self.insert_idx(when, key);
+
+ // Set a new delay if the current's deadline is later than the one of the new item
+ let should_set_delay = if let Some(ref delay) = self.delay {
+ let current_exp = self.normalize_deadline(delay.deadline());
+ current_exp > when
+ } else {
+ true
+ };
+
+ if should_set_delay {
+ if let Some(waker) = self.waker.take() {
+ waker.wake();
+ }
+
+ let delay_time = self.start + Duration::from_millis(when);
+ if let Some(ref mut delay) = &mut self.delay {
+ delay.as_mut().reset(delay_time);
+ } else {
+ self.delay = Some(Box::pin(sleep_until(delay_time)));
+ }
+ }
+
+ key
+ }
+
+ /// Attempts to pull out the next value of the delay queue, registering the
+ /// current task for wakeup if the value is not yet available, and returning
+ /// `None` if the queue is exhausted.
+ pub fn poll_expired(&mut self, cx: &mut task::Context<'_>) -> Poll<Option<Expired<T>>> {
+ if !self
+ .waker
+ .as_ref()
+ .map(|w| w.will_wake(cx.waker()))
+ .unwrap_or(false)
+ {
+ self.waker = Some(cx.waker().clone());
+ }
+
+ let item = ready!(self.poll_idx(cx));
+ Poll::Ready(item.map(|key| {
+ let data = self.slab.remove(&key);
+ debug_assert!(data.next.is_none());
+ debug_assert!(data.prev.is_none());
+
+ Expired {
+ key,
+ data: data.inner,
+ deadline: self.start + Duration::from_millis(data.when),
+ }
+ }))
+ }
+
+ /// Inserts `value` into the queue set to expire after the requested duration
+ /// elapses.
+ ///
+ /// This function is identical to `insert_at`, but takes a `Duration`
+ /// instead of an `Instant`.
+ ///
+ /// `value` is stored in the queue until `timeout` duration has
+ /// elapsed after `insert` was called. At that point, `value` will
+ /// be returned from [`poll_expired`]. If `timeout` is a `Duration` of
+ /// zero, then `value` is immediately made available to poll.
+ ///
+ /// The return value represents the insertion and is used as an
+ /// argument to [`remove`] and [`reset`]. Note that [`Key`] is a
+ /// token and is reused once `value` is removed from the queue
+ /// either by calling [`poll_expired`] after `timeout` has elapsed
+ /// or by calling [`remove`]. At this point, the caller must not
+ /// use the returned [`Key`] again as it may reference a different
+ /// item in the queue.
+ ///
+ /// See [type] level documentation for more details.
+ ///
+ /// # Panics
+ ///
+ /// This function panics if `timeout` is greater than the maximum
+ /// duration supported by the timer in the current `Runtime`.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage
+ ///
+ /// ```rust
+ /// use tokio_util::time::DelayQueue;
+ /// use std::time::Duration;
+ ///
+ /// # #[tokio::main]
+ /// # async fn main() {
+ /// let mut delay_queue = DelayQueue::new();
+ /// let key = delay_queue.insert("foo", Duration::from_secs(5));
+ ///
+ /// // Remove the entry
+ /// let item = delay_queue.remove(&key);
+ /// assert_eq!(*item.get_ref(), "foo");
+ /// # }
+ /// ```
+ ///
+ /// [`poll_expired`]: method@Self::poll_expired
+ /// [`remove`]: method@Self::remove
+ /// [`reset`]: method@Self::reset
+ /// [`Key`]: struct@Key
+ /// [type]: #
+ pub fn insert(&mut self, value: T, timeout: Duration) -> Key {
+ self.insert_at(value, Instant::now() + timeout)
+ }
+
+ fn insert_idx(&mut self, when: u64, key: Key) {
+ use self::wheel::{InsertError, Stack};
+
+ // Register the deadline with the timer wheel
+ match self.wheel.insert(when, key, &mut self.slab) {
+ Ok(_) => {}
+ Err((_, InsertError::Elapsed)) => {
+ self.slab[key].expired = true;
+ // The delay is already expired, store it in the expired queue
+ self.expired.push(key, &mut self.slab);
+ }
+ Err((_, err)) => panic!("invalid deadline; err={:?}", err),
+ }
+ }
+
+ /// Removes the key from the expired queue or the timer wheel
+ /// depending on its expiration status.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the key is not contained in the expired queue or the wheel.
+ fn remove_key(&mut self, key: &Key) {
+ use crate::time::wheel::Stack;
+
+ // Special case the `expired` queue
+ if self.slab[*key].expired {
+ self.expired.remove(key, &mut self.slab);
+ } else {
+ self.wheel.remove(key, &mut self.slab);
+ }
+ }
+
+ /// Removes the item associated with `key` from the queue.
+ ///
+ /// There must be an item associated with `key`. The function returns the
+ /// removed item as well as the `Instant` at which it will the delay will
+ /// have expired.
+ ///
+ /// # Panics
+ ///
+ /// The function panics if `key` is not contained by the queue.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage
+ ///
+ /// ```rust
+ /// use tokio_util::time::DelayQueue;
+ /// use std::time::Duration;
+ ///
+ /// # #[tokio::main]
+ /// # async fn main() {
+ /// let mut delay_queue = DelayQueue::new();
+ /// let key = delay_queue.insert("foo", Duration::from_secs(5));
+ ///
+ /// // Remove the entry
+ /// let item = delay_queue.remove(&key);
+ /// assert_eq!(*item.get_ref(), "foo");
+ /// # }
+ /// ```
+ pub fn remove(&mut self, key: &Key) -> Expired<T> {
+ let prev_deadline = self.next_deadline();
+
+ self.remove_key(key);
+ let data = self.slab.remove(key);
+
+ let next_deadline = self.next_deadline();
+ if prev_deadline != next_deadline {
+ match (next_deadline, &mut self.delay) {
+ (None, _) => self.delay = None,
+ (Some(deadline), Some(delay)) => delay.as_mut().reset(deadline),
+ (Some(deadline), None) => self.delay = Some(Box::pin(sleep_until(deadline))),
+ }
+ }
+
+ Expired {
+ key: Key::new(key.index),
+ data: data.inner,
+ deadline: self.start + Duration::from_millis(data.when),
+ }
+ }
+
+ /// Sets the delay of the item associated with `key` to expire at `when`.
+ ///
+ /// This function is identical to `reset` but takes an `Instant` instead of
+ /// a `Duration`.
+ ///
+ /// The item remains in the queue but the delay is set to expire at `when`.
+ /// If `when` is in the past, then the item is immediately made available to
+ /// the caller.
+ ///
+ /// # Panics
+ ///
+ /// This function panics if `when` is too far in the future or if `key` is
+ /// not contained by the queue.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage
+ ///
+ /// ```rust
+ /// use tokio::time::{Duration, Instant};
+ /// use tokio_util::time::DelayQueue;
+ ///
+ /// # #[tokio::main]
+ /// # async fn main() {
+ /// let mut delay_queue = DelayQueue::new();
+ /// let key = delay_queue.insert("foo", Duration::from_secs(5));
+ ///
+ /// // "foo" is scheduled to be returned in 5 seconds
+ ///
+ /// delay_queue.reset_at(&key, Instant::now() + Duration::from_secs(10));
+ ///
+ /// // "foo" is now scheduled to be returned in 10 seconds
+ /// # }
+ /// ```
+ pub fn reset_at(&mut self, key: &Key, when: Instant) {
+ self.remove_key(key);
+
+ // Normalize the deadline. Values cannot be set to expire in the past.
+ let when = self.normalize_deadline(when);
+
+ self.slab[*key].when = when;
+ self.slab[*key].expired = false;
+
+ self.insert_idx(when, *key);
+
+ let next_deadline = self.next_deadline();
+ if let (Some(ref mut delay), Some(deadline)) = (&mut self.delay, next_deadline) {
+ // This should awaken us if necessary (ie, if already expired)
+ delay.as_mut().reset(deadline);
+ }
+ }
+
+ /// Shrink the capacity of the slab, which `DelayQueue` uses internally for storage allocation.
+ /// This function is not guaranteed to, and in most cases, won't decrease the capacity of the slab
+ /// to the number of elements still contained in it, because elements cannot be moved to a different
+ /// index. To decrease the capacity to the size of the slab use [`compact`].
+ ///
+ /// This function can take O(n) time even when the capacity cannot be reduced or the allocation is
+ /// shrunk in place. Repeated calls run in O(1) though.
+ ///
+ /// [`compact`]: method@Self::compact
+ pub fn shrink_to_fit(&mut self) {
+ self.slab.shrink_to_fit();
+ }
+
+ /// Shrink the capacity of the slab, which `DelayQueue` uses internally for storage allocation,
+ /// to the number of elements that are contained in it.
+ ///
+ /// This methods runs in O(n).
+ ///
+ /// # Examples
+ ///
+ /// Basic usage
+ ///
+ /// ```rust
+ /// use tokio_util::time::DelayQueue;
+ /// use std::time::Duration;
+ ///
+ /// # #[tokio::main]
+ /// # async fn main() {
+ /// let mut delay_queue = DelayQueue::with_capacity(10);
+ ///
+ /// let key1 = delay_queue.insert(5, Duration::from_secs(5));
+ /// let key2 = delay_queue.insert(10, Duration::from_secs(10));
+ /// let key3 = delay_queue.insert(15, Duration::from_secs(15));
+ ///
+ /// delay_queue.remove(&key2);
+ ///
+ /// delay_queue.compact();
+ /// assert_eq!(delay_queue.capacity(), 2);
+ /// # }
+ /// ```
+ pub fn compact(&mut self) {
+ self.slab.compact();
+ }
+
+ /// Returns the next time to poll as determined by the wheel
+ fn next_deadline(&mut self) -> Option<Instant> {
+ self.wheel
+ .poll_at()
+ .map(|poll_at| self.start + Duration::from_millis(poll_at))
+ }
+
+ /// Sets the delay of the item associated with `key` to expire after
+ /// `timeout`.
+ ///
+ /// This function is identical to `reset_at` but takes a `Duration` instead
+ /// of an `Instant`.
+ ///
+ /// The item remains in the queue but the delay is set to expire after
+ /// `timeout`. If `timeout` is zero, then the item is immediately made
+ /// available to the caller.
+ ///
+ /// # Panics
+ ///
+ /// This function panics if `timeout` is greater than the maximum supported
+ /// duration or if `key` is not contained by the queue.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage
+ ///
+ /// ```rust
+ /// use tokio_util::time::DelayQueue;
+ /// use std::time::Duration;
+ ///
+ /// # #[tokio::main]
+ /// # async fn main() {
+ /// let mut delay_queue = DelayQueue::new();
+ /// let key = delay_queue.insert("foo", Duration::from_secs(5));
+ ///
+ /// // "foo" is scheduled to be returned in 5 seconds
+ ///
+ /// delay_queue.reset(&key, Duration::from_secs(10));
+ ///
+ /// // "foo"is now scheduled to be returned in 10 seconds
+ /// # }
+ /// ```
+ pub fn reset(&mut self, key: &Key, timeout: Duration) {
+ self.reset_at(key, Instant::now() + timeout);
+ }
+
+ /// Clears the queue, removing all items.
+ ///
+ /// After calling `clear`, [`poll_expired`] will return `Ok(Ready(None))`.
+ ///
+ /// Note that this method has no effect on the allocated capacity.
+ ///
+ /// [`poll_expired`]: method@Self::poll_expired
+ ///
+ /// # Examples
+ ///
+ /// ```rust
+ /// use tokio_util::time::DelayQueue;
+ /// use std::time::Duration;
+ ///
+ /// # #[tokio::main]
+ /// # async fn main() {
+ /// let mut delay_queue = DelayQueue::new();
+ ///
+ /// delay_queue.insert("foo", Duration::from_secs(5));
+ ///
+ /// assert!(!delay_queue.is_empty());
+ ///
+ /// delay_queue.clear();
+ ///
+ /// assert!(delay_queue.is_empty());
+ /// # }
+ /// ```
+ pub fn clear(&mut self) {
+ self.slab.clear();
+ self.expired = Stack::default();
+ self.wheel = Wheel::new();
+ self.delay = None;
+ }
+
+ /// Returns the number of elements the queue can hold without reallocating.
+ ///
+ /// # Examples
+ ///
+ /// ```rust
+ /// use tokio_util::time::DelayQueue;
+ ///
+ /// let delay_queue: DelayQueue<i32> = DelayQueue::with_capacity(10);
+ /// assert_eq!(delay_queue.capacity(), 10);
+ /// ```
+ pub fn capacity(&self) -> usize {
+ self.slab.capacity()
+ }
+
+ /// Returns the number of elements currently in the queue.
+ ///
+ /// # Examples
+ ///
+ /// ```rust
+ /// use tokio_util::time::DelayQueue;
+ /// use std::time::Duration;
+ ///
+ /// # #[tokio::main]
+ /// # async fn main() {
+ /// let mut delay_queue: DelayQueue<i32> = DelayQueue::with_capacity(10);
+ /// assert_eq!(delay_queue.len(), 0);
+ /// delay_queue.insert(3, Duration::from_secs(5));
+ /// assert_eq!(delay_queue.len(), 1);
+ /// # }
+ /// ```
+ pub fn len(&self) -> usize {
+ self.slab.len()
+ }
+
+ /// Reserves capacity for at least `additional` more items to be queued
+ /// without allocating.
+ ///
+ /// `reserve` does nothing if the queue already has sufficient capacity for
+ /// `additional` more values. If more capacity is required, a new segment of
+ /// memory will be allocated and all existing values will be copied into it.
+ /// As such, if the queue is already very large, a call to `reserve` can end
+ /// up being expensive.
+ ///
+ /// The queue may reserve more than `additional` extra space in order to
+ /// avoid frequent reallocations.
+ ///
+ /// # Panics
+ ///
+ /// Panics if the new capacity exceeds the maximum number of entries the
+ /// queue can contain.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio_util::time::DelayQueue;
+ /// use std::time::Duration;
+ ///
+ /// # #[tokio::main]
+ /// # async fn main() {
+ /// let mut delay_queue = DelayQueue::new();
+ ///
+ /// delay_queue.insert("hello", Duration::from_secs(10));
+ /// delay_queue.reserve(10);
+ ///
+ /// assert!(delay_queue.capacity() >= 11);
+ /// # }
+ /// ```
+ pub fn reserve(&mut self, additional: usize) {
+ self.slab.reserve(additional);
+ }
+
+ /// Returns `true` if there are no items in the queue.
+ ///
+ /// Note that this function returns `false` even if all items have not yet
+ /// expired and a call to `poll` will return `Poll::Pending`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use tokio_util::time::DelayQueue;
+ /// use std::time::Duration;
+ ///
+ /// # #[tokio::main]
+ /// # async fn main() {
+ /// let mut delay_queue = DelayQueue::new();
+ /// assert!(delay_queue.is_empty());
+ ///
+ /// delay_queue.insert("hello", Duration::from_secs(5));
+ /// assert!(!delay_queue.is_empty());
+ /// # }
+ /// ```
+ pub fn is_empty(&self) -> bool {
+ self.slab.is_empty()
+ }
+
+ /// Polls the queue, returning the index of the next slot in the slab that
+ /// should be returned.
+ ///
+ /// A slot should be returned when the associated deadline has been reached.
+ fn poll_idx(&mut self, cx: &mut task::Context<'_>) -> Poll<Option<Key>> {
+ use self::wheel::Stack;
+
+ let expired = self.expired.pop(&mut self.slab);
+
+ if expired.is_some() {
+ return Poll::Ready(expired);
+ }
+
+ loop {
+ if let Some(ref mut delay) = self.delay {
+ if !delay.is_elapsed() {
+ ready!(Pin::new(&mut *delay).poll(cx));
+ }
+
+ let now = crate::time::ms(delay.deadline() - self.start, crate::time::Round::Down);
+
+ self.wheel_now = now;
+ }
+
+ // We poll the wheel to get the next value out before finding the next deadline.
+ let wheel_idx = self.wheel.poll(self.wheel_now, &mut self.slab);
+
+ self.delay = self.next_deadline().map(|when| Box::pin(sleep_until(when)));
+
+ if let Some(idx) = wheel_idx {
+ return Poll::Ready(Some(idx));
+ }
+
+ if self.delay.is_none() {
+ return Poll::Ready(None);
+ }
+ }
+ }
+
+ fn normalize_deadline(&self, when: Instant) -> u64 {
+ let when = if when < self.start {
+ 0
+ } else {
+ crate::time::ms(when - self.start, crate::time::Round::Up)
+ };
+
+ cmp::max(when, self.wheel.elapsed())
+ }
+}
+
+// We never put `T` in a `Pin`...
+impl<T> Unpin for DelayQueue<T> {}
+
+impl<T> Default for DelayQueue<T> {
+ fn default() -> DelayQueue<T> {
+ DelayQueue::new()
+ }
+}
+
+impl<T> futures_core::Stream for DelayQueue<T> {
+ // DelayQueue seems much more specific, where a user may care that it
+ // has reached capacity, so return those errors instead of panicking.
+ type Item = Expired<T>;
+
+ fn poll_next(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> Poll<Option<Self::Item>> {
+ DelayQueue::poll_expired(self.get_mut(), cx)
+ }
+}
+
+impl<T> wheel::Stack for Stack<T> {
+ type Owned = Key;
+ type Borrowed = Key;
+ type Store = SlabStorage<T>;
+
+ fn is_empty(&self) -> bool {
+ self.head.is_none()
+ }
+
+ fn push(&mut self, item: Self::Owned, store: &mut Self::Store) {
+ // Ensure the entry is not already in a stack.
+ debug_assert!(store[item].next.is_none());
+ debug_assert!(store[item].prev.is_none());
+
+ // Remove the old head entry
+ let old = self.head.take();
+
+ if let Some(idx) = old {
+ store[idx].prev = Some(item);
+ }
+
+ store[item].next = old;
+ self.head = Some(item);
+ }
+
+ fn pop(&mut self, store: &mut Self::Store) -> Option<Self::Owned> {
+ if let Some(key) = self.head {
+ self.head = store[key].next;
+
+ if let Some(idx) = self.head {
+ store[idx].prev = None;
+ }
+
+ store[key].next = None;
+ debug_assert!(store[key].prev.is_none());
+
+ Some(key)
+ } else {
+ None
+ }
+ }
+
+ fn remove(&mut self, item: &Self::Borrowed, store: &mut Self::Store) {
+ let key = *item;
+ assert!(store.contains(item));
+
+ // Ensure that the entry is in fact contained by the stack
+ debug_assert!({
+ // This walks the full linked list even if an entry is found.
+ let mut next = self.head;
+ let mut contains = false;
+
+ while let Some(idx) = next {
+ let data = &store[idx];
+
+ if idx == *item {
+ debug_assert!(!contains);
+ contains = true;
+ }
+
+ next = data.next;
+ }
+
+ contains
+ });
+
+ if let Some(next) = store[key].next {
+ store[next].prev = store[key].prev;
+ }
+
+ if let Some(prev) = store[key].prev {
+ store[prev].next = store[key].next;
+ } else {
+ self.head = store[key].next;
+ }
+
+ store[key].next = None;
+ store[key].prev = None;
+ }
+
+ fn when(item: &Self::Borrowed, store: &Self::Store) -> u64 {
+ store[*item].when
+ }
+}
+
+impl<T> Default for Stack<T> {
+ fn default() -> Stack<T> {
+ Stack {
+ head: None,
+ _p: PhantomData,
+ }
+ }
+}
+
+impl Key {
+ pub(crate) fn new(index: usize) -> Key {
+ Key { index }
+ }
+}
+
+impl KeyInternal {
+ pub(crate) fn new(index: usize) -> KeyInternal {
+ KeyInternal { index }
+ }
+}
+
+impl From<Key> for KeyInternal {
+ fn from(item: Key) -> Self {
+ KeyInternal::new(item.index)
+ }
+}
+
+impl From<KeyInternal> for Key {
+ fn from(item: KeyInternal) -> Self {
+ Key::new(item.index)
+ }
+}
+
+impl<T> Expired<T> {
+ /// Returns a reference to the inner value.
+ pub fn get_ref(&self) -> &T {
+ &self.data
+ }
+
+ /// Returns a mutable reference to the inner value.
+ pub fn get_mut(&mut self) -> &mut T {
+ &mut self.data
+ }
+
+ /// Consumes `self` and returns the inner value.
+ pub fn into_inner(self) -> T {
+ self.data
+ }
+
+ /// Returns the deadline that the expiration was set to.
+ pub fn deadline(&self) -> Instant {
+ self.deadline
+ }
+
+ /// Returns the key that the expiration is indexed by.
+ pub fn key(&self) -> Key {
+ self.key
+ }
+}
diff --git a/third_party/rust/tokio-util/src/time/mod.rs b/third_party/rust/tokio-util/src/time/mod.rs
new file mode 100644
index 0000000000..2d34008360
--- /dev/null
+++ b/third_party/rust/tokio-util/src/time/mod.rs
@@ -0,0 +1,47 @@
+//! Additional utilities for tracking time.
+//!
+//! This module provides additional utilities for executing code after a set period
+//! of time. Currently there is only one:
+//!
+//! * `DelayQueue`: A queue where items are returned once the requested delay
+//! has expired.
+//!
+//! This type must be used from within the context of the `Runtime`.
+
+use std::time::Duration;
+
+mod wheel;
+
+pub mod delay_queue;
+
+#[doc(inline)]
+pub use delay_queue::DelayQueue;
+
+// ===== Internal utils =====
+
+enum Round {
+ Up,
+ Down,
+}
+
+/// Convert a `Duration` to milliseconds, rounding up and saturating at
+/// `u64::MAX`.
+///
+/// The saturating is fine because `u64::MAX` milliseconds are still many
+/// million years.
+#[inline]
+fn ms(duration: Duration, round: Round) -> u64 {
+ const NANOS_PER_MILLI: u32 = 1_000_000;
+ const MILLIS_PER_SEC: u64 = 1_000;
+
+ // Round up.
+ let millis = match round {
+ Round::Up => (duration.subsec_nanos() + NANOS_PER_MILLI - 1) / NANOS_PER_MILLI,
+ Round::Down => duration.subsec_millis(),
+ };
+
+ duration
+ .as_secs()
+ .saturating_mul(MILLIS_PER_SEC)
+ .saturating_add(u64::from(millis))
+}
diff --git a/third_party/rust/tokio-util/src/time/wheel/level.rs b/third_party/rust/tokio-util/src/time/wheel/level.rs
new file mode 100644
index 0000000000..8ea30af30f
--- /dev/null
+++ b/third_party/rust/tokio-util/src/time/wheel/level.rs
@@ -0,0 +1,253 @@
+use crate::time::wheel::Stack;
+
+use std::fmt;
+
+/// Wheel for a single level in the timer. This wheel contains 64 slots.
+pub(crate) struct Level<T> {
+ level: usize,
+
+ /// Bit field tracking which slots currently contain entries.
+ ///
+ /// Using a bit field to track slots that contain entries allows avoiding a
+ /// scan to find entries. This field is updated when entries are added or
+ /// removed from a slot.
+ ///
+ /// The least-significant bit represents slot zero.
+ occupied: u64,
+
+ /// Slots
+ slot: [T; LEVEL_MULT],
+}
+
+/// Indicates when a slot must be processed next.
+#[derive(Debug)]
+pub(crate) struct Expiration {
+ /// The level containing the slot.
+ pub(crate) level: usize,
+
+ /// The slot index.
+ pub(crate) slot: usize,
+
+ /// The instant at which the slot needs to be processed.
+ pub(crate) deadline: u64,
+}
+
+/// Level multiplier.
+///
+/// Being a power of 2 is very important.
+const LEVEL_MULT: usize = 64;
+
+impl<T: Stack> Level<T> {
+ pub(crate) fn new(level: usize) -> Level<T> {
+ // Rust's derived implementations for arrays require that the value
+ // contained by the array be `Copy`. So, here we have to manually
+ // initialize every single slot.
+ macro_rules! s {
+ () => {
+ T::default()
+ };
+ }
+
+ Level {
+ level,
+ occupied: 0,
+ slot: [
+ // It does not look like the necessary traits are
+ // derived for [T; 64].
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ s!(),
+ ],
+ }
+ }
+
+ /// Finds the slot that needs to be processed next and returns the slot and
+ /// `Instant` at which this slot must be processed.
+ pub(crate) fn next_expiration(&self, now: u64) -> Option<Expiration> {
+ // Use the `occupied` bit field to get the index of the next slot that
+ // needs to be processed.
+ let slot = match self.next_occupied_slot(now) {
+ Some(slot) => slot,
+ None => return None,
+ };
+
+ // From the slot index, calculate the `Instant` at which it needs to be
+ // processed. This value *must* be in the future with respect to `now`.
+
+ let level_range = level_range(self.level);
+ let slot_range = slot_range(self.level);
+
+ // TODO: This can probably be simplified w/ power of 2 math
+ let level_start = now - (now % level_range);
+ let deadline = level_start + slot as u64 * slot_range;
+
+ debug_assert!(
+ deadline >= now,
+ "deadline={}; now={}; level={}; slot={}; occupied={:b}",
+ deadline,
+ now,
+ self.level,
+ slot,
+ self.occupied
+ );
+
+ Some(Expiration {
+ level: self.level,
+ slot,
+ deadline,
+ })
+ }
+
+ fn next_occupied_slot(&self, now: u64) -> Option<usize> {
+ if self.occupied == 0 {
+ return None;
+ }
+
+ // Get the slot for now using Maths
+ let now_slot = (now / slot_range(self.level)) as usize;
+ let occupied = self.occupied.rotate_right(now_slot as u32);
+ let zeros = occupied.trailing_zeros() as usize;
+ let slot = (zeros + now_slot) % 64;
+
+ Some(slot)
+ }
+
+ pub(crate) fn add_entry(&mut self, when: u64, item: T::Owned, store: &mut T::Store) {
+ let slot = slot_for(when, self.level);
+
+ self.slot[slot].push(item, store);
+ self.occupied |= occupied_bit(slot);
+ }
+
+ pub(crate) fn remove_entry(&mut self, when: u64, item: &T::Borrowed, store: &mut T::Store) {
+ let slot = slot_for(when, self.level);
+
+ self.slot[slot].remove(item, store);
+
+ if self.slot[slot].is_empty() {
+ // The bit is currently set
+ debug_assert!(self.occupied & occupied_bit(slot) != 0);
+
+ // Unset the bit
+ self.occupied ^= occupied_bit(slot);
+ }
+ }
+
+ pub(crate) fn pop_entry_slot(&mut self, slot: usize, store: &mut T::Store) -> Option<T::Owned> {
+ let ret = self.slot[slot].pop(store);
+
+ if ret.is_some() && self.slot[slot].is_empty() {
+ // The bit is currently set
+ debug_assert!(self.occupied & occupied_bit(slot) != 0);
+
+ self.occupied ^= occupied_bit(slot);
+ }
+
+ ret
+ }
+}
+
+impl<T> fmt::Debug for Level<T> {
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt.debug_struct("Level")
+ .field("occupied", &self.occupied)
+ .finish()
+ }
+}
+
+fn occupied_bit(slot: usize) -> u64 {
+ 1 << slot
+}
+
+fn slot_range(level: usize) -> u64 {
+ LEVEL_MULT.pow(level as u32) as u64
+}
+
+fn level_range(level: usize) -> u64 {
+ LEVEL_MULT as u64 * slot_range(level)
+}
+
+/// Convert a duration (milliseconds) and a level to a slot position
+fn slot_for(duration: u64, level: usize) -> usize {
+ ((duration >> (level * 6)) % LEVEL_MULT as u64) as usize
+}
+
+#[cfg(all(test, not(loom)))]
+mod test {
+ use super::*;
+
+ #[test]
+ fn test_slot_for() {
+ for pos in 0..64 {
+ assert_eq!(pos as usize, slot_for(pos, 0));
+ }
+
+ for level in 1..5 {
+ for pos in level..64 {
+ let a = pos * 64_usize.pow(level as u32);
+ assert_eq!(pos as usize, slot_for(a as u64, level));
+ }
+ }
+ }
+}
diff --git a/third_party/rust/tokio-util/src/time/wheel/mod.rs b/third_party/rust/tokio-util/src/time/wheel/mod.rs
new file mode 100644
index 0000000000..4191e401df
--- /dev/null
+++ b/third_party/rust/tokio-util/src/time/wheel/mod.rs
@@ -0,0 +1,314 @@
+mod level;
+pub(crate) use self::level::Expiration;
+use self::level::Level;
+
+mod stack;
+pub(crate) use self::stack::Stack;
+
+use std::borrow::Borrow;
+use std::fmt::Debug;
+use std::usize;
+
+/// Timing wheel implementation.
+///
+/// This type provides the hashed timing wheel implementation that backs `Timer`
+/// and `DelayQueue`.
+///
+/// The structure is generic over `T: Stack`. This allows handling timeout data
+/// being stored on the heap or in a slab. In order to support the latter case,
+/// the slab must be passed into each function allowing the implementation to
+/// lookup timer entries.
+///
+/// See `Timer` documentation for some implementation notes.
+#[derive(Debug)]
+pub(crate) struct Wheel<T> {
+ /// The number of milliseconds elapsed since the wheel started.
+ elapsed: u64,
+
+ /// Timer wheel.
+ ///
+ /// Levels:
+ ///
+ /// * 1 ms slots / 64 ms range
+ /// * 64 ms slots / ~ 4 sec range
+ /// * ~ 4 sec slots / ~ 4 min range
+ /// * ~ 4 min slots / ~ 4 hr range
+ /// * ~ 4 hr slots / ~ 12 day range
+ /// * ~ 12 day slots / ~ 2 yr range
+ levels: Vec<Level<T>>,
+}
+
+/// Number of levels. Each level has 64 slots. By using 6 levels with 64 slots
+/// each, the timer is able to track time up to 2 years into the future with a
+/// precision of 1 millisecond.
+const NUM_LEVELS: usize = 6;
+
+/// The maximum duration of a delay
+const MAX_DURATION: u64 = (1 << (6 * NUM_LEVELS)) - 1;
+
+#[derive(Debug)]
+pub(crate) enum InsertError {
+ Elapsed,
+ Invalid,
+}
+
+impl<T> Wheel<T>
+where
+ T: Stack,
+{
+ /// Create a new timing wheel
+ pub(crate) fn new() -> Wheel<T> {
+ let levels = (0..NUM_LEVELS).map(Level::new).collect();
+
+ Wheel { elapsed: 0, levels }
+ }
+
+ /// Return the number of milliseconds that have elapsed since the timing
+ /// wheel's creation.
+ pub(crate) fn elapsed(&self) -> u64 {
+ self.elapsed
+ }
+
+ /// Insert an entry into the timing wheel.
+ ///
+ /// # Arguments
+ ///
+ /// * `when`: is the instant at which the entry should be fired. It is
+ /// represented as the number of milliseconds since the creation
+ /// of the timing wheel.
+ ///
+ /// * `item`: The item to insert into the wheel.
+ ///
+ /// * `store`: The slab or `()` when using heap storage.
+ ///
+ /// # Return
+ ///
+ /// Returns `Ok` when the item is successfully inserted, `Err` otherwise.
+ ///
+ /// `Err(Elapsed)` indicates that `when` represents an instant that has
+ /// already passed. In this case, the caller should fire the timeout
+ /// immediately.
+ ///
+ /// `Err(Invalid)` indicates an invalid `when` argument as been supplied.
+ pub(crate) fn insert(
+ &mut self,
+ when: u64,
+ item: T::Owned,
+ store: &mut T::Store,
+ ) -> Result<(), (T::Owned, InsertError)> {
+ if when <= self.elapsed {
+ return Err((item, InsertError::Elapsed));
+ } else if when - self.elapsed > MAX_DURATION {
+ return Err((item, InsertError::Invalid));
+ }
+
+ // Get the level at which the entry should be stored
+ let level = self.level_for(when);
+
+ self.levels[level].add_entry(when, item, store);
+
+ debug_assert!({
+ self.levels[level]
+ .next_expiration(self.elapsed)
+ .map(|e| e.deadline >= self.elapsed)
+ .unwrap_or(true)
+ });
+
+ Ok(())
+ }
+
+ /// Remove `item` from the timing wheel.
+ pub(crate) fn remove(&mut self, item: &T::Borrowed, store: &mut T::Store) {
+ let when = T::when(item, store);
+
+ assert!(
+ self.elapsed <= when,
+ "elapsed={}; when={}",
+ self.elapsed,
+ when
+ );
+
+ let level = self.level_for(when);
+
+ self.levels[level].remove_entry(when, item, store);
+ }
+
+ /// Instant at which to poll
+ pub(crate) fn poll_at(&self) -> Option<u64> {
+ self.next_expiration().map(|expiration| expiration.deadline)
+ }
+
+ /// Advances the timer up to the instant represented by `now`.
+ pub(crate) fn poll(&mut self, now: u64, store: &mut T::Store) -> Option<T::Owned> {
+ loop {
+ let expiration = self.next_expiration().and_then(|expiration| {
+ if expiration.deadline > now {
+ None
+ } else {
+ Some(expiration)
+ }
+ });
+
+ match expiration {
+ Some(ref expiration) => {
+ if let Some(item) = self.poll_expiration(expiration, store) {
+ return Some(item);
+ }
+
+ self.set_elapsed(expiration.deadline);
+ }
+ None => {
+ // in this case the poll did not indicate an expiration
+ // _and_ we were not able to find a next expiration in
+ // the current list of timers. advance to the poll's
+ // current time and do nothing else.
+ self.set_elapsed(now);
+ return None;
+ }
+ }
+ }
+ }
+
+ /// Returns the instant at which the next timeout expires.
+ fn next_expiration(&self) -> Option<Expiration> {
+ // Check all levels
+ for level in 0..NUM_LEVELS {
+ if let Some(expiration) = self.levels[level].next_expiration(self.elapsed) {
+ // There cannot be any expirations at a higher level that happen
+ // before this one.
+ debug_assert!(self.no_expirations_before(level + 1, expiration.deadline));
+
+ return Some(expiration);
+ }
+ }
+
+ None
+ }
+
+ /// Used for debug assertions
+ fn no_expirations_before(&self, start_level: usize, before: u64) -> bool {
+ let mut res = true;
+
+ for l2 in start_level..NUM_LEVELS {
+ if let Some(e2) = self.levels[l2].next_expiration(self.elapsed) {
+ if e2.deadline < before {
+ res = false;
+ }
+ }
+ }
+
+ res
+ }
+
+ /// iteratively find entries that are between the wheel's current
+ /// time and the expiration time. for each in that population either
+ /// return it for notification (in the case of the last level) or tier
+ /// it down to the next level (in all other cases).
+ pub(crate) fn poll_expiration(
+ &mut self,
+ expiration: &Expiration,
+ store: &mut T::Store,
+ ) -> Option<T::Owned> {
+ while let Some(item) = self.pop_entry(expiration, store) {
+ if expiration.level == 0 {
+ debug_assert_eq!(T::when(item.borrow(), store), expiration.deadline);
+
+ return Some(item);
+ } else {
+ let when = T::when(item.borrow(), store);
+
+ let next_level = expiration.level - 1;
+
+ self.levels[next_level].add_entry(when, item, store);
+ }
+ }
+
+ None
+ }
+
+ fn set_elapsed(&mut self, when: u64) {
+ assert!(
+ self.elapsed <= when,
+ "elapsed={:?}; when={:?}",
+ self.elapsed,
+ when
+ );
+
+ if when > self.elapsed {
+ self.elapsed = when;
+ }
+ }
+
+ fn pop_entry(&mut self, expiration: &Expiration, store: &mut T::Store) -> Option<T::Owned> {
+ self.levels[expiration.level].pop_entry_slot(expiration.slot, store)
+ }
+
+ fn level_for(&self, when: u64) -> usize {
+ level_for(self.elapsed, when)
+ }
+}
+
+fn level_for(elapsed: u64, when: u64) -> usize {
+ const SLOT_MASK: u64 = (1 << 6) - 1;
+
+ // Mask in the trailing bits ignored by the level calculation in order to cap
+ // the possible leading zeros
+ let masked = elapsed ^ when | SLOT_MASK;
+
+ let leading_zeros = masked.leading_zeros() as usize;
+ let significant = 63 - leading_zeros;
+ significant / 6
+}
+
+#[cfg(all(test, not(loom)))]
+mod test {
+ use super::*;
+
+ #[test]
+ fn test_level_for() {
+ for pos in 0..64 {
+ assert_eq!(
+ 0,
+ level_for(0, pos),
+ "level_for({}) -- binary = {:b}",
+ pos,
+ pos
+ );
+ }
+
+ for level in 1..5 {
+ for pos in level..64 {
+ let a = pos * 64_usize.pow(level as u32);
+ assert_eq!(
+ level,
+ level_for(0, a as u64),
+ "level_for({}) -- binary = {:b}",
+ a,
+ a
+ );
+
+ if pos > level {
+ let a = a - 1;
+ assert_eq!(
+ level,
+ level_for(0, a as u64),
+ "level_for({}) -- binary = {:b}",
+ a,
+ a
+ );
+ }
+
+ if pos < 64 {
+ let a = a + 1;
+ assert_eq!(
+ level,
+ level_for(0, a as u64),
+ "level_for({}) -- binary = {:b}",
+ a,
+ a
+ );
+ }
+ }
+ }
+ }
+}
diff --git a/third_party/rust/tokio-util/src/time/wheel/stack.rs b/third_party/rust/tokio-util/src/time/wheel/stack.rs
new file mode 100644
index 0000000000..c87adcafda
--- /dev/null
+++ b/third_party/rust/tokio-util/src/time/wheel/stack.rs
@@ -0,0 +1,28 @@
+use std::borrow::Borrow;
+use std::cmp::Eq;
+use std::hash::Hash;
+
+/// Abstracts the stack operations needed to track timeouts.
+pub(crate) trait Stack: Default {
+ /// Type of the item stored in the stack
+ type Owned: Borrow<Self::Borrowed>;
+
+ /// Borrowed item
+ type Borrowed: Eq + Hash;
+
+ /// Item storage, this allows a slab to be used instead of just the heap
+ type Store;
+
+ /// Returns `true` if the stack is empty
+ fn is_empty(&self) -> bool;
+
+ /// Push an item onto the stack
+ fn push(&mut self, item: Self::Owned, store: &mut Self::Store);
+
+ /// Pop an item from the stack
+ fn pop(&mut self, store: &mut Self::Store) -> Option<Self::Owned>;
+
+ fn remove(&mut self, item: &Self::Borrowed, store: &mut Self::Store);
+
+ fn when(item: &Self::Borrowed, store: &Self::Store) -> u64;
+}