diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
commit | 36d22d82aa202bb199967e9512281e9a53db42c9 (patch) | |
tree | 105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/rust/tokio-util/src/time | |
parent | Initial commit. (diff) | |
download | firefox-esr-upstream.tar.xz firefox-esr-upstream.zip |
Adding upstream version 115.7.0esr.upstream/115.7.0esrupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/tokio-util/src/time')
-rw-r--r-- | third_party/rust/tokio-util/src/time/delay_queue.rs | 1221 | ||||
-rw-r--r-- | third_party/rust/tokio-util/src/time/mod.rs | 47 | ||||
-rw-r--r-- | third_party/rust/tokio-util/src/time/wheel/level.rs | 253 | ||||
-rw-r--r-- | third_party/rust/tokio-util/src/time/wheel/mod.rs | 314 | ||||
-rw-r--r-- | third_party/rust/tokio-util/src/time/wheel/stack.rs | 28 |
5 files changed, 1863 insertions, 0 deletions
diff --git a/third_party/rust/tokio-util/src/time/delay_queue.rs b/third_party/rust/tokio-util/src/time/delay_queue.rs new file mode 100644 index 0000000000..a0c5e5c5b0 --- /dev/null +++ b/third_party/rust/tokio-util/src/time/delay_queue.rs @@ -0,0 +1,1221 @@ +//! A queue of delayed elements. +//! +//! See [`DelayQueue`] for more details. +//! +//! [`DelayQueue`]: struct@DelayQueue + +use crate::time::wheel::{self, Wheel}; + +use futures_core::ready; +use tokio::time::{sleep_until, Duration, Instant, Sleep}; + +use core::ops::{Index, IndexMut}; +use slab::Slab; +use std::cmp; +use std::collections::HashMap; +use std::convert::From; +use std::fmt; +use std::fmt::Debug; +use std::future::Future; +use std::marker::PhantomData; +use std::pin::Pin; +use std::task::{self, Poll, Waker}; + +/// A queue of delayed elements. +/// +/// Once an element is inserted into the `DelayQueue`, it is yielded once the +/// specified deadline has been reached. +/// +/// # Usage +/// +/// Elements are inserted into `DelayQueue` using the [`insert`] or +/// [`insert_at`] methods. A deadline is provided with the item and a [`Key`] is +/// returned. The key is used to remove the entry or to change the deadline at +/// which it should be yielded back. +/// +/// Once delays have been configured, the `DelayQueue` is used via its +/// [`Stream`] implementation. [`poll_expired`] is called. If an entry has reached its +/// deadline, it is returned. If not, `Poll::Pending` is returned indicating that the +/// current task will be notified once the deadline has been reached. +/// +/// # `Stream` implementation +/// +/// Items are retrieved from the queue via [`DelayQueue::poll_expired`]. If no delays have +/// expired, no items are returned. In this case, `Poll::Pending` is returned and the +/// current task is registered to be notified once the next item's delay has +/// expired. +/// +/// If no items are in the queue, i.e. `is_empty()` returns `true`, then `poll` +/// returns `Poll::Ready(None)`. This indicates that the stream has reached an end. +/// However, if a new item is inserted *after*, `poll` will once again start +/// returning items or `Poll::Pending`. +/// +/// Items are returned ordered by their expirations. Items that are configured +/// to expire first will be returned first. There are no ordering guarantees +/// for items configured to expire at the same instant. Also note that delays are +/// rounded to the closest millisecond. +/// +/// # Implementation +/// +/// The [`DelayQueue`] is backed by a separate instance of a timer wheel similar to that used internally +/// by Tokio's standalone timer utilities such as [`sleep`]. Because of this, it offers the same +/// performance and scalability benefits. +/// +/// State associated with each entry is stored in a [`slab`]. This amortizes the cost of allocation, +/// and allows reuse of the memory allocated for expired entires. +/// +/// Capacity can be checked using [`capacity`] and allocated preemptively by using +/// the [`reserve`] method. +/// +/// # Usage +/// +/// Using `DelayQueue` to manage cache entries. +/// +/// ```rust,no_run +/// use tokio_util::time::{DelayQueue, delay_queue}; +/// +/// use futures::ready; +/// use std::collections::HashMap; +/// use std::task::{Context, Poll}; +/// use std::time::Duration; +/// # type CacheKey = String; +/// # type Value = String; +/// +/// struct Cache { +/// entries: HashMap<CacheKey, (Value, delay_queue::Key)>, +/// expirations: DelayQueue<CacheKey>, +/// } +/// +/// const TTL_SECS: u64 = 30; +/// +/// impl Cache { +/// fn insert(&mut self, key: CacheKey, value: Value) { +/// let delay = self.expirations +/// .insert(key.clone(), Duration::from_secs(TTL_SECS)); +/// +/// self.entries.insert(key, (value, delay)); +/// } +/// +/// fn get(&self, key: &CacheKey) -> Option<&Value> { +/// self.entries.get(key) +/// .map(|&(ref v, _)| v) +/// } +/// +/// fn remove(&mut self, key: &CacheKey) { +/// if let Some((_, cache_key)) = self.entries.remove(key) { +/// self.expirations.remove(&cache_key); +/// } +/// } +/// +/// fn poll_purge(&mut self, cx: &mut Context<'_>) -> Poll<()> { +/// while let Some(entry) = ready!(self.expirations.poll_expired(cx)) { +/// self.entries.remove(entry.get_ref()); +/// } +/// +/// Poll::Ready(()) +/// } +/// } +/// ``` +/// +/// [`insert`]: method@Self::insert +/// [`insert_at`]: method@Self::insert_at +/// [`Key`]: struct@Key +/// [`Stream`]: https://docs.rs/futures/0.1/futures/stream/trait.Stream.html +/// [`poll_expired`]: method@Self::poll_expired +/// [`Stream::poll_expired`]: method@Self::poll_expired +/// [`DelayQueue`]: struct@DelayQueue +/// [`sleep`]: fn@tokio::time::sleep +/// [`slab`]: slab +/// [`capacity`]: method@Self::capacity +/// [`reserve`]: method@Self::reserve +#[derive(Debug)] +pub struct DelayQueue<T> { + /// Stores data associated with entries + slab: SlabStorage<T>, + + /// Lookup structure tracking all delays in the queue + wheel: Wheel<Stack<T>>, + + /// Delays that were inserted when already expired. These cannot be stored + /// in the wheel + expired: Stack<T>, + + /// Delay expiring when the *first* item in the queue expires + delay: Option<Pin<Box<Sleep>>>, + + /// Wheel polling state + wheel_now: u64, + + /// Instant at which the timer starts + start: Instant, + + /// Waker that is invoked when we potentially need to reset the timer. + /// Because we lazily create the timer when the first entry is created, we + /// need to awaken any poller that polled us before that point. + waker: Option<Waker>, +} + +#[derive(Default)] +struct SlabStorage<T> { + inner: Slab<Data<T>>, + + // A `compact` call requires a re-mapping of the `Key`s that were changed + // during the `compact` call of the `slab`. Since the keys that were given out + // cannot be changed retroactively we need to keep track of these re-mappings. + // The keys of `key_map` correspond to the old keys that were given out and + // the values to the `Key`s that were re-mapped by the `compact` call. + key_map: HashMap<Key, KeyInternal>, + + // Index used to create new keys to hand out. + next_key_index: usize, + + // Whether `compact` has been called, necessary in order to decide whether + // to include keys in `key_map`. + compact_called: bool, +} + +impl<T> SlabStorage<T> { + pub(crate) fn with_capacity(capacity: usize) -> SlabStorage<T> { + SlabStorage { + inner: Slab::with_capacity(capacity), + key_map: HashMap::new(), + next_key_index: 0, + compact_called: false, + } + } + + // Inserts data into the inner slab and re-maps keys if necessary + pub(crate) fn insert(&mut self, val: Data<T>) -> Key { + let mut key = KeyInternal::new(self.inner.insert(val)); + let key_contained = self.key_map.contains_key(&key.into()); + + if key_contained { + // It's possible that a `compact` call creates capacitiy in `self.inner` in + // such a way that a `self.inner.insert` call creates a `key` which was + // previously given out during an `insert` call prior to the `compact` call. + // If `key` is contained in `self.key_map`, we have encountered this exact situation, + // We need to create a new key `key_to_give_out` and include the relation + // `key_to_give_out` -> `key` in `self.key_map`. + let key_to_give_out = self.create_new_key(); + assert!(!self.key_map.contains_key(&key_to_give_out.into())); + self.key_map.insert(key_to_give_out.into(), key); + key = key_to_give_out; + } else if self.compact_called { + // Include an identity mapping in `self.key_map` in order to allow us to + // panic if a key that was handed out is removed more than once. + self.key_map.insert(key.into(), key); + } + + key.into() + } + + // Re-map the key in case compact was previously called. + // Note: Since we include identity mappings in key_map after compact was called, + // we have information about all keys that were handed out. In the case in which + // compact was called and we try to remove a Key that was previously removed + // we can detect invalid keys if no key is found in `key_map`. This is necessary + // in order to prevent situations in which a previously removed key + // corresponds to a re-mapped key internally and which would then be incorrectly + // removed from the slab. + // + // Example to illuminate this problem: + // + // Let's assume our `key_map` is {1 -> 2, 2 -> 1} and we call remove(1). If we + // were to remove 1 again, we would not find it inside `key_map` anymore. + // If we were to imply from this that no re-mapping was necessary, we would + // incorrectly remove 1 from `self.slab.inner`, which corresponds to the + // handed-out key 2. + pub(crate) fn remove(&mut self, key: &Key) -> Data<T> { + let remapped_key = if self.compact_called { + match self.key_map.remove(key) { + Some(key_internal) => key_internal, + None => panic!("invalid key"), + } + } else { + (*key).into() + }; + + self.inner.remove(remapped_key.index) + } + + pub(crate) fn shrink_to_fit(&mut self) { + self.inner.shrink_to_fit(); + self.key_map.shrink_to_fit(); + } + + pub(crate) fn compact(&mut self) { + if !self.compact_called { + for (key, _) in self.inner.iter() { + self.key_map.insert(Key::new(key), KeyInternal::new(key)); + } + } + + let mut remapping = HashMap::new(); + self.inner.compact(|_, from, to| { + remapping.insert(from, to); + true + }); + + // At this point `key_map` contains a mapping for every element. + for internal_key in self.key_map.values_mut() { + if let Some(new_internal_key) = remapping.get(&internal_key.index) { + *internal_key = KeyInternal::new(*new_internal_key); + } + } + + if self.key_map.capacity() > 2 * self.key_map.len() { + self.key_map.shrink_to_fit(); + } + + self.compact_called = true; + } + + // Tries to re-map a `Key` that was given out to the user to its + // corresponding internal key. + fn remap_key(&self, key: &Key) -> Option<KeyInternal> { + let key_map = &self.key_map; + if self.compact_called { + key_map.get(&*key).copied() + } else { + Some((*key).into()) + } + } + + fn create_new_key(&mut self) -> KeyInternal { + while self.key_map.contains_key(&Key::new(self.next_key_index)) { + self.next_key_index = self.next_key_index.wrapping_add(1); + } + + KeyInternal::new(self.next_key_index) + } + + pub(crate) fn len(&self) -> usize { + self.inner.len() + } + + pub(crate) fn capacity(&self) -> usize { + self.inner.capacity() + } + + pub(crate) fn clear(&mut self) { + self.inner.clear(); + self.key_map.clear(); + self.compact_called = false; + } + + pub(crate) fn reserve(&mut self, additional: usize) { + self.inner.reserve(additional); + + if self.compact_called { + self.key_map.reserve(additional); + } + } + + pub(crate) fn is_empty(&self) -> bool { + self.inner.is_empty() + } + + pub(crate) fn contains(&self, key: &Key) -> bool { + let remapped_key = self.remap_key(key); + + match remapped_key { + Some(internal_key) => self.inner.contains(internal_key.index), + None => false, + } + } +} + +impl<T> fmt::Debug for SlabStorage<T> +where + T: fmt::Debug, +{ + fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { + if fmt.alternate() { + fmt.debug_map().entries(self.inner.iter()).finish() + } else { + fmt.debug_struct("Slab") + .field("len", &self.len()) + .field("cap", &self.capacity()) + .finish() + } + } +} + +impl<T> Index<Key> for SlabStorage<T> { + type Output = Data<T>; + + fn index(&self, key: Key) -> &Self::Output { + let remapped_key = self.remap_key(&key); + + match remapped_key { + Some(internal_key) => &self.inner[internal_key.index], + None => panic!("Invalid index {}", key.index), + } + } +} + +impl<T> IndexMut<Key> for SlabStorage<T> { + fn index_mut(&mut self, key: Key) -> &mut Data<T> { + let remapped_key = self.remap_key(&key); + + match remapped_key { + Some(internal_key) => &mut self.inner[internal_key.index], + None => panic!("Invalid index {}", key.index), + } + } +} + +/// An entry in `DelayQueue` that has expired and been removed. +/// +/// Values are returned by [`DelayQueue::poll_expired`]. +/// +/// [`DelayQueue::poll_expired`]: method@DelayQueue::poll_expired +#[derive(Debug)] +pub struct Expired<T> { + /// The data stored in the queue + data: T, + + /// The expiration time + deadline: Instant, + + /// The key associated with the entry + key: Key, +} + +/// Token to a value stored in a `DelayQueue`. +/// +/// Instances of `Key` are returned by [`DelayQueue::insert`]. See [`DelayQueue`] +/// documentation for more details. +/// +/// [`DelayQueue`]: struct@DelayQueue +/// [`DelayQueue::insert`]: method@DelayQueue::insert +#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] +pub struct Key { + index: usize, +} + +// Whereas `Key` is given out to users that use `DelayQueue`, internally we use +// `KeyInternal` as the key type in order to make the logic of mapping between keys +// as a result of `compact` calls clearer. +#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] +struct KeyInternal { + index: usize, +} + +#[derive(Debug)] +struct Stack<T> { + /// Head of the stack + head: Option<Key>, + _p: PhantomData<fn() -> T>, +} + +#[derive(Debug)] +struct Data<T> { + /// The data being stored in the queue and will be returned at the requested + /// instant. + inner: T, + + /// The instant at which the item is returned. + when: u64, + + /// Set to true when stored in the `expired` queue + expired: bool, + + /// Next entry in the stack + next: Option<Key>, + + /// Previous entry in the stack + prev: Option<Key>, +} + +/// Maximum number of entries the queue can handle +const MAX_ENTRIES: usize = (1 << 30) - 1; + +impl<T> DelayQueue<T> { + /// Creates a new, empty, `DelayQueue`. + /// + /// The queue will not allocate storage until items are inserted into it. + /// + /// # Examples + /// + /// ```rust + /// # use tokio_util::time::DelayQueue; + /// let delay_queue: DelayQueue<u32> = DelayQueue::new(); + /// ``` + pub fn new() -> DelayQueue<T> { + DelayQueue::with_capacity(0) + } + + /// Creates a new, empty, `DelayQueue` with the specified capacity. + /// + /// The queue will be able to hold at least `capacity` elements without + /// reallocating. If `capacity` is 0, the queue will not allocate for + /// storage. + /// + /// # Examples + /// + /// ```rust + /// # use tokio_util::time::DelayQueue; + /// # use std::time::Duration; + /// + /// # #[tokio::main] + /// # async fn main() { + /// let mut delay_queue = DelayQueue::with_capacity(10); + /// + /// // These insertions are done without further allocation + /// for i in 0..10 { + /// delay_queue.insert(i, Duration::from_secs(i)); + /// } + /// + /// // This will make the queue allocate additional storage + /// delay_queue.insert(11, Duration::from_secs(11)); + /// # } + /// ``` + pub fn with_capacity(capacity: usize) -> DelayQueue<T> { + DelayQueue { + wheel: Wheel::new(), + slab: SlabStorage::with_capacity(capacity), + expired: Stack::default(), + delay: None, + wheel_now: 0, + start: Instant::now(), + waker: None, + } + } + + /// Inserts `value` into the queue set to expire at a specific instant in + /// time. + /// + /// This function is identical to `insert`, but takes an `Instant` instead + /// of a `Duration`. + /// + /// `value` is stored in the queue until `when` is reached. At which point, + /// `value` will be returned from [`poll_expired`]. If `when` has already been + /// reached, then `value` is immediately made available to poll. + /// + /// The return value represents the insertion and is used as an argument to + /// [`remove`] and [`reset`]. Note that [`Key`] is a token and is reused once + /// `value` is removed from the queue either by calling [`poll_expired`] after + /// `when` is reached or by calling [`remove`]. At this point, the caller + /// must take care to not use the returned [`Key`] again as it may reference + /// a different item in the queue. + /// + /// See [type] level documentation for more details. + /// + /// # Panics + /// + /// This function panics if `when` is too far in the future. + /// + /// # Examples + /// + /// Basic usage + /// + /// ```rust + /// use tokio::time::{Duration, Instant}; + /// use tokio_util::time::DelayQueue; + /// + /// # #[tokio::main] + /// # async fn main() { + /// let mut delay_queue = DelayQueue::new(); + /// let key = delay_queue.insert_at( + /// "foo", Instant::now() + Duration::from_secs(5)); + /// + /// // Remove the entry + /// let item = delay_queue.remove(&key); + /// assert_eq!(*item.get_ref(), "foo"); + /// # } + /// ``` + /// + /// [`poll_expired`]: method@Self::poll_expired + /// [`remove`]: method@Self::remove + /// [`reset`]: method@Self::reset + /// [`Key`]: struct@Key + /// [type]: # + pub fn insert_at(&mut self, value: T, when: Instant) -> Key { + assert!(self.slab.len() < MAX_ENTRIES, "max entries exceeded"); + + // Normalize the deadline. Values cannot be set to expire in the past. + let when = self.normalize_deadline(when); + + // Insert the value in the store + let key = self.slab.insert(Data { + inner: value, + when, + expired: false, + next: None, + prev: None, + }); + + self.insert_idx(when, key); + + // Set a new delay if the current's deadline is later than the one of the new item + let should_set_delay = if let Some(ref delay) = self.delay { + let current_exp = self.normalize_deadline(delay.deadline()); + current_exp > when + } else { + true + }; + + if should_set_delay { + if let Some(waker) = self.waker.take() { + waker.wake(); + } + + let delay_time = self.start + Duration::from_millis(when); + if let Some(ref mut delay) = &mut self.delay { + delay.as_mut().reset(delay_time); + } else { + self.delay = Some(Box::pin(sleep_until(delay_time))); + } + } + + key + } + + /// Attempts to pull out the next value of the delay queue, registering the + /// current task for wakeup if the value is not yet available, and returning + /// `None` if the queue is exhausted. + pub fn poll_expired(&mut self, cx: &mut task::Context<'_>) -> Poll<Option<Expired<T>>> { + if !self + .waker + .as_ref() + .map(|w| w.will_wake(cx.waker())) + .unwrap_or(false) + { + self.waker = Some(cx.waker().clone()); + } + + let item = ready!(self.poll_idx(cx)); + Poll::Ready(item.map(|key| { + let data = self.slab.remove(&key); + debug_assert!(data.next.is_none()); + debug_assert!(data.prev.is_none()); + + Expired { + key, + data: data.inner, + deadline: self.start + Duration::from_millis(data.when), + } + })) + } + + /// Inserts `value` into the queue set to expire after the requested duration + /// elapses. + /// + /// This function is identical to `insert_at`, but takes a `Duration` + /// instead of an `Instant`. + /// + /// `value` is stored in the queue until `timeout` duration has + /// elapsed after `insert` was called. At that point, `value` will + /// be returned from [`poll_expired`]. If `timeout` is a `Duration` of + /// zero, then `value` is immediately made available to poll. + /// + /// The return value represents the insertion and is used as an + /// argument to [`remove`] and [`reset`]. Note that [`Key`] is a + /// token and is reused once `value` is removed from the queue + /// either by calling [`poll_expired`] after `timeout` has elapsed + /// or by calling [`remove`]. At this point, the caller must not + /// use the returned [`Key`] again as it may reference a different + /// item in the queue. + /// + /// See [type] level documentation for more details. + /// + /// # Panics + /// + /// This function panics if `timeout` is greater than the maximum + /// duration supported by the timer in the current `Runtime`. + /// + /// # Examples + /// + /// Basic usage + /// + /// ```rust + /// use tokio_util::time::DelayQueue; + /// use std::time::Duration; + /// + /// # #[tokio::main] + /// # async fn main() { + /// let mut delay_queue = DelayQueue::new(); + /// let key = delay_queue.insert("foo", Duration::from_secs(5)); + /// + /// // Remove the entry + /// let item = delay_queue.remove(&key); + /// assert_eq!(*item.get_ref(), "foo"); + /// # } + /// ``` + /// + /// [`poll_expired`]: method@Self::poll_expired + /// [`remove`]: method@Self::remove + /// [`reset`]: method@Self::reset + /// [`Key`]: struct@Key + /// [type]: # + pub fn insert(&mut self, value: T, timeout: Duration) -> Key { + self.insert_at(value, Instant::now() + timeout) + } + + fn insert_idx(&mut self, when: u64, key: Key) { + use self::wheel::{InsertError, Stack}; + + // Register the deadline with the timer wheel + match self.wheel.insert(when, key, &mut self.slab) { + Ok(_) => {} + Err((_, InsertError::Elapsed)) => { + self.slab[key].expired = true; + // The delay is already expired, store it in the expired queue + self.expired.push(key, &mut self.slab); + } + Err((_, err)) => panic!("invalid deadline; err={:?}", err), + } + } + + /// Removes the key from the expired queue or the timer wheel + /// depending on its expiration status. + /// + /// # Panics + /// + /// Panics if the key is not contained in the expired queue or the wheel. + fn remove_key(&mut self, key: &Key) { + use crate::time::wheel::Stack; + + // Special case the `expired` queue + if self.slab[*key].expired { + self.expired.remove(key, &mut self.slab); + } else { + self.wheel.remove(key, &mut self.slab); + } + } + + /// Removes the item associated with `key` from the queue. + /// + /// There must be an item associated with `key`. The function returns the + /// removed item as well as the `Instant` at which it will the delay will + /// have expired. + /// + /// # Panics + /// + /// The function panics if `key` is not contained by the queue. + /// + /// # Examples + /// + /// Basic usage + /// + /// ```rust + /// use tokio_util::time::DelayQueue; + /// use std::time::Duration; + /// + /// # #[tokio::main] + /// # async fn main() { + /// let mut delay_queue = DelayQueue::new(); + /// let key = delay_queue.insert("foo", Duration::from_secs(5)); + /// + /// // Remove the entry + /// let item = delay_queue.remove(&key); + /// assert_eq!(*item.get_ref(), "foo"); + /// # } + /// ``` + pub fn remove(&mut self, key: &Key) -> Expired<T> { + let prev_deadline = self.next_deadline(); + + self.remove_key(key); + let data = self.slab.remove(key); + + let next_deadline = self.next_deadline(); + if prev_deadline != next_deadline { + match (next_deadline, &mut self.delay) { + (None, _) => self.delay = None, + (Some(deadline), Some(delay)) => delay.as_mut().reset(deadline), + (Some(deadline), None) => self.delay = Some(Box::pin(sleep_until(deadline))), + } + } + + Expired { + key: Key::new(key.index), + data: data.inner, + deadline: self.start + Duration::from_millis(data.when), + } + } + + /// Sets the delay of the item associated with `key` to expire at `when`. + /// + /// This function is identical to `reset` but takes an `Instant` instead of + /// a `Duration`. + /// + /// The item remains in the queue but the delay is set to expire at `when`. + /// If `when` is in the past, then the item is immediately made available to + /// the caller. + /// + /// # Panics + /// + /// This function panics if `when` is too far in the future or if `key` is + /// not contained by the queue. + /// + /// # Examples + /// + /// Basic usage + /// + /// ```rust + /// use tokio::time::{Duration, Instant}; + /// use tokio_util::time::DelayQueue; + /// + /// # #[tokio::main] + /// # async fn main() { + /// let mut delay_queue = DelayQueue::new(); + /// let key = delay_queue.insert("foo", Duration::from_secs(5)); + /// + /// // "foo" is scheduled to be returned in 5 seconds + /// + /// delay_queue.reset_at(&key, Instant::now() + Duration::from_secs(10)); + /// + /// // "foo" is now scheduled to be returned in 10 seconds + /// # } + /// ``` + pub fn reset_at(&mut self, key: &Key, when: Instant) { + self.remove_key(key); + + // Normalize the deadline. Values cannot be set to expire in the past. + let when = self.normalize_deadline(when); + + self.slab[*key].when = when; + self.slab[*key].expired = false; + + self.insert_idx(when, *key); + + let next_deadline = self.next_deadline(); + if let (Some(ref mut delay), Some(deadline)) = (&mut self.delay, next_deadline) { + // This should awaken us if necessary (ie, if already expired) + delay.as_mut().reset(deadline); + } + } + + /// Shrink the capacity of the slab, which `DelayQueue` uses internally for storage allocation. + /// This function is not guaranteed to, and in most cases, won't decrease the capacity of the slab + /// to the number of elements still contained in it, because elements cannot be moved to a different + /// index. To decrease the capacity to the size of the slab use [`compact`]. + /// + /// This function can take O(n) time even when the capacity cannot be reduced or the allocation is + /// shrunk in place. Repeated calls run in O(1) though. + /// + /// [`compact`]: method@Self::compact + pub fn shrink_to_fit(&mut self) { + self.slab.shrink_to_fit(); + } + + /// Shrink the capacity of the slab, which `DelayQueue` uses internally for storage allocation, + /// to the number of elements that are contained in it. + /// + /// This methods runs in O(n). + /// + /// # Examples + /// + /// Basic usage + /// + /// ```rust + /// use tokio_util::time::DelayQueue; + /// use std::time::Duration; + /// + /// # #[tokio::main] + /// # async fn main() { + /// let mut delay_queue = DelayQueue::with_capacity(10); + /// + /// let key1 = delay_queue.insert(5, Duration::from_secs(5)); + /// let key2 = delay_queue.insert(10, Duration::from_secs(10)); + /// let key3 = delay_queue.insert(15, Duration::from_secs(15)); + /// + /// delay_queue.remove(&key2); + /// + /// delay_queue.compact(); + /// assert_eq!(delay_queue.capacity(), 2); + /// # } + /// ``` + pub fn compact(&mut self) { + self.slab.compact(); + } + + /// Returns the next time to poll as determined by the wheel + fn next_deadline(&mut self) -> Option<Instant> { + self.wheel + .poll_at() + .map(|poll_at| self.start + Duration::from_millis(poll_at)) + } + + /// Sets the delay of the item associated with `key` to expire after + /// `timeout`. + /// + /// This function is identical to `reset_at` but takes a `Duration` instead + /// of an `Instant`. + /// + /// The item remains in the queue but the delay is set to expire after + /// `timeout`. If `timeout` is zero, then the item is immediately made + /// available to the caller. + /// + /// # Panics + /// + /// This function panics if `timeout` is greater than the maximum supported + /// duration or if `key` is not contained by the queue. + /// + /// # Examples + /// + /// Basic usage + /// + /// ```rust + /// use tokio_util::time::DelayQueue; + /// use std::time::Duration; + /// + /// # #[tokio::main] + /// # async fn main() { + /// let mut delay_queue = DelayQueue::new(); + /// let key = delay_queue.insert("foo", Duration::from_secs(5)); + /// + /// // "foo" is scheduled to be returned in 5 seconds + /// + /// delay_queue.reset(&key, Duration::from_secs(10)); + /// + /// // "foo"is now scheduled to be returned in 10 seconds + /// # } + /// ``` + pub fn reset(&mut self, key: &Key, timeout: Duration) { + self.reset_at(key, Instant::now() + timeout); + } + + /// Clears the queue, removing all items. + /// + /// After calling `clear`, [`poll_expired`] will return `Ok(Ready(None))`. + /// + /// Note that this method has no effect on the allocated capacity. + /// + /// [`poll_expired`]: method@Self::poll_expired + /// + /// # Examples + /// + /// ```rust + /// use tokio_util::time::DelayQueue; + /// use std::time::Duration; + /// + /// # #[tokio::main] + /// # async fn main() { + /// let mut delay_queue = DelayQueue::new(); + /// + /// delay_queue.insert("foo", Duration::from_secs(5)); + /// + /// assert!(!delay_queue.is_empty()); + /// + /// delay_queue.clear(); + /// + /// assert!(delay_queue.is_empty()); + /// # } + /// ``` + pub fn clear(&mut self) { + self.slab.clear(); + self.expired = Stack::default(); + self.wheel = Wheel::new(); + self.delay = None; + } + + /// Returns the number of elements the queue can hold without reallocating. + /// + /// # Examples + /// + /// ```rust + /// use tokio_util::time::DelayQueue; + /// + /// let delay_queue: DelayQueue<i32> = DelayQueue::with_capacity(10); + /// assert_eq!(delay_queue.capacity(), 10); + /// ``` + pub fn capacity(&self) -> usize { + self.slab.capacity() + } + + /// Returns the number of elements currently in the queue. + /// + /// # Examples + /// + /// ```rust + /// use tokio_util::time::DelayQueue; + /// use std::time::Duration; + /// + /// # #[tokio::main] + /// # async fn main() { + /// let mut delay_queue: DelayQueue<i32> = DelayQueue::with_capacity(10); + /// assert_eq!(delay_queue.len(), 0); + /// delay_queue.insert(3, Duration::from_secs(5)); + /// assert_eq!(delay_queue.len(), 1); + /// # } + /// ``` + pub fn len(&self) -> usize { + self.slab.len() + } + + /// Reserves capacity for at least `additional` more items to be queued + /// without allocating. + /// + /// `reserve` does nothing if the queue already has sufficient capacity for + /// `additional` more values. If more capacity is required, a new segment of + /// memory will be allocated and all existing values will be copied into it. + /// As such, if the queue is already very large, a call to `reserve` can end + /// up being expensive. + /// + /// The queue may reserve more than `additional` extra space in order to + /// avoid frequent reallocations. + /// + /// # Panics + /// + /// Panics if the new capacity exceeds the maximum number of entries the + /// queue can contain. + /// + /// # Examples + /// + /// ``` + /// use tokio_util::time::DelayQueue; + /// use std::time::Duration; + /// + /// # #[tokio::main] + /// # async fn main() { + /// let mut delay_queue = DelayQueue::new(); + /// + /// delay_queue.insert("hello", Duration::from_secs(10)); + /// delay_queue.reserve(10); + /// + /// assert!(delay_queue.capacity() >= 11); + /// # } + /// ``` + pub fn reserve(&mut self, additional: usize) { + self.slab.reserve(additional); + } + + /// Returns `true` if there are no items in the queue. + /// + /// Note that this function returns `false` even if all items have not yet + /// expired and a call to `poll` will return `Poll::Pending`. + /// + /// # Examples + /// + /// ``` + /// use tokio_util::time::DelayQueue; + /// use std::time::Duration; + /// + /// # #[tokio::main] + /// # async fn main() { + /// let mut delay_queue = DelayQueue::new(); + /// assert!(delay_queue.is_empty()); + /// + /// delay_queue.insert("hello", Duration::from_secs(5)); + /// assert!(!delay_queue.is_empty()); + /// # } + /// ``` + pub fn is_empty(&self) -> bool { + self.slab.is_empty() + } + + /// Polls the queue, returning the index of the next slot in the slab that + /// should be returned. + /// + /// A slot should be returned when the associated deadline has been reached. + fn poll_idx(&mut self, cx: &mut task::Context<'_>) -> Poll<Option<Key>> { + use self::wheel::Stack; + + let expired = self.expired.pop(&mut self.slab); + + if expired.is_some() { + return Poll::Ready(expired); + } + + loop { + if let Some(ref mut delay) = self.delay { + if !delay.is_elapsed() { + ready!(Pin::new(&mut *delay).poll(cx)); + } + + let now = crate::time::ms(delay.deadline() - self.start, crate::time::Round::Down); + + self.wheel_now = now; + } + + // We poll the wheel to get the next value out before finding the next deadline. + let wheel_idx = self.wheel.poll(self.wheel_now, &mut self.slab); + + self.delay = self.next_deadline().map(|when| Box::pin(sleep_until(when))); + + if let Some(idx) = wheel_idx { + return Poll::Ready(Some(idx)); + } + + if self.delay.is_none() { + return Poll::Ready(None); + } + } + } + + fn normalize_deadline(&self, when: Instant) -> u64 { + let when = if when < self.start { + 0 + } else { + crate::time::ms(when - self.start, crate::time::Round::Up) + }; + + cmp::max(when, self.wheel.elapsed()) + } +} + +// We never put `T` in a `Pin`... +impl<T> Unpin for DelayQueue<T> {} + +impl<T> Default for DelayQueue<T> { + fn default() -> DelayQueue<T> { + DelayQueue::new() + } +} + +impl<T> futures_core::Stream for DelayQueue<T> { + // DelayQueue seems much more specific, where a user may care that it + // has reached capacity, so return those errors instead of panicking. + type Item = Expired<T>; + + fn poll_next(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> Poll<Option<Self::Item>> { + DelayQueue::poll_expired(self.get_mut(), cx) + } +} + +impl<T> wheel::Stack for Stack<T> { + type Owned = Key; + type Borrowed = Key; + type Store = SlabStorage<T>; + + fn is_empty(&self) -> bool { + self.head.is_none() + } + + fn push(&mut self, item: Self::Owned, store: &mut Self::Store) { + // Ensure the entry is not already in a stack. + debug_assert!(store[item].next.is_none()); + debug_assert!(store[item].prev.is_none()); + + // Remove the old head entry + let old = self.head.take(); + + if let Some(idx) = old { + store[idx].prev = Some(item); + } + + store[item].next = old; + self.head = Some(item); + } + + fn pop(&mut self, store: &mut Self::Store) -> Option<Self::Owned> { + if let Some(key) = self.head { + self.head = store[key].next; + + if let Some(idx) = self.head { + store[idx].prev = None; + } + + store[key].next = None; + debug_assert!(store[key].prev.is_none()); + + Some(key) + } else { + None + } + } + + fn remove(&mut self, item: &Self::Borrowed, store: &mut Self::Store) { + let key = *item; + assert!(store.contains(item)); + + // Ensure that the entry is in fact contained by the stack + debug_assert!({ + // This walks the full linked list even if an entry is found. + let mut next = self.head; + let mut contains = false; + + while let Some(idx) = next { + let data = &store[idx]; + + if idx == *item { + debug_assert!(!contains); + contains = true; + } + + next = data.next; + } + + contains + }); + + if let Some(next) = store[key].next { + store[next].prev = store[key].prev; + } + + if let Some(prev) = store[key].prev { + store[prev].next = store[key].next; + } else { + self.head = store[key].next; + } + + store[key].next = None; + store[key].prev = None; + } + + fn when(item: &Self::Borrowed, store: &Self::Store) -> u64 { + store[*item].when + } +} + +impl<T> Default for Stack<T> { + fn default() -> Stack<T> { + Stack { + head: None, + _p: PhantomData, + } + } +} + +impl Key { + pub(crate) fn new(index: usize) -> Key { + Key { index } + } +} + +impl KeyInternal { + pub(crate) fn new(index: usize) -> KeyInternal { + KeyInternal { index } + } +} + +impl From<Key> for KeyInternal { + fn from(item: Key) -> Self { + KeyInternal::new(item.index) + } +} + +impl From<KeyInternal> for Key { + fn from(item: KeyInternal) -> Self { + Key::new(item.index) + } +} + +impl<T> Expired<T> { + /// Returns a reference to the inner value. + pub fn get_ref(&self) -> &T { + &self.data + } + + /// Returns a mutable reference to the inner value. + pub fn get_mut(&mut self) -> &mut T { + &mut self.data + } + + /// Consumes `self` and returns the inner value. + pub fn into_inner(self) -> T { + self.data + } + + /// Returns the deadline that the expiration was set to. + pub fn deadline(&self) -> Instant { + self.deadline + } + + /// Returns the key that the expiration is indexed by. + pub fn key(&self) -> Key { + self.key + } +} diff --git a/third_party/rust/tokio-util/src/time/mod.rs b/third_party/rust/tokio-util/src/time/mod.rs new file mode 100644 index 0000000000..2d34008360 --- /dev/null +++ b/third_party/rust/tokio-util/src/time/mod.rs @@ -0,0 +1,47 @@ +//! Additional utilities for tracking time. +//! +//! This module provides additional utilities for executing code after a set period +//! of time. Currently there is only one: +//! +//! * `DelayQueue`: A queue where items are returned once the requested delay +//! has expired. +//! +//! This type must be used from within the context of the `Runtime`. + +use std::time::Duration; + +mod wheel; + +pub mod delay_queue; + +#[doc(inline)] +pub use delay_queue::DelayQueue; + +// ===== Internal utils ===== + +enum Round { + Up, + Down, +} + +/// Convert a `Duration` to milliseconds, rounding up and saturating at +/// `u64::MAX`. +/// +/// The saturating is fine because `u64::MAX` milliseconds are still many +/// million years. +#[inline] +fn ms(duration: Duration, round: Round) -> u64 { + const NANOS_PER_MILLI: u32 = 1_000_000; + const MILLIS_PER_SEC: u64 = 1_000; + + // Round up. + let millis = match round { + Round::Up => (duration.subsec_nanos() + NANOS_PER_MILLI - 1) / NANOS_PER_MILLI, + Round::Down => duration.subsec_millis(), + }; + + duration + .as_secs() + .saturating_mul(MILLIS_PER_SEC) + .saturating_add(u64::from(millis)) +} diff --git a/third_party/rust/tokio-util/src/time/wheel/level.rs b/third_party/rust/tokio-util/src/time/wheel/level.rs new file mode 100644 index 0000000000..8ea30af30f --- /dev/null +++ b/third_party/rust/tokio-util/src/time/wheel/level.rs @@ -0,0 +1,253 @@ +use crate::time::wheel::Stack; + +use std::fmt; + +/// Wheel for a single level in the timer. This wheel contains 64 slots. +pub(crate) struct Level<T> { + level: usize, + + /// Bit field tracking which slots currently contain entries. + /// + /// Using a bit field to track slots that contain entries allows avoiding a + /// scan to find entries. This field is updated when entries are added or + /// removed from a slot. + /// + /// The least-significant bit represents slot zero. + occupied: u64, + + /// Slots + slot: [T; LEVEL_MULT], +} + +/// Indicates when a slot must be processed next. +#[derive(Debug)] +pub(crate) struct Expiration { + /// The level containing the slot. + pub(crate) level: usize, + + /// The slot index. + pub(crate) slot: usize, + + /// The instant at which the slot needs to be processed. + pub(crate) deadline: u64, +} + +/// Level multiplier. +/// +/// Being a power of 2 is very important. +const LEVEL_MULT: usize = 64; + +impl<T: Stack> Level<T> { + pub(crate) fn new(level: usize) -> Level<T> { + // Rust's derived implementations for arrays require that the value + // contained by the array be `Copy`. So, here we have to manually + // initialize every single slot. + macro_rules! s { + () => { + T::default() + }; + } + + Level { + level, + occupied: 0, + slot: [ + // It does not look like the necessary traits are + // derived for [T; 64]. + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + s!(), + ], + } + } + + /// Finds the slot that needs to be processed next and returns the slot and + /// `Instant` at which this slot must be processed. + pub(crate) fn next_expiration(&self, now: u64) -> Option<Expiration> { + // Use the `occupied` bit field to get the index of the next slot that + // needs to be processed. + let slot = match self.next_occupied_slot(now) { + Some(slot) => slot, + None => return None, + }; + + // From the slot index, calculate the `Instant` at which it needs to be + // processed. This value *must* be in the future with respect to `now`. + + let level_range = level_range(self.level); + let slot_range = slot_range(self.level); + + // TODO: This can probably be simplified w/ power of 2 math + let level_start = now - (now % level_range); + let deadline = level_start + slot as u64 * slot_range; + + debug_assert!( + deadline >= now, + "deadline={}; now={}; level={}; slot={}; occupied={:b}", + deadline, + now, + self.level, + slot, + self.occupied + ); + + Some(Expiration { + level: self.level, + slot, + deadline, + }) + } + + fn next_occupied_slot(&self, now: u64) -> Option<usize> { + if self.occupied == 0 { + return None; + } + + // Get the slot for now using Maths + let now_slot = (now / slot_range(self.level)) as usize; + let occupied = self.occupied.rotate_right(now_slot as u32); + let zeros = occupied.trailing_zeros() as usize; + let slot = (zeros + now_slot) % 64; + + Some(slot) + } + + pub(crate) fn add_entry(&mut self, when: u64, item: T::Owned, store: &mut T::Store) { + let slot = slot_for(when, self.level); + + self.slot[slot].push(item, store); + self.occupied |= occupied_bit(slot); + } + + pub(crate) fn remove_entry(&mut self, when: u64, item: &T::Borrowed, store: &mut T::Store) { + let slot = slot_for(when, self.level); + + self.slot[slot].remove(item, store); + + if self.slot[slot].is_empty() { + // The bit is currently set + debug_assert!(self.occupied & occupied_bit(slot) != 0); + + // Unset the bit + self.occupied ^= occupied_bit(slot); + } + } + + pub(crate) fn pop_entry_slot(&mut self, slot: usize, store: &mut T::Store) -> Option<T::Owned> { + let ret = self.slot[slot].pop(store); + + if ret.is_some() && self.slot[slot].is_empty() { + // The bit is currently set + debug_assert!(self.occupied & occupied_bit(slot) != 0); + + self.occupied ^= occupied_bit(slot); + } + + ret + } +} + +impl<T> fmt::Debug for Level<T> { + fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { + fmt.debug_struct("Level") + .field("occupied", &self.occupied) + .finish() + } +} + +fn occupied_bit(slot: usize) -> u64 { + 1 << slot +} + +fn slot_range(level: usize) -> u64 { + LEVEL_MULT.pow(level as u32) as u64 +} + +fn level_range(level: usize) -> u64 { + LEVEL_MULT as u64 * slot_range(level) +} + +/// Convert a duration (milliseconds) and a level to a slot position +fn slot_for(duration: u64, level: usize) -> usize { + ((duration >> (level * 6)) % LEVEL_MULT as u64) as usize +} + +#[cfg(all(test, not(loom)))] +mod test { + use super::*; + + #[test] + fn test_slot_for() { + for pos in 0..64 { + assert_eq!(pos as usize, slot_for(pos, 0)); + } + + for level in 1..5 { + for pos in level..64 { + let a = pos * 64_usize.pow(level as u32); + assert_eq!(pos as usize, slot_for(a as u64, level)); + } + } + } +} diff --git a/third_party/rust/tokio-util/src/time/wheel/mod.rs b/third_party/rust/tokio-util/src/time/wheel/mod.rs new file mode 100644 index 0000000000..4191e401df --- /dev/null +++ b/third_party/rust/tokio-util/src/time/wheel/mod.rs @@ -0,0 +1,314 @@ +mod level; +pub(crate) use self::level::Expiration; +use self::level::Level; + +mod stack; +pub(crate) use self::stack::Stack; + +use std::borrow::Borrow; +use std::fmt::Debug; +use std::usize; + +/// Timing wheel implementation. +/// +/// This type provides the hashed timing wheel implementation that backs `Timer` +/// and `DelayQueue`. +/// +/// The structure is generic over `T: Stack`. This allows handling timeout data +/// being stored on the heap or in a slab. In order to support the latter case, +/// the slab must be passed into each function allowing the implementation to +/// lookup timer entries. +/// +/// See `Timer` documentation for some implementation notes. +#[derive(Debug)] +pub(crate) struct Wheel<T> { + /// The number of milliseconds elapsed since the wheel started. + elapsed: u64, + + /// Timer wheel. + /// + /// Levels: + /// + /// * 1 ms slots / 64 ms range + /// * 64 ms slots / ~ 4 sec range + /// * ~ 4 sec slots / ~ 4 min range + /// * ~ 4 min slots / ~ 4 hr range + /// * ~ 4 hr slots / ~ 12 day range + /// * ~ 12 day slots / ~ 2 yr range + levels: Vec<Level<T>>, +} + +/// Number of levels. Each level has 64 slots. By using 6 levels with 64 slots +/// each, the timer is able to track time up to 2 years into the future with a +/// precision of 1 millisecond. +const NUM_LEVELS: usize = 6; + +/// The maximum duration of a delay +const MAX_DURATION: u64 = (1 << (6 * NUM_LEVELS)) - 1; + +#[derive(Debug)] +pub(crate) enum InsertError { + Elapsed, + Invalid, +} + +impl<T> Wheel<T> +where + T: Stack, +{ + /// Create a new timing wheel + pub(crate) fn new() -> Wheel<T> { + let levels = (0..NUM_LEVELS).map(Level::new).collect(); + + Wheel { elapsed: 0, levels } + } + + /// Return the number of milliseconds that have elapsed since the timing + /// wheel's creation. + pub(crate) fn elapsed(&self) -> u64 { + self.elapsed + } + + /// Insert an entry into the timing wheel. + /// + /// # Arguments + /// + /// * `when`: is the instant at which the entry should be fired. It is + /// represented as the number of milliseconds since the creation + /// of the timing wheel. + /// + /// * `item`: The item to insert into the wheel. + /// + /// * `store`: The slab or `()` when using heap storage. + /// + /// # Return + /// + /// Returns `Ok` when the item is successfully inserted, `Err` otherwise. + /// + /// `Err(Elapsed)` indicates that `when` represents an instant that has + /// already passed. In this case, the caller should fire the timeout + /// immediately. + /// + /// `Err(Invalid)` indicates an invalid `when` argument as been supplied. + pub(crate) fn insert( + &mut self, + when: u64, + item: T::Owned, + store: &mut T::Store, + ) -> Result<(), (T::Owned, InsertError)> { + if when <= self.elapsed { + return Err((item, InsertError::Elapsed)); + } else if when - self.elapsed > MAX_DURATION { + return Err((item, InsertError::Invalid)); + } + + // Get the level at which the entry should be stored + let level = self.level_for(when); + + self.levels[level].add_entry(when, item, store); + + debug_assert!({ + self.levels[level] + .next_expiration(self.elapsed) + .map(|e| e.deadline >= self.elapsed) + .unwrap_or(true) + }); + + Ok(()) + } + + /// Remove `item` from the timing wheel. + pub(crate) fn remove(&mut self, item: &T::Borrowed, store: &mut T::Store) { + let when = T::when(item, store); + + assert!( + self.elapsed <= when, + "elapsed={}; when={}", + self.elapsed, + when + ); + + let level = self.level_for(when); + + self.levels[level].remove_entry(when, item, store); + } + + /// Instant at which to poll + pub(crate) fn poll_at(&self) -> Option<u64> { + self.next_expiration().map(|expiration| expiration.deadline) + } + + /// Advances the timer up to the instant represented by `now`. + pub(crate) fn poll(&mut self, now: u64, store: &mut T::Store) -> Option<T::Owned> { + loop { + let expiration = self.next_expiration().and_then(|expiration| { + if expiration.deadline > now { + None + } else { + Some(expiration) + } + }); + + match expiration { + Some(ref expiration) => { + if let Some(item) = self.poll_expiration(expiration, store) { + return Some(item); + } + + self.set_elapsed(expiration.deadline); + } + None => { + // in this case the poll did not indicate an expiration + // _and_ we were not able to find a next expiration in + // the current list of timers. advance to the poll's + // current time and do nothing else. + self.set_elapsed(now); + return None; + } + } + } + } + + /// Returns the instant at which the next timeout expires. + fn next_expiration(&self) -> Option<Expiration> { + // Check all levels + for level in 0..NUM_LEVELS { + if let Some(expiration) = self.levels[level].next_expiration(self.elapsed) { + // There cannot be any expirations at a higher level that happen + // before this one. + debug_assert!(self.no_expirations_before(level + 1, expiration.deadline)); + + return Some(expiration); + } + } + + None + } + + /// Used for debug assertions + fn no_expirations_before(&self, start_level: usize, before: u64) -> bool { + let mut res = true; + + for l2 in start_level..NUM_LEVELS { + if let Some(e2) = self.levels[l2].next_expiration(self.elapsed) { + if e2.deadline < before { + res = false; + } + } + } + + res + } + + /// iteratively find entries that are between the wheel's current + /// time and the expiration time. for each in that population either + /// return it for notification (in the case of the last level) or tier + /// it down to the next level (in all other cases). + pub(crate) fn poll_expiration( + &mut self, + expiration: &Expiration, + store: &mut T::Store, + ) -> Option<T::Owned> { + while let Some(item) = self.pop_entry(expiration, store) { + if expiration.level == 0 { + debug_assert_eq!(T::when(item.borrow(), store), expiration.deadline); + + return Some(item); + } else { + let when = T::when(item.borrow(), store); + + let next_level = expiration.level - 1; + + self.levels[next_level].add_entry(when, item, store); + } + } + + None + } + + fn set_elapsed(&mut self, when: u64) { + assert!( + self.elapsed <= when, + "elapsed={:?}; when={:?}", + self.elapsed, + when + ); + + if when > self.elapsed { + self.elapsed = when; + } + } + + fn pop_entry(&mut self, expiration: &Expiration, store: &mut T::Store) -> Option<T::Owned> { + self.levels[expiration.level].pop_entry_slot(expiration.slot, store) + } + + fn level_for(&self, when: u64) -> usize { + level_for(self.elapsed, when) + } +} + +fn level_for(elapsed: u64, when: u64) -> usize { + const SLOT_MASK: u64 = (1 << 6) - 1; + + // Mask in the trailing bits ignored by the level calculation in order to cap + // the possible leading zeros + let masked = elapsed ^ when | SLOT_MASK; + + let leading_zeros = masked.leading_zeros() as usize; + let significant = 63 - leading_zeros; + significant / 6 +} + +#[cfg(all(test, not(loom)))] +mod test { + use super::*; + + #[test] + fn test_level_for() { + for pos in 0..64 { + assert_eq!( + 0, + level_for(0, pos), + "level_for({}) -- binary = {:b}", + pos, + pos + ); + } + + for level in 1..5 { + for pos in level..64 { + let a = pos * 64_usize.pow(level as u32); + assert_eq!( + level, + level_for(0, a as u64), + "level_for({}) -- binary = {:b}", + a, + a + ); + + if pos > level { + let a = a - 1; + assert_eq!( + level, + level_for(0, a as u64), + "level_for({}) -- binary = {:b}", + a, + a + ); + } + + if pos < 64 { + let a = a + 1; + assert_eq!( + level, + level_for(0, a as u64), + "level_for({}) -- binary = {:b}", + a, + a + ); + } + } + } + } +} diff --git a/third_party/rust/tokio-util/src/time/wheel/stack.rs b/third_party/rust/tokio-util/src/time/wheel/stack.rs new file mode 100644 index 0000000000..c87adcafda --- /dev/null +++ b/third_party/rust/tokio-util/src/time/wheel/stack.rs @@ -0,0 +1,28 @@ +use std::borrow::Borrow; +use std::cmp::Eq; +use std::hash::Hash; + +/// Abstracts the stack operations needed to track timeouts. +pub(crate) trait Stack: Default { + /// Type of the item stored in the stack + type Owned: Borrow<Self::Borrowed>; + + /// Borrowed item + type Borrowed: Eq + Hash; + + /// Item storage, this allows a slab to be used instead of just the heap + type Store; + + /// Returns `true` if the stack is empty + fn is_empty(&self) -> bool; + + /// Push an item onto the stack + fn push(&mut self, item: Self::Owned, store: &mut Self::Store); + + /// Pop an item from the stack + fn pop(&mut self, store: &mut Self::Store) -> Option<Self::Owned>; + + fn remove(&mut self, item: &Self::Borrowed, store: &mut Self::Store); + + fn when(item: &Self::Borrowed, store: &Self::Store) -> u64; +} |