diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 09:22:09 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 09:22:09 +0000 |
commit | 43a97878ce14b72f0981164f87f2e35e14151312 (patch) | |
tree | 620249daf56c0258faa40cbdcf9cfba06de2a846 /third_party/rust/naga/src/back/spv/image.rs | |
parent | Initial commit. (diff) | |
download | firefox-upstream.tar.xz firefox-upstream.zip |
Adding upstream version 110.0.1.upstream/110.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/naga/src/back/spv/image.rs')
-rw-r--r-- | third_party/rust/naga/src/back/spv/image.rs | 1179 |
1 files changed, 1179 insertions, 0 deletions
diff --git a/third_party/rust/naga/src/back/spv/image.rs b/third_party/rust/naga/src/back/spv/image.rs new file mode 100644 index 0000000000..e070cd6175 --- /dev/null +++ b/third_party/rust/naga/src/back/spv/image.rs @@ -0,0 +1,1179 @@ +/*! +Generating SPIR-V for image operations. +*/ + +use super::{ + selection::{MergeTuple, Selection}, + Block, BlockContext, Error, IdGenerator, Instruction, LocalType, LookupType, +}; +use crate::arena::Handle; +use spirv::Word; + +/// Information about a vector of coordinates. +/// +/// The coordinate vectors expected by SPIR-V `OpImageRead` and `OpImageFetch` +/// supply the array index for arrayed images as an additional component at +/// the end, whereas Naga's `ImageLoad`, `ImageStore`, and `ImageSample` carry +/// the array index as a separate field. +/// +/// In the process of generating code to compute the combined vector, we also +/// produce SPIR-V types and vector lengths that are useful elsewhere. This +/// struct gathers that information into one place, with standard names. +struct ImageCoordinates { + /// The SPIR-V id of the combined coordinate/index vector value. + /// + /// Note: when indexing a non-arrayed 1D image, this will be a scalar. + value_id: Word, + + /// The SPIR-V id of the type of `value`. + type_id: Word, + + /// The number of components in `value`, if it is a vector, or `None` if it + /// is a scalar. + size: Option<crate::VectorSize>, +} + +/// A trait for image access (load or store) code generators. +/// +/// Types implementing this trait hold information about an `ImageStore` or +/// `ImageLoad` operation that is not affected by the bounds check policy. The +/// `generate` method emits code for the access, given the results of bounds +/// checking. +/// +/// The [`image`] bounds checks policy affects access coordinates, level of +/// detail, and sample index, but never the image id, result type (if any), or +/// the specific SPIR-V instruction used. Types that implement this trait gather +/// together the latter category, so we don't have to plumb them through the +/// bounds-checking code. +/// +/// [`image`]: crate::proc::BoundsCheckPolicies::index +trait Access { + /// The Rust type that represents SPIR-V values and types for this access. + /// + /// For operations like loads, this is `Word`. For operations like stores, + /// this is `()`. + /// + /// For `ReadZeroSkipWrite`, this will be the type of the selection + /// construct that performs the bounds checks, so it must implement + /// `MergeTuple`. + type Output: MergeTuple + Copy + Clone; + + /// Write an image access to `block`. + /// + /// Access the texel at `coordinates_id`. The optional `level_id` indicates + /// the level of detail, and `sample_id` is the index of the sample to + /// access in a multisampled texel. + /// + /// Ths method assumes that `coordinates_id` has already had the image array + /// index, if any, folded in, as done by `write_image_coordinates`. + /// + /// Return the value id produced by the instruction, if any. + /// + /// Use `id_gen` to generate SPIR-V ids as necessary. + fn generate( + &self, + id_gen: &mut IdGenerator, + coordinates_id: Word, + level_id: Option<Word>, + sample_id: Option<Word>, + block: &mut Block, + ) -> Self::Output; + + /// Return the SPIR-V type of the value produced by the code written by + /// `generate`. If the access does not produce a value, `Self::Output` + /// should be `()`. + fn result_type(&self) -> Self::Output; + + /// Construct the SPIR-V 'zero' value to be returned for an out-of-bounds + /// access under the `ReadZeroSkipWrite` policy. If the access does not + /// produce a value, `Self::Output` should be `()`. + fn out_of_bounds_value(&self, ctx: &mut BlockContext<'_>) -> Self::Output; +} + +/// Texel access information for an [`ImageLoad`] expression. +/// +/// [`ImageLoad`]: crate::Expression::ImageLoad +struct Load { + /// The specific opcode we'll use to perform the fetch. Storage images + /// require `OpImageRead`, while sampled images require `OpImageFetch`. + opcode: spirv::Op, + + /// The type id produced by the actual image access instruction. + type_id: Word, + + /// The id of the image being accessed. + image_id: Word, +} + +impl Load { + fn from_image_expr( + ctx: &mut BlockContext<'_>, + image_id: Word, + image_class: crate::ImageClass, + result_type_id: Word, + ) -> Result<Load, Error> { + let opcode = match image_class { + crate::ImageClass::Storage { .. } => spirv::Op::ImageRead, + crate::ImageClass::Depth { .. } | crate::ImageClass::Sampled { .. } => { + spirv::Op::ImageFetch + } + }; + + // `OpImageRead` and `OpImageFetch` instructions produce vec4<f32> + // values. Most of the time, we can just use `result_type_id` for + // this. The exception is that `Expression::ImageLoad` from a depth + // image produces a scalar `f32`, so in that case we need to find + // the right SPIR-V type for the access instruction here. + let type_id = match image_class { + crate::ImageClass::Depth { .. } => { + ctx.get_type_id(LookupType::Local(LocalType::Value { + vector_size: Some(crate::VectorSize::Quad), + kind: crate::ScalarKind::Float, + width: 4, + pointer_space: None, + })) + } + _ => result_type_id, + }; + + Ok(Load { + opcode, + type_id, + image_id, + }) + } +} + +impl Access for Load { + type Output = Word; + + /// Write an instruction to access a given texel of this image. + fn generate( + &self, + id_gen: &mut IdGenerator, + coordinates_id: Word, + level_id: Option<Word>, + sample_id: Option<Word>, + block: &mut Block, + ) -> Word { + let texel_id = id_gen.next(); + let mut instruction = Instruction::image_fetch_or_read( + self.opcode, + self.type_id, + texel_id, + self.image_id, + coordinates_id, + ); + + match (level_id, sample_id) { + (None, None) => {} + (Some(level_id), None) => { + instruction.add_operand(spirv::ImageOperands::LOD.bits()); + instruction.add_operand(level_id); + } + (None, Some(sample_id)) => { + instruction.add_operand(spirv::ImageOperands::SAMPLE.bits()); + instruction.add_operand(sample_id); + } + // There's no such thing as a multi-sampled mipmap. + (Some(_), Some(_)) => unreachable!(), + } + + block.body.push(instruction); + + texel_id + } + + fn result_type(&self) -> Word { + self.type_id + } + + fn out_of_bounds_value(&self, ctx: &mut BlockContext<'_>) -> Word { + ctx.writer.write_constant_null(self.type_id) + } +} + +/// Texel access information for a [`Store`] statement. +/// +/// [`Store`]: crate::Statement::Store +struct Store { + /// The id of the image being written to. + image_id: Word, + + /// The value we're going to write to the texel. + value_id: Word, +} + +impl Access for Store { + /// Stores don't generate any value. + type Output = (); + + fn generate( + &self, + _id_gen: &mut IdGenerator, + coordinates_id: Word, + _level_id: Option<Word>, + _sample_id: Option<Word>, + block: &mut Block, + ) { + block.body.push(Instruction::image_write( + self.image_id, + coordinates_id, + self.value_id, + )); + } + + /// Stores don't generate any value, so this just returns `()`. + fn result_type(&self) {} + + /// Stores don't generate any value, so this just returns `()`. + fn out_of_bounds_value(&self, _ctx: &mut BlockContext<'_>) {} +} + +impl<'w> BlockContext<'w> { + /// Extend image coordinates with an array index, if necessary. + /// + /// Whereas [`Expression::ImageLoad`] and [`ImageSample`] treat the array + /// index as a separate operand from the coordinates, SPIR-V image access + /// instructions include the array index in the `coordinates` operand. This + /// function builds a SPIR-V coordinate vector from a Naga coordinate vector + /// and array index, if one is supplied, and returns a `ImageCoordinates` + /// struct describing what it built. + /// + /// If `array_index` is `Some(expr)`, then this function constructs a new + /// vector that is `coordinates` with `array_index` concatenated onto the + /// end: a `vec2` becomes a `vec3`, a scalar becomes a `vec2`, and so on. + /// + /// If `array_index` is `None`, then the return value uses `coordinates` + /// unchanged. Note that, when indexing a non-arrayed 1D image, this will be + /// a scalar value. + /// + /// If needed, this function generates code to convert the array index, + /// always an integer scalar, to match the component type of `coordinates`. + /// Naga's `ImageLoad` and SPIR-V's `OpImageRead`, `OpImageFetch`, and + /// `OpImageWrite` all use integer coordinates, while Naga's `ImageSample` + /// and SPIR-V's `OpImageSample...` instructions all take floating-point + /// coordinate vectors. + /// + /// [`Expression::ImageLoad`]: crate::Expression::ImageLoad + /// [`ImageSample`]: crate::Expression::ImageSample + fn write_image_coordinates( + &mut self, + coordinates: Handle<crate::Expression>, + array_index: Option<Handle<crate::Expression>>, + block: &mut Block, + ) -> Result<ImageCoordinates, Error> { + use crate::TypeInner as Ti; + use crate::VectorSize as Vs; + + let coordinates_id = self.cached[coordinates]; + let ty = &self.fun_info[coordinates].ty; + let inner_ty = ty.inner_with(&self.ir_module.types); + + // If there's no array index, the image coordinates are exactly the + // `coordinate` field of the `Expression::ImageLoad`. No work is needed. + let array_index = match array_index { + None => { + let value_id = coordinates_id; + let type_id = self.get_expression_type_id(ty); + let size = match *inner_ty { + Ti::Scalar { .. } => None, + Ti::Vector { size, .. } => Some(size), + _ => return Err(Error::Validation("coordinate type")), + }; + return Ok(ImageCoordinates { + value_id, + type_id, + size, + }); + } + Some(ix) => ix, + }; + + // Find the component type of `coordinates`, and figure out the size the + // combined coordinate vector will have. + let (component_kind, size) = match *inner_ty { + Ti::Scalar { kind, width: 4 } => (kind, Some(Vs::Bi)), + Ti::Vector { + kind, + width: 4, + size: Vs::Bi, + } => (kind, Some(Vs::Tri)), + Ti::Vector { + kind, + width: 4, + size: Vs::Tri, + } => (kind, Some(Vs::Quad)), + Ti::Vector { size: Vs::Quad, .. } => { + return Err(Error::Validation("extending vec4 coordinate")); + } + ref other => { + log::error!("wrong coordinate type {:?}", other); + return Err(Error::Validation("coordinate type")); + } + }; + + // Convert the index to the coordinate component type, if necessary. + let array_index_i32_id = self.cached[array_index]; + let reconciled_array_index_id = if component_kind == crate::ScalarKind::Sint { + array_index_i32_id + } else { + let component_type_id = self.get_type_id(LookupType::Local(LocalType::Value { + vector_size: None, + kind: component_kind, + width: 4, + pointer_space: None, + })); + + let reconciled_id = self.gen_id(); + block.body.push(Instruction::unary( + spirv::Op::ConvertUToF, + component_type_id, + reconciled_id, + array_index_i32_id, + )); + reconciled_id + }; + + // Find the SPIR-V type for the combined coordinates/index vector. + let type_id = self.get_type_id(LookupType::Local(LocalType::Value { + vector_size: size, + kind: component_kind, + width: 4, + pointer_space: None, + })); + + // Schmear the coordinates and index together. + let value_id = self.gen_id(); + block.body.push(Instruction::composite_construct( + type_id, + value_id, + &[coordinates_id, reconciled_array_index_id], + )); + Ok(ImageCoordinates { + value_id, + type_id, + size, + }) + } + + fn get_image_id(&mut self, expr_handle: Handle<crate::Expression>) -> Word { + let id = match self.ir_function.expressions[expr_handle] { + crate::Expression::GlobalVariable(handle) => { + self.writer.global_variables[handle.index()].handle_id + } + crate::Expression::FunctionArgument(i) => { + self.function.parameters[i as usize].handle_id + } + crate::Expression::Access { .. } | crate::Expression::AccessIndex { .. } => { + self.cached[expr_handle] + } + ref other => unreachable!("Unexpected image expression {:?}", other), + }; + + if id == 0 { + unreachable!( + "Image expression {:?} doesn't have a handle ID", + expr_handle + ); + } + + id + } + + /// Generate a vector or scalar 'one' for arithmetic on `coordinates`. + /// + /// If `coordinates` is a scalar, return a scalar one. Otherwise, return + /// a vector of ones. + fn write_coordinate_one(&mut self, coordinates: &ImageCoordinates) -> Result<Word, Error> { + let one = self.get_scope_constant(1); + match coordinates.size { + None => Ok(one), + Some(vector_size) => { + let ones = [one; 4]; + let id = self.gen_id(); + Instruction::constant_composite( + coordinates.type_id, + id, + &ones[..vector_size as usize], + ) + .to_words(&mut self.writer.logical_layout.declarations); + Ok(id) + } + } + } + + /// Generate code to restrict `input` to fall between zero and one less than + /// `size_id`. + /// + /// Both must be 32-bit scalar integer values, whose type is given by + /// `type_id`. The computed value is also of type `type_id`. + fn restrict_scalar( + &mut self, + type_id: Word, + input_id: Word, + size_id: Word, + block: &mut Block, + ) -> Result<Word, Error> { + let i32_one_id = self.get_scope_constant(1); + + // Subtract one from `size` to get the largest valid value. + let limit_id = self.gen_id(); + block.body.push(Instruction::binary( + spirv::Op::ISub, + type_id, + limit_id, + size_id, + i32_one_id, + )); + + // Use an unsigned minimum, to handle both positive out-of-range values + // and negative values in a single instruction: negative values of + // `input_id` get treated as very large positive values. + let restricted_id = self.gen_id(); + block.body.push(Instruction::ext_inst( + self.writer.gl450_ext_inst_id, + spirv::GLOp::UMin, + type_id, + restricted_id, + &[input_id, limit_id], + )); + + Ok(restricted_id) + } + + /// Write instructions to query the size of an image. + /// + /// This takes care of selecting the right instruction depending on whether + /// a level of detail parameter is present. + fn write_coordinate_bounds( + &mut self, + type_id: Word, + image_id: Word, + level_id: Option<Word>, + block: &mut Block, + ) -> Word { + let coordinate_bounds_id = self.gen_id(); + match level_id { + Some(level_id) => { + // A level of detail was provided, so fetch the image size for + // that level. + let mut inst = Instruction::image_query( + spirv::Op::ImageQuerySizeLod, + type_id, + coordinate_bounds_id, + image_id, + ); + inst.add_operand(level_id); + block.body.push(inst); + } + _ => { + // No level of detail was given. + block.body.push(Instruction::image_query( + spirv::Op::ImageQuerySize, + type_id, + coordinate_bounds_id, + image_id, + )); + } + } + + coordinate_bounds_id + } + + /// Write code to restrict coordinates for an image reference. + /// + /// First, clamp the level of detail or sample index to fall within bounds. + /// Then, obtain the image size, possibly using the clamped level of detail. + /// Finally, use an unsigned minimum instruction to force all coordinates + /// into range. + /// + /// Return a triple `(COORDS, LEVEL, SAMPLE)`, where `COORDS` is a coordinate + /// vector (including the array index, if any), `LEVEL` is an optional level + /// of detail, and `SAMPLE` is an optional sample index, all guaranteed to + /// be in-bounds for `image_id`. + /// + /// The result is usually a vector, but it is a scalar when indexing + /// non-arrayed 1D images. + fn write_restricted_coordinates( + &mut self, + image_id: Word, + coordinates: ImageCoordinates, + level_id: Option<Word>, + sample_id: Option<Word>, + block: &mut Block, + ) -> Result<(Word, Option<Word>, Option<Word>), Error> { + self.writer.require_any( + "the `Restrict` image bounds check policy", + &[spirv::Capability::ImageQuery], + )?; + + let i32_type_id = self.get_type_id(LookupType::Local(LocalType::Value { + vector_size: None, + kind: crate::ScalarKind::Sint, + width: 4, + pointer_space: None, + })); + + // If `level` is `Some`, clamp it to fall within bounds. This must + // happen first, because we'll use it to query the image size for + // clamping the actual coordinates. + let level_id = level_id + .map(|level_id| { + // Find the number of mipmap levels in this image. + let num_levels_id = self.gen_id(); + block.body.push(Instruction::image_query( + spirv::Op::ImageQueryLevels, + i32_type_id, + num_levels_id, + image_id, + )); + + self.restrict_scalar(i32_type_id, level_id, num_levels_id, block) + }) + .transpose()?; + + // If `sample_id` is `Some`, clamp it to fall within bounds. + let sample_id = sample_id + .map(|sample_id| { + // Find the number of samples per texel. + let num_samples_id = self.gen_id(); + block.body.push(Instruction::image_query( + spirv::Op::ImageQuerySamples, + i32_type_id, + num_samples_id, + image_id, + )); + + self.restrict_scalar(i32_type_id, sample_id, num_samples_id, block) + }) + .transpose()?; + + // Obtain the image bounds, including the array element count. + let coordinate_bounds_id = + self.write_coordinate_bounds(coordinates.type_id, image_id, level_id, block); + + // Compute maximum valid values from the bounds. + let ones = self.write_coordinate_one(&coordinates)?; + let coordinate_limit_id = self.gen_id(); + block.body.push(Instruction::binary( + spirv::Op::ISub, + coordinates.type_id, + coordinate_limit_id, + coordinate_bounds_id, + ones, + )); + + // Restrict the coordinates to fall within those bounds. + // + // Use an unsigned minimum, to handle both positive out-of-range values + // and negative values in a single instruction: negative values of + // `coordinates` get treated as very large positive values. + let restricted_coordinates_id = self.gen_id(); + block.body.push(Instruction::ext_inst( + self.writer.gl450_ext_inst_id, + spirv::GLOp::UMin, + coordinates.type_id, + restricted_coordinates_id, + &[coordinates.value_id, coordinate_limit_id], + )); + + Ok((restricted_coordinates_id, level_id, sample_id)) + } + + fn write_conditional_image_access<A: Access>( + &mut self, + image_id: Word, + coordinates: ImageCoordinates, + level_id: Option<Word>, + sample_id: Option<Word>, + block: &mut Block, + access: &A, + ) -> Result<A::Output, Error> { + self.writer.require_any( + "the `ReadZeroSkipWrite` image bounds check policy", + &[spirv::Capability::ImageQuery], + )?; + + let bool_type_id = self.writer.get_bool_type_id(); + let i32_type_id = self.get_type_id(LookupType::Local(LocalType::Value { + vector_size: None, + kind: crate::ScalarKind::Sint, + width: 4, + pointer_space: None, + })); + + let null_id = access.out_of_bounds_value(self); + + let mut selection = Selection::start(block, access.result_type()); + + // If `level_id` is `Some`, check whether it is within bounds. This must + // happen first, because we'll be supplying this as an argument when we + // query the image size. + if let Some(level_id) = level_id { + // Find the number of mipmap levels in this image. + let num_levels_id = self.gen_id(); + selection.block().body.push(Instruction::image_query( + spirv::Op::ImageQueryLevels, + i32_type_id, + num_levels_id, + image_id, + )); + + let lod_cond_id = self.gen_id(); + selection.block().body.push(Instruction::binary( + spirv::Op::ULessThan, + bool_type_id, + lod_cond_id, + level_id, + num_levels_id, + )); + + selection.if_true(self, lod_cond_id, null_id); + } + + // If `sample_id` is `Some`, check whether it is in bounds. + if let Some(sample_id) = sample_id { + // Find the number of samples per texel. + let num_samples_id = self.gen_id(); + selection.block().body.push(Instruction::image_query( + spirv::Op::ImageQuerySamples, + i32_type_id, + num_samples_id, + image_id, + )); + + let samples_cond_id = self.gen_id(); + selection.block().body.push(Instruction::binary( + spirv::Op::ULessThan, + bool_type_id, + samples_cond_id, + sample_id, + num_samples_id, + )); + + selection.if_true(self, samples_cond_id, null_id); + } + + // Obtain the image bounds, including any array element count. + let coordinate_bounds_id = self.write_coordinate_bounds( + coordinates.type_id, + image_id, + level_id, + selection.block(), + ); + + // Compare the coordinates against the bounds. + let coords_bool_type_id = self.get_type_id(LookupType::Local(LocalType::Value { + vector_size: coordinates.size, + kind: crate::ScalarKind::Bool, + width: 1, + pointer_space: None, + })); + let coords_conds_id = self.gen_id(); + selection.block().body.push(Instruction::binary( + spirv::Op::ULessThan, + coords_bool_type_id, + coords_conds_id, + coordinates.value_id, + coordinate_bounds_id, + )); + + // If the comparison above was a vector comparison, then we need to + // check that all components of the comparison are true. + let coords_cond_id = if coords_bool_type_id != bool_type_id { + let id = self.gen_id(); + selection.block().body.push(Instruction::relational( + spirv::Op::All, + bool_type_id, + id, + coords_conds_id, + )); + id + } else { + coords_conds_id + }; + + selection.if_true(self, coords_cond_id, null_id); + + // All conditions are met. We can carry out the access. + let texel_id = access.generate( + &mut self.writer.id_gen, + coordinates.value_id, + level_id, + sample_id, + selection.block(), + ); + + // This, then, is the value of the 'true' branch. + Ok(selection.finish(self, texel_id)) + } + + /// Generate code for an `ImageLoad` expression. + /// + /// The arguments are the components of an `Expression::ImageLoad` variant. + #[allow(clippy::too_many_arguments)] + pub(super) fn write_image_load( + &mut self, + result_type_id: Word, + image: Handle<crate::Expression>, + coordinate: Handle<crate::Expression>, + array_index: Option<Handle<crate::Expression>>, + level: Option<Handle<crate::Expression>>, + sample: Option<Handle<crate::Expression>>, + block: &mut Block, + ) -> Result<Word, Error> { + let image_id = self.get_image_id(image); + let image_type = self.fun_info[image].ty.inner_with(&self.ir_module.types); + let image_class = match *image_type { + crate::TypeInner::Image { class, .. } => class, + _ => return Err(Error::Validation("image type")), + }; + + let access = Load::from_image_expr(self, image_id, image_class, result_type_id)?; + let coordinates = self.write_image_coordinates(coordinate, array_index, block)?; + + let level_id = level.map(|expr| self.cached[expr]); + let sample_id = sample.map(|expr| self.cached[expr]); + + // Perform the access, according to the bounds check policy. + let access_id = match self.writer.bounds_check_policies.image { + crate::proc::BoundsCheckPolicy::Restrict => { + let (coords, level_id, sample_id) = self.write_restricted_coordinates( + image_id, + coordinates, + level_id, + sample_id, + block, + )?; + access.generate(&mut self.writer.id_gen, coords, level_id, sample_id, block) + } + crate::proc::BoundsCheckPolicy::ReadZeroSkipWrite => self + .write_conditional_image_access( + image_id, + coordinates, + level_id, + sample_id, + block, + &access, + )?, + crate::proc::BoundsCheckPolicy::Unchecked => access.generate( + &mut self.writer.id_gen, + coordinates.value_id, + level_id, + sample_id, + block, + ), + }; + + // For depth images, `ImageLoad` expressions produce a single f32, + // whereas the SPIR-V instructions always produce a vec4. So we may have + // to pull out the component we need. + let result_id = if result_type_id == access.result_type() { + // The instruction produced the type we expected. We can use + // its result as-is. + access_id + } else { + // For `ImageClass::Depth` images, SPIR-V gave us four components, + // but we only want the first one. + let component_id = self.gen_id(); + block.body.push(Instruction::composite_extract( + result_type_id, + component_id, + access_id, + &[0], + )); + component_id + }; + + Ok(result_id) + } + + /// Generate code for an `ImageSample` expression. + /// + /// The arguments are the components of an `Expression::ImageSample` variant. + #[allow(clippy::too_many_arguments)] + pub(super) fn write_image_sample( + &mut self, + result_type_id: Word, + image: Handle<crate::Expression>, + sampler: Handle<crate::Expression>, + gather: Option<crate::SwizzleComponent>, + coordinate: Handle<crate::Expression>, + array_index: Option<Handle<crate::Expression>>, + offset: Option<Handle<crate::Constant>>, + level: crate::SampleLevel, + depth_ref: Option<Handle<crate::Expression>>, + block: &mut Block, + ) -> Result<Word, Error> { + use super::instructions::SampleLod; + // image + let image_id = self.get_image_id(image); + let image_type = self.fun_info[image].ty.handle().unwrap(); + // SPIR-V doesn't know about our `Depth` class, and it returns + // `vec4<f32>`, so we need to grab the first component out of it. + let needs_sub_access = match self.ir_module.types[image_type].inner { + crate::TypeInner::Image { + class: crate::ImageClass::Depth { .. }, + .. + } => depth_ref.is_none() && gather.is_none(), + _ => false, + }; + let sample_result_type_id = if needs_sub_access { + self.get_type_id(LookupType::Local(LocalType::Value { + vector_size: Some(crate::VectorSize::Quad), + kind: crate::ScalarKind::Float, + width: 4, + pointer_space: None, + })) + } else { + result_type_id + }; + + // OpTypeSampledImage + let image_type_id = self.get_type_id(LookupType::Handle(image_type)); + let sampled_image_type_id = + self.get_type_id(LookupType::Local(LocalType::SampledImage { image_type_id })); + + let sampler_id = self.get_image_id(sampler); + let coordinates_id = self + .write_image_coordinates(coordinate, array_index, block)? + .value_id; + + let sampled_image_id = self.gen_id(); + block.body.push(Instruction::sampled_image( + sampled_image_type_id, + sampled_image_id, + image_id, + sampler_id, + )); + let id = self.gen_id(); + + let depth_id = depth_ref.map(|handle| self.cached[handle]); + let mut mask = spirv::ImageOperands::empty(); + mask.set(spirv::ImageOperands::CONST_OFFSET, offset.is_some()); + + let mut main_instruction = match (level, gather) { + (_, Some(component)) => { + let component_id = self.get_index_constant(component as u32); + let mut inst = Instruction::image_gather( + sample_result_type_id, + id, + sampled_image_id, + coordinates_id, + component_id, + depth_id, + ); + if !mask.is_empty() { + inst.add_operand(mask.bits()); + } + inst + } + (crate::SampleLevel::Zero, None) => { + let mut inst = Instruction::image_sample( + sample_result_type_id, + id, + SampleLod::Explicit, + sampled_image_id, + coordinates_id, + depth_id, + ); + + let zero_id = self + .writer + .get_constant_scalar(crate::ScalarValue::Float(0.0), 4); + + mask |= spirv::ImageOperands::LOD; + inst.add_operand(mask.bits()); + inst.add_operand(zero_id); + + inst + } + (crate::SampleLevel::Auto, None) => { + let mut inst = Instruction::image_sample( + sample_result_type_id, + id, + SampleLod::Implicit, + sampled_image_id, + coordinates_id, + depth_id, + ); + if !mask.is_empty() { + inst.add_operand(mask.bits()); + } + inst + } + (crate::SampleLevel::Exact(lod_handle), None) => { + let mut inst = Instruction::image_sample( + sample_result_type_id, + id, + SampleLod::Explicit, + sampled_image_id, + coordinates_id, + depth_id, + ); + + let lod_id = self.cached[lod_handle]; + mask |= spirv::ImageOperands::LOD; + inst.add_operand(mask.bits()); + inst.add_operand(lod_id); + + inst + } + (crate::SampleLevel::Bias(bias_handle), None) => { + let mut inst = Instruction::image_sample( + sample_result_type_id, + id, + SampleLod::Implicit, + sampled_image_id, + coordinates_id, + depth_id, + ); + + let bias_id = self.cached[bias_handle]; + mask |= spirv::ImageOperands::BIAS; + inst.add_operand(mask.bits()); + inst.add_operand(bias_id); + + inst + } + (crate::SampleLevel::Gradient { x, y }, None) => { + let mut inst = Instruction::image_sample( + sample_result_type_id, + id, + SampleLod::Explicit, + sampled_image_id, + coordinates_id, + depth_id, + ); + + let x_id = self.cached[x]; + let y_id = self.cached[y]; + mask |= spirv::ImageOperands::GRAD; + inst.add_operand(mask.bits()); + inst.add_operand(x_id); + inst.add_operand(y_id); + + inst + } + }; + + if let Some(offset_const) = offset { + let offset_id = self.writer.constant_ids[offset_const.index()]; + main_instruction.add_operand(offset_id); + } + + block.body.push(main_instruction); + + let id = if needs_sub_access { + let sub_id = self.gen_id(); + block.body.push(Instruction::composite_extract( + result_type_id, + sub_id, + id, + &[0], + )); + sub_id + } else { + id + }; + + Ok(id) + } + + /// Generate code for an `ImageQuery` expression. + /// + /// The arguments are the components of an `Expression::ImageQuery` variant. + pub(super) fn write_image_query( + &mut self, + result_type_id: Word, + image: Handle<crate::Expression>, + query: crate::ImageQuery, + block: &mut Block, + ) -> Result<Word, Error> { + use crate::{ImageClass as Ic, ImageDimension as Id, ImageQuery as Iq}; + + let image_id = self.get_image_id(image); + let image_type = self.fun_info[image].ty.handle().unwrap(); + let (dim, arrayed, class) = match self.ir_module.types[image_type].inner { + crate::TypeInner::Image { + dim, + arrayed, + class, + } => (dim, arrayed, class), + _ => { + return Err(Error::Validation("image type")); + } + }; + + self.writer + .require_any("image queries", &[spirv::Capability::ImageQuery])?; + + let id = match query { + Iq::Size { level } => { + let dim_coords = match dim { + Id::D1 => 1, + Id::D2 | Id::Cube => 2, + Id::D3 => 3, + }; + let extended_size_type_id = { + let array_coords = if arrayed { 1 } else { 0 }; + let vector_size = match dim_coords + array_coords { + 2 => Some(crate::VectorSize::Bi), + 3 => Some(crate::VectorSize::Tri), + 4 => Some(crate::VectorSize::Quad), + _ => None, + }; + self.get_type_id(LookupType::Local(LocalType::Value { + vector_size, + kind: crate::ScalarKind::Sint, + width: 4, + pointer_space: None, + })) + }; + + let (query_op, level_id) = match class { + Ic::Sampled { multi: true, .. } + | Ic::Depth { multi: true } + | Ic::Storage { .. } => (spirv::Op::ImageQuerySize, None), + _ => { + let level_id = match level { + Some(expr) => self.cached[expr], + None => self.get_index_constant(0), + }; + (spirv::Op::ImageQuerySizeLod, Some(level_id)) + } + }; + + // The ID of the vector returned by SPIR-V, which contains the dimensions + // as well as the layer count. + let id_extended = self.gen_id(); + let mut inst = Instruction::image_query( + query_op, + extended_size_type_id, + id_extended, + image_id, + ); + if let Some(expr_id) = level_id { + inst.add_operand(expr_id); + } + block.body.push(inst); + + if result_type_id != extended_size_type_id { + let id = self.gen_id(); + let components = match dim { + // always pick the first component, and duplicate it for all 3 dimensions + Id::Cube => &[0u32, 0][..], + _ => &[0u32, 1, 2, 3][..dim_coords], + }; + block.body.push(Instruction::vector_shuffle( + result_type_id, + id, + id_extended, + id_extended, + components, + )); + id + } else { + id_extended + } + } + Iq::NumLevels => { + let id = self.gen_id(); + block.body.push(Instruction::image_query( + spirv::Op::ImageQueryLevels, + result_type_id, + id, + image_id, + )); + id + } + Iq::NumLayers => { + let vec_size = match dim { + Id::D1 => crate::VectorSize::Bi, + Id::D2 | Id::Cube => crate::VectorSize::Tri, + Id::D3 => crate::VectorSize::Quad, + }; + let extended_size_type_id = self.get_type_id(LookupType::Local(LocalType::Value { + vector_size: Some(vec_size), + kind: crate::ScalarKind::Sint, + width: 4, + pointer_space: None, + })); + let id_extended = self.gen_id(); + let mut inst = Instruction::image_query( + spirv::Op::ImageQuerySizeLod, + extended_size_type_id, + id_extended, + image_id, + ); + inst.add_operand(self.get_index_constant(0)); + block.body.push(inst); + let id = self.gen_id(); + block.body.push(Instruction::composite_extract( + result_type_id, + id, + id_extended, + &[vec_size as u32 - 1], + )); + id + } + Iq::NumSamples => { + let id = self.gen_id(); + block.body.push(Instruction::image_query( + spirv::Op::ImageQuerySamples, + result_type_id, + id, + image_id, + )); + id + } + }; + + Ok(id) + } + + pub(super) fn write_image_store( + &mut self, + image: Handle<crate::Expression>, + coordinate: Handle<crate::Expression>, + array_index: Option<Handle<crate::Expression>>, + value: Handle<crate::Expression>, + block: &mut Block, + ) -> Result<(), Error> { + let image_id = self.get_image_id(image); + let coordinates = self.write_image_coordinates(coordinate, array_index, block)?; + let value_id = self.cached[value]; + + let write = Store { image_id, value_id }; + + match self.writer.bounds_check_policies.image { + crate::proc::BoundsCheckPolicy::Restrict => { + let (coords, _, _) = + self.write_restricted_coordinates(image_id, coordinates, None, None, block)?; + write.generate(&mut self.writer.id_gen, coords, None, None, block); + } + crate::proc::BoundsCheckPolicy::ReadZeroSkipWrite => { + self.write_conditional_image_access( + image_id, + coordinates, + None, + None, + block, + &write, + )?; + } + crate::proc::BoundsCheckPolicy::Unchecked => { + write.generate( + &mut self.writer.id_gen, + coordinates.value_id, + None, + None, + block, + ); + } + } + + Ok(()) + } +} |