summaryrefslogtreecommitdiffstats
path: root/third_party/rust/naga/src/back/spv/image.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/naga/src/back/spv/image.rs')
-rw-r--r--third_party/rust/naga/src/back/spv/image.rs1179
1 files changed, 1179 insertions, 0 deletions
diff --git a/third_party/rust/naga/src/back/spv/image.rs b/third_party/rust/naga/src/back/spv/image.rs
new file mode 100644
index 0000000000..e070cd6175
--- /dev/null
+++ b/third_party/rust/naga/src/back/spv/image.rs
@@ -0,0 +1,1179 @@
+/*!
+Generating SPIR-V for image operations.
+*/
+
+use super::{
+ selection::{MergeTuple, Selection},
+ Block, BlockContext, Error, IdGenerator, Instruction, LocalType, LookupType,
+};
+use crate::arena::Handle;
+use spirv::Word;
+
+/// Information about a vector of coordinates.
+///
+/// The coordinate vectors expected by SPIR-V `OpImageRead` and `OpImageFetch`
+/// supply the array index for arrayed images as an additional component at
+/// the end, whereas Naga's `ImageLoad`, `ImageStore`, and `ImageSample` carry
+/// the array index as a separate field.
+///
+/// In the process of generating code to compute the combined vector, we also
+/// produce SPIR-V types and vector lengths that are useful elsewhere. This
+/// struct gathers that information into one place, with standard names.
+struct ImageCoordinates {
+ /// The SPIR-V id of the combined coordinate/index vector value.
+ ///
+ /// Note: when indexing a non-arrayed 1D image, this will be a scalar.
+ value_id: Word,
+
+ /// The SPIR-V id of the type of `value`.
+ type_id: Word,
+
+ /// The number of components in `value`, if it is a vector, or `None` if it
+ /// is a scalar.
+ size: Option<crate::VectorSize>,
+}
+
+/// A trait for image access (load or store) code generators.
+///
+/// Types implementing this trait hold information about an `ImageStore` or
+/// `ImageLoad` operation that is not affected by the bounds check policy. The
+/// `generate` method emits code for the access, given the results of bounds
+/// checking.
+///
+/// The [`image`] bounds checks policy affects access coordinates, level of
+/// detail, and sample index, but never the image id, result type (if any), or
+/// the specific SPIR-V instruction used. Types that implement this trait gather
+/// together the latter category, so we don't have to plumb them through the
+/// bounds-checking code.
+///
+/// [`image`]: crate::proc::BoundsCheckPolicies::index
+trait Access {
+ /// The Rust type that represents SPIR-V values and types for this access.
+ ///
+ /// For operations like loads, this is `Word`. For operations like stores,
+ /// this is `()`.
+ ///
+ /// For `ReadZeroSkipWrite`, this will be the type of the selection
+ /// construct that performs the bounds checks, so it must implement
+ /// `MergeTuple`.
+ type Output: MergeTuple + Copy + Clone;
+
+ /// Write an image access to `block`.
+ ///
+ /// Access the texel at `coordinates_id`. The optional `level_id` indicates
+ /// the level of detail, and `sample_id` is the index of the sample to
+ /// access in a multisampled texel.
+ ///
+ /// Ths method assumes that `coordinates_id` has already had the image array
+ /// index, if any, folded in, as done by `write_image_coordinates`.
+ ///
+ /// Return the value id produced by the instruction, if any.
+ ///
+ /// Use `id_gen` to generate SPIR-V ids as necessary.
+ fn generate(
+ &self,
+ id_gen: &mut IdGenerator,
+ coordinates_id: Word,
+ level_id: Option<Word>,
+ sample_id: Option<Word>,
+ block: &mut Block,
+ ) -> Self::Output;
+
+ /// Return the SPIR-V type of the value produced by the code written by
+ /// `generate`. If the access does not produce a value, `Self::Output`
+ /// should be `()`.
+ fn result_type(&self) -> Self::Output;
+
+ /// Construct the SPIR-V 'zero' value to be returned for an out-of-bounds
+ /// access under the `ReadZeroSkipWrite` policy. If the access does not
+ /// produce a value, `Self::Output` should be `()`.
+ fn out_of_bounds_value(&self, ctx: &mut BlockContext<'_>) -> Self::Output;
+}
+
+/// Texel access information for an [`ImageLoad`] expression.
+///
+/// [`ImageLoad`]: crate::Expression::ImageLoad
+struct Load {
+ /// The specific opcode we'll use to perform the fetch. Storage images
+ /// require `OpImageRead`, while sampled images require `OpImageFetch`.
+ opcode: spirv::Op,
+
+ /// The type id produced by the actual image access instruction.
+ type_id: Word,
+
+ /// The id of the image being accessed.
+ image_id: Word,
+}
+
+impl Load {
+ fn from_image_expr(
+ ctx: &mut BlockContext<'_>,
+ image_id: Word,
+ image_class: crate::ImageClass,
+ result_type_id: Word,
+ ) -> Result<Load, Error> {
+ let opcode = match image_class {
+ crate::ImageClass::Storage { .. } => spirv::Op::ImageRead,
+ crate::ImageClass::Depth { .. } | crate::ImageClass::Sampled { .. } => {
+ spirv::Op::ImageFetch
+ }
+ };
+
+ // `OpImageRead` and `OpImageFetch` instructions produce vec4<f32>
+ // values. Most of the time, we can just use `result_type_id` for
+ // this. The exception is that `Expression::ImageLoad` from a depth
+ // image produces a scalar `f32`, so in that case we need to find
+ // the right SPIR-V type for the access instruction here.
+ let type_id = match image_class {
+ crate::ImageClass::Depth { .. } => {
+ ctx.get_type_id(LookupType::Local(LocalType::Value {
+ vector_size: Some(crate::VectorSize::Quad),
+ kind: crate::ScalarKind::Float,
+ width: 4,
+ pointer_space: None,
+ }))
+ }
+ _ => result_type_id,
+ };
+
+ Ok(Load {
+ opcode,
+ type_id,
+ image_id,
+ })
+ }
+}
+
+impl Access for Load {
+ type Output = Word;
+
+ /// Write an instruction to access a given texel of this image.
+ fn generate(
+ &self,
+ id_gen: &mut IdGenerator,
+ coordinates_id: Word,
+ level_id: Option<Word>,
+ sample_id: Option<Word>,
+ block: &mut Block,
+ ) -> Word {
+ let texel_id = id_gen.next();
+ let mut instruction = Instruction::image_fetch_or_read(
+ self.opcode,
+ self.type_id,
+ texel_id,
+ self.image_id,
+ coordinates_id,
+ );
+
+ match (level_id, sample_id) {
+ (None, None) => {}
+ (Some(level_id), None) => {
+ instruction.add_operand(spirv::ImageOperands::LOD.bits());
+ instruction.add_operand(level_id);
+ }
+ (None, Some(sample_id)) => {
+ instruction.add_operand(spirv::ImageOperands::SAMPLE.bits());
+ instruction.add_operand(sample_id);
+ }
+ // There's no such thing as a multi-sampled mipmap.
+ (Some(_), Some(_)) => unreachable!(),
+ }
+
+ block.body.push(instruction);
+
+ texel_id
+ }
+
+ fn result_type(&self) -> Word {
+ self.type_id
+ }
+
+ fn out_of_bounds_value(&self, ctx: &mut BlockContext<'_>) -> Word {
+ ctx.writer.write_constant_null(self.type_id)
+ }
+}
+
+/// Texel access information for a [`Store`] statement.
+///
+/// [`Store`]: crate::Statement::Store
+struct Store {
+ /// The id of the image being written to.
+ image_id: Word,
+
+ /// The value we're going to write to the texel.
+ value_id: Word,
+}
+
+impl Access for Store {
+ /// Stores don't generate any value.
+ type Output = ();
+
+ fn generate(
+ &self,
+ _id_gen: &mut IdGenerator,
+ coordinates_id: Word,
+ _level_id: Option<Word>,
+ _sample_id: Option<Word>,
+ block: &mut Block,
+ ) {
+ block.body.push(Instruction::image_write(
+ self.image_id,
+ coordinates_id,
+ self.value_id,
+ ));
+ }
+
+ /// Stores don't generate any value, so this just returns `()`.
+ fn result_type(&self) {}
+
+ /// Stores don't generate any value, so this just returns `()`.
+ fn out_of_bounds_value(&self, _ctx: &mut BlockContext<'_>) {}
+}
+
+impl<'w> BlockContext<'w> {
+ /// Extend image coordinates with an array index, if necessary.
+ ///
+ /// Whereas [`Expression::ImageLoad`] and [`ImageSample`] treat the array
+ /// index as a separate operand from the coordinates, SPIR-V image access
+ /// instructions include the array index in the `coordinates` operand. This
+ /// function builds a SPIR-V coordinate vector from a Naga coordinate vector
+ /// and array index, if one is supplied, and returns a `ImageCoordinates`
+ /// struct describing what it built.
+ ///
+ /// If `array_index` is `Some(expr)`, then this function constructs a new
+ /// vector that is `coordinates` with `array_index` concatenated onto the
+ /// end: a `vec2` becomes a `vec3`, a scalar becomes a `vec2`, and so on.
+ ///
+ /// If `array_index` is `None`, then the return value uses `coordinates`
+ /// unchanged. Note that, when indexing a non-arrayed 1D image, this will be
+ /// a scalar value.
+ ///
+ /// If needed, this function generates code to convert the array index,
+ /// always an integer scalar, to match the component type of `coordinates`.
+ /// Naga's `ImageLoad` and SPIR-V's `OpImageRead`, `OpImageFetch`, and
+ /// `OpImageWrite` all use integer coordinates, while Naga's `ImageSample`
+ /// and SPIR-V's `OpImageSample...` instructions all take floating-point
+ /// coordinate vectors.
+ ///
+ /// [`Expression::ImageLoad`]: crate::Expression::ImageLoad
+ /// [`ImageSample`]: crate::Expression::ImageSample
+ fn write_image_coordinates(
+ &mut self,
+ coordinates: Handle<crate::Expression>,
+ array_index: Option<Handle<crate::Expression>>,
+ block: &mut Block,
+ ) -> Result<ImageCoordinates, Error> {
+ use crate::TypeInner as Ti;
+ use crate::VectorSize as Vs;
+
+ let coordinates_id = self.cached[coordinates];
+ let ty = &self.fun_info[coordinates].ty;
+ let inner_ty = ty.inner_with(&self.ir_module.types);
+
+ // If there's no array index, the image coordinates are exactly the
+ // `coordinate` field of the `Expression::ImageLoad`. No work is needed.
+ let array_index = match array_index {
+ None => {
+ let value_id = coordinates_id;
+ let type_id = self.get_expression_type_id(ty);
+ let size = match *inner_ty {
+ Ti::Scalar { .. } => None,
+ Ti::Vector { size, .. } => Some(size),
+ _ => return Err(Error::Validation("coordinate type")),
+ };
+ return Ok(ImageCoordinates {
+ value_id,
+ type_id,
+ size,
+ });
+ }
+ Some(ix) => ix,
+ };
+
+ // Find the component type of `coordinates`, and figure out the size the
+ // combined coordinate vector will have.
+ let (component_kind, size) = match *inner_ty {
+ Ti::Scalar { kind, width: 4 } => (kind, Some(Vs::Bi)),
+ Ti::Vector {
+ kind,
+ width: 4,
+ size: Vs::Bi,
+ } => (kind, Some(Vs::Tri)),
+ Ti::Vector {
+ kind,
+ width: 4,
+ size: Vs::Tri,
+ } => (kind, Some(Vs::Quad)),
+ Ti::Vector { size: Vs::Quad, .. } => {
+ return Err(Error::Validation("extending vec4 coordinate"));
+ }
+ ref other => {
+ log::error!("wrong coordinate type {:?}", other);
+ return Err(Error::Validation("coordinate type"));
+ }
+ };
+
+ // Convert the index to the coordinate component type, if necessary.
+ let array_index_i32_id = self.cached[array_index];
+ let reconciled_array_index_id = if component_kind == crate::ScalarKind::Sint {
+ array_index_i32_id
+ } else {
+ let component_type_id = self.get_type_id(LookupType::Local(LocalType::Value {
+ vector_size: None,
+ kind: component_kind,
+ width: 4,
+ pointer_space: None,
+ }));
+
+ let reconciled_id = self.gen_id();
+ block.body.push(Instruction::unary(
+ spirv::Op::ConvertUToF,
+ component_type_id,
+ reconciled_id,
+ array_index_i32_id,
+ ));
+ reconciled_id
+ };
+
+ // Find the SPIR-V type for the combined coordinates/index vector.
+ let type_id = self.get_type_id(LookupType::Local(LocalType::Value {
+ vector_size: size,
+ kind: component_kind,
+ width: 4,
+ pointer_space: None,
+ }));
+
+ // Schmear the coordinates and index together.
+ let value_id = self.gen_id();
+ block.body.push(Instruction::composite_construct(
+ type_id,
+ value_id,
+ &[coordinates_id, reconciled_array_index_id],
+ ));
+ Ok(ImageCoordinates {
+ value_id,
+ type_id,
+ size,
+ })
+ }
+
+ fn get_image_id(&mut self, expr_handle: Handle<crate::Expression>) -> Word {
+ let id = match self.ir_function.expressions[expr_handle] {
+ crate::Expression::GlobalVariable(handle) => {
+ self.writer.global_variables[handle.index()].handle_id
+ }
+ crate::Expression::FunctionArgument(i) => {
+ self.function.parameters[i as usize].handle_id
+ }
+ crate::Expression::Access { .. } | crate::Expression::AccessIndex { .. } => {
+ self.cached[expr_handle]
+ }
+ ref other => unreachable!("Unexpected image expression {:?}", other),
+ };
+
+ if id == 0 {
+ unreachable!(
+ "Image expression {:?} doesn't have a handle ID",
+ expr_handle
+ );
+ }
+
+ id
+ }
+
+ /// Generate a vector or scalar 'one' for arithmetic on `coordinates`.
+ ///
+ /// If `coordinates` is a scalar, return a scalar one. Otherwise, return
+ /// a vector of ones.
+ fn write_coordinate_one(&mut self, coordinates: &ImageCoordinates) -> Result<Word, Error> {
+ let one = self.get_scope_constant(1);
+ match coordinates.size {
+ None => Ok(one),
+ Some(vector_size) => {
+ let ones = [one; 4];
+ let id = self.gen_id();
+ Instruction::constant_composite(
+ coordinates.type_id,
+ id,
+ &ones[..vector_size as usize],
+ )
+ .to_words(&mut self.writer.logical_layout.declarations);
+ Ok(id)
+ }
+ }
+ }
+
+ /// Generate code to restrict `input` to fall between zero and one less than
+ /// `size_id`.
+ ///
+ /// Both must be 32-bit scalar integer values, whose type is given by
+ /// `type_id`. The computed value is also of type `type_id`.
+ fn restrict_scalar(
+ &mut self,
+ type_id: Word,
+ input_id: Word,
+ size_id: Word,
+ block: &mut Block,
+ ) -> Result<Word, Error> {
+ let i32_one_id = self.get_scope_constant(1);
+
+ // Subtract one from `size` to get the largest valid value.
+ let limit_id = self.gen_id();
+ block.body.push(Instruction::binary(
+ spirv::Op::ISub,
+ type_id,
+ limit_id,
+ size_id,
+ i32_one_id,
+ ));
+
+ // Use an unsigned minimum, to handle both positive out-of-range values
+ // and negative values in a single instruction: negative values of
+ // `input_id` get treated as very large positive values.
+ let restricted_id = self.gen_id();
+ block.body.push(Instruction::ext_inst(
+ self.writer.gl450_ext_inst_id,
+ spirv::GLOp::UMin,
+ type_id,
+ restricted_id,
+ &[input_id, limit_id],
+ ));
+
+ Ok(restricted_id)
+ }
+
+ /// Write instructions to query the size of an image.
+ ///
+ /// This takes care of selecting the right instruction depending on whether
+ /// a level of detail parameter is present.
+ fn write_coordinate_bounds(
+ &mut self,
+ type_id: Word,
+ image_id: Word,
+ level_id: Option<Word>,
+ block: &mut Block,
+ ) -> Word {
+ let coordinate_bounds_id = self.gen_id();
+ match level_id {
+ Some(level_id) => {
+ // A level of detail was provided, so fetch the image size for
+ // that level.
+ let mut inst = Instruction::image_query(
+ spirv::Op::ImageQuerySizeLod,
+ type_id,
+ coordinate_bounds_id,
+ image_id,
+ );
+ inst.add_operand(level_id);
+ block.body.push(inst);
+ }
+ _ => {
+ // No level of detail was given.
+ block.body.push(Instruction::image_query(
+ spirv::Op::ImageQuerySize,
+ type_id,
+ coordinate_bounds_id,
+ image_id,
+ ));
+ }
+ }
+
+ coordinate_bounds_id
+ }
+
+ /// Write code to restrict coordinates for an image reference.
+ ///
+ /// First, clamp the level of detail or sample index to fall within bounds.
+ /// Then, obtain the image size, possibly using the clamped level of detail.
+ /// Finally, use an unsigned minimum instruction to force all coordinates
+ /// into range.
+ ///
+ /// Return a triple `(COORDS, LEVEL, SAMPLE)`, where `COORDS` is a coordinate
+ /// vector (including the array index, if any), `LEVEL` is an optional level
+ /// of detail, and `SAMPLE` is an optional sample index, all guaranteed to
+ /// be in-bounds for `image_id`.
+ ///
+ /// The result is usually a vector, but it is a scalar when indexing
+ /// non-arrayed 1D images.
+ fn write_restricted_coordinates(
+ &mut self,
+ image_id: Word,
+ coordinates: ImageCoordinates,
+ level_id: Option<Word>,
+ sample_id: Option<Word>,
+ block: &mut Block,
+ ) -> Result<(Word, Option<Word>, Option<Word>), Error> {
+ self.writer.require_any(
+ "the `Restrict` image bounds check policy",
+ &[spirv::Capability::ImageQuery],
+ )?;
+
+ let i32_type_id = self.get_type_id(LookupType::Local(LocalType::Value {
+ vector_size: None,
+ kind: crate::ScalarKind::Sint,
+ width: 4,
+ pointer_space: None,
+ }));
+
+ // If `level` is `Some`, clamp it to fall within bounds. This must
+ // happen first, because we'll use it to query the image size for
+ // clamping the actual coordinates.
+ let level_id = level_id
+ .map(|level_id| {
+ // Find the number of mipmap levels in this image.
+ let num_levels_id = self.gen_id();
+ block.body.push(Instruction::image_query(
+ spirv::Op::ImageQueryLevels,
+ i32_type_id,
+ num_levels_id,
+ image_id,
+ ));
+
+ self.restrict_scalar(i32_type_id, level_id, num_levels_id, block)
+ })
+ .transpose()?;
+
+ // If `sample_id` is `Some`, clamp it to fall within bounds.
+ let sample_id = sample_id
+ .map(|sample_id| {
+ // Find the number of samples per texel.
+ let num_samples_id = self.gen_id();
+ block.body.push(Instruction::image_query(
+ spirv::Op::ImageQuerySamples,
+ i32_type_id,
+ num_samples_id,
+ image_id,
+ ));
+
+ self.restrict_scalar(i32_type_id, sample_id, num_samples_id, block)
+ })
+ .transpose()?;
+
+ // Obtain the image bounds, including the array element count.
+ let coordinate_bounds_id =
+ self.write_coordinate_bounds(coordinates.type_id, image_id, level_id, block);
+
+ // Compute maximum valid values from the bounds.
+ let ones = self.write_coordinate_one(&coordinates)?;
+ let coordinate_limit_id = self.gen_id();
+ block.body.push(Instruction::binary(
+ spirv::Op::ISub,
+ coordinates.type_id,
+ coordinate_limit_id,
+ coordinate_bounds_id,
+ ones,
+ ));
+
+ // Restrict the coordinates to fall within those bounds.
+ //
+ // Use an unsigned minimum, to handle both positive out-of-range values
+ // and negative values in a single instruction: negative values of
+ // `coordinates` get treated as very large positive values.
+ let restricted_coordinates_id = self.gen_id();
+ block.body.push(Instruction::ext_inst(
+ self.writer.gl450_ext_inst_id,
+ spirv::GLOp::UMin,
+ coordinates.type_id,
+ restricted_coordinates_id,
+ &[coordinates.value_id, coordinate_limit_id],
+ ));
+
+ Ok((restricted_coordinates_id, level_id, sample_id))
+ }
+
+ fn write_conditional_image_access<A: Access>(
+ &mut self,
+ image_id: Word,
+ coordinates: ImageCoordinates,
+ level_id: Option<Word>,
+ sample_id: Option<Word>,
+ block: &mut Block,
+ access: &A,
+ ) -> Result<A::Output, Error> {
+ self.writer.require_any(
+ "the `ReadZeroSkipWrite` image bounds check policy",
+ &[spirv::Capability::ImageQuery],
+ )?;
+
+ let bool_type_id = self.writer.get_bool_type_id();
+ let i32_type_id = self.get_type_id(LookupType::Local(LocalType::Value {
+ vector_size: None,
+ kind: crate::ScalarKind::Sint,
+ width: 4,
+ pointer_space: None,
+ }));
+
+ let null_id = access.out_of_bounds_value(self);
+
+ let mut selection = Selection::start(block, access.result_type());
+
+ // If `level_id` is `Some`, check whether it is within bounds. This must
+ // happen first, because we'll be supplying this as an argument when we
+ // query the image size.
+ if let Some(level_id) = level_id {
+ // Find the number of mipmap levels in this image.
+ let num_levels_id = self.gen_id();
+ selection.block().body.push(Instruction::image_query(
+ spirv::Op::ImageQueryLevels,
+ i32_type_id,
+ num_levels_id,
+ image_id,
+ ));
+
+ let lod_cond_id = self.gen_id();
+ selection.block().body.push(Instruction::binary(
+ spirv::Op::ULessThan,
+ bool_type_id,
+ lod_cond_id,
+ level_id,
+ num_levels_id,
+ ));
+
+ selection.if_true(self, lod_cond_id, null_id);
+ }
+
+ // If `sample_id` is `Some`, check whether it is in bounds.
+ if let Some(sample_id) = sample_id {
+ // Find the number of samples per texel.
+ let num_samples_id = self.gen_id();
+ selection.block().body.push(Instruction::image_query(
+ spirv::Op::ImageQuerySamples,
+ i32_type_id,
+ num_samples_id,
+ image_id,
+ ));
+
+ let samples_cond_id = self.gen_id();
+ selection.block().body.push(Instruction::binary(
+ spirv::Op::ULessThan,
+ bool_type_id,
+ samples_cond_id,
+ sample_id,
+ num_samples_id,
+ ));
+
+ selection.if_true(self, samples_cond_id, null_id);
+ }
+
+ // Obtain the image bounds, including any array element count.
+ let coordinate_bounds_id = self.write_coordinate_bounds(
+ coordinates.type_id,
+ image_id,
+ level_id,
+ selection.block(),
+ );
+
+ // Compare the coordinates against the bounds.
+ let coords_bool_type_id = self.get_type_id(LookupType::Local(LocalType::Value {
+ vector_size: coordinates.size,
+ kind: crate::ScalarKind::Bool,
+ width: 1,
+ pointer_space: None,
+ }));
+ let coords_conds_id = self.gen_id();
+ selection.block().body.push(Instruction::binary(
+ spirv::Op::ULessThan,
+ coords_bool_type_id,
+ coords_conds_id,
+ coordinates.value_id,
+ coordinate_bounds_id,
+ ));
+
+ // If the comparison above was a vector comparison, then we need to
+ // check that all components of the comparison are true.
+ let coords_cond_id = if coords_bool_type_id != bool_type_id {
+ let id = self.gen_id();
+ selection.block().body.push(Instruction::relational(
+ spirv::Op::All,
+ bool_type_id,
+ id,
+ coords_conds_id,
+ ));
+ id
+ } else {
+ coords_conds_id
+ };
+
+ selection.if_true(self, coords_cond_id, null_id);
+
+ // All conditions are met. We can carry out the access.
+ let texel_id = access.generate(
+ &mut self.writer.id_gen,
+ coordinates.value_id,
+ level_id,
+ sample_id,
+ selection.block(),
+ );
+
+ // This, then, is the value of the 'true' branch.
+ Ok(selection.finish(self, texel_id))
+ }
+
+ /// Generate code for an `ImageLoad` expression.
+ ///
+ /// The arguments are the components of an `Expression::ImageLoad` variant.
+ #[allow(clippy::too_many_arguments)]
+ pub(super) fn write_image_load(
+ &mut self,
+ result_type_id: Word,
+ image: Handle<crate::Expression>,
+ coordinate: Handle<crate::Expression>,
+ array_index: Option<Handle<crate::Expression>>,
+ level: Option<Handle<crate::Expression>>,
+ sample: Option<Handle<crate::Expression>>,
+ block: &mut Block,
+ ) -> Result<Word, Error> {
+ let image_id = self.get_image_id(image);
+ let image_type = self.fun_info[image].ty.inner_with(&self.ir_module.types);
+ let image_class = match *image_type {
+ crate::TypeInner::Image { class, .. } => class,
+ _ => return Err(Error::Validation("image type")),
+ };
+
+ let access = Load::from_image_expr(self, image_id, image_class, result_type_id)?;
+ let coordinates = self.write_image_coordinates(coordinate, array_index, block)?;
+
+ let level_id = level.map(|expr| self.cached[expr]);
+ let sample_id = sample.map(|expr| self.cached[expr]);
+
+ // Perform the access, according to the bounds check policy.
+ let access_id = match self.writer.bounds_check_policies.image {
+ crate::proc::BoundsCheckPolicy::Restrict => {
+ let (coords, level_id, sample_id) = self.write_restricted_coordinates(
+ image_id,
+ coordinates,
+ level_id,
+ sample_id,
+ block,
+ )?;
+ access.generate(&mut self.writer.id_gen, coords, level_id, sample_id, block)
+ }
+ crate::proc::BoundsCheckPolicy::ReadZeroSkipWrite => self
+ .write_conditional_image_access(
+ image_id,
+ coordinates,
+ level_id,
+ sample_id,
+ block,
+ &access,
+ )?,
+ crate::proc::BoundsCheckPolicy::Unchecked => access.generate(
+ &mut self.writer.id_gen,
+ coordinates.value_id,
+ level_id,
+ sample_id,
+ block,
+ ),
+ };
+
+ // For depth images, `ImageLoad` expressions produce a single f32,
+ // whereas the SPIR-V instructions always produce a vec4. So we may have
+ // to pull out the component we need.
+ let result_id = if result_type_id == access.result_type() {
+ // The instruction produced the type we expected. We can use
+ // its result as-is.
+ access_id
+ } else {
+ // For `ImageClass::Depth` images, SPIR-V gave us four components,
+ // but we only want the first one.
+ let component_id = self.gen_id();
+ block.body.push(Instruction::composite_extract(
+ result_type_id,
+ component_id,
+ access_id,
+ &[0],
+ ));
+ component_id
+ };
+
+ Ok(result_id)
+ }
+
+ /// Generate code for an `ImageSample` expression.
+ ///
+ /// The arguments are the components of an `Expression::ImageSample` variant.
+ #[allow(clippy::too_many_arguments)]
+ pub(super) fn write_image_sample(
+ &mut self,
+ result_type_id: Word,
+ image: Handle<crate::Expression>,
+ sampler: Handle<crate::Expression>,
+ gather: Option<crate::SwizzleComponent>,
+ coordinate: Handle<crate::Expression>,
+ array_index: Option<Handle<crate::Expression>>,
+ offset: Option<Handle<crate::Constant>>,
+ level: crate::SampleLevel,
+ depth_ref: Option<Handle<crate::Expression>>,
+ block: &mut Block,
+ ) -> Result<Word, Error> {
+ use super::instructions::SampleLod;
+ // image
+ let image_id = self.get_image_id(image);
+ let image_type = self.fun_info[image].ty.handle().unwrap();
+ // SPIR-V doesn't know about our `Depth` class, and it returns
+ // `vec4<f32>`, so we need to grab the first component out of it.
+ let needs_sub_access = match self.ir_module.types[image_type].inner {
+ crate::TypeInner::Image {
+ class: crate::ImageClass::Depth { .. },
+ ..
+ } => depth_ref.is_none() && gather.is_none(),
+ _ => false,
+ };
+ let sample_result_type_id = if needs_sub_access {
+ self.get_type_id(LookupType::Local(LocalType::Value {
+ vector_size: Some(crate::VectorSize::Quad),
+ kind: crate::ScalarKind::Float,
+ width: 4,
+ pointer_space: None,
+ }))
+ } else {
+ result_type_id
+ };
+
+ // OpTypeSampledImage
+ let image_type_id = self.get_type_id(LookupType::Handle(image_type));
+ let sampled_image_type_id =
+ self.get_type_id(LookupType::Local(LocalType::SampledImage { image_type_id }));
+
+ let sampler_id = self.get_image_id(sampler);
+ let coordinates_id = self
+ .write_image_coordinates(coordinate, array_index, block)?
+ .value_id;
+
+ let sampled_image_id = self.gen_id();
+ block.body.push(Instruction::sampled_image(
+ sampled_image_type_id,
+ sampled_image_id,
+ image_id,
+ sampler_id,
+ ));
+ let id = self.gen_id();
+
+ let depth_id = depth_ref.map(|handle| self.cached[handle]);
+ let mut mask = spirv::ImageOperands::empty();
+ mask.set(spirv::ImageOperands::CONST_OFFSET, offset.is_some());
+
+ let mut main_instruction = match (level, gather) {
+ (_, Some(component)) => {
+ let component_id = self.get_index_constant(component as u32);
+ let mut inst = Instruction::image_gather(
+ sample_result_type_id,
+ id,
+ sampled_image_id,
+ coordinates_id,
+ component_id,
+ depth_id,
+ );
+ if !mask.is_empty() {
+ inst.add_operand(mask.bits());
+ }
+ inst
+ }
+ (crate::SampleLevel::Zero, None) => {
+ let mut inst = Instruction::image_sample(
+ sample_result_type_id,
+ id,
+ SampleLod::Explicit,
+ sampled_image_id,
+ coordinates_id,
+ depth_id,
+ );
+
+ let zero_id = self
+ .writer
+ .get_constant_scalar(crate::ScalarValue::Float(0.0), 4);
+
+ mask |= spirv::ImageOperands::LOD;
+ inst.add_operand(mask.bits());
+ inst.add_operand(zero_id);
+
+ inst
+ }
+ (crate::SampleLevel::Auto, None) => {
+ let mut inst = Instruction::image_sample(
+ sample_result_type_id,
+ id,
+ SampleLod::Implicit,
+ sampled_image_id,
+ coordinates_id,
+ depth_id,
+ );
+ if !mask.is_empty() {
+ inst.add_operand(mask.bits());
+ }
+ inst
+ }
+ (crate::SampleLevel::Exact(lod_handle), None) => {
+ let mut inst = Instruction::image_sample(
+ sample_result_type_id,
+ id,
+ SampleLod::Explicit,
+ sampled_image_id,
+ coordinates_id,
+ depth_id,
+ );
+
+ let lod_id = self.cached[lod_handle];
+ mask |= spirv::ImageOperands::LOD;
+ inst.add_operand(mask.bits());
+ inst.add_operand(lod_id);
+
+ inst
+ }
+ (crate::SampleLevel::Bias(bias_handle), None) => {
+ let mut inst = Instruction::image_sample(
+ sample_result_type_id,
+ id,
+ SampleLod::Implicit,
+ sampled_image_id,
+ coordinates_id,
+ depth_id,
+ );
+
+ let bias_id = self.cached[bias_handle];
+ mask |= spirv::ImageOperands::BIAS;
+ inst.add_operand(mask.bits());
+ inst.add_operand(bias_id);
+
+ inst
+ }
+ (crate::SampleLevel::Gradient { x, y }, None) => {
+ let mut inst = Instruction::image_sample(
+ sample_result_type_id,
+ id,
+ SampleLod::Explicit,
+ sampled_image_id,
+ coordinates_id,
+ depth_id,
+ );
+
+ let x_id = self.cached[x];
+ let y_id = self.cached[y];
+ mask |= spirv::ImageOperands::GRAD;
+ inst.add_operand(mask.bits());
+ inst.add_operand(x_id);
+ inst.add_operand(y_id);
+
+ inst
+ }
+ };
+
+ if let Some(offset_const) = offset {
+ let offset_id = self.writer.constant_ids[offset_const.index()];
+ main_instruction.add_operand(offset_id);
+ }
+
+ block.body.push(main_instruction);
+
+ let id = if needs_sub_access {
+ let sub_id = self.gen_id();
+ block.body.push(Instruction::composite_extract(
+ result_type_id,
+ sub_id,
+ id,
+ &[0],
+ ));
+ sub_id
+ } else {
+ id
+ };
+
+ Ok(id)
+ }
+
+ /// Generate code for an `ImageQuery` expression.
+ ///
+ /// The arguments are the components of an `Expression::ImageQuery` variant.
+ pub(super) fn write_image_query(
+ &mut self,
+ result_type_id: Word,
+ image: Handle<crate::Expression>,
+ query: crate::ImageQuery,
+ block: &mut Block,
+ ) -> Result<Word, Error> {
+ use crate::{ImageClass as Ic, ImageDimension as Id, ImageQuery as Iq};
+
+ let image_id = self.get_image_id(image);
+ let image_type = self.fun_info[image].ty.handle().unwrap();
+ let (dim, arrayed, class) = match self.ir_module.types[image_type].inner {
+ crate::TypeInner::Image {
+ dim,
+ arrayed,
+ class,
+ } => (dim, arrayed, class),
+ _ => {
+ return Err(Error::Validation("image type"));
+ }
+ };
+
+ self.writer
+ .require_any("image queries", &[spirv::Capability::ImageQuery])?;
+
+ let id = match query {
+ Iq::Size { level } => {
+ let dim_coords = match dim {
+ Id::D1 => 1,
+ Id::D2 | Id::Cube => 2,
+ Id::D3 => 3,
+ };
+ let extended_size_type_id = {
+ let array_coords = if arrayed { 1 } else { 0 };
+ let vector_size = match dim_coords + array_coords {
+ 2 => Some(crate::VectorSize::Bi),
+ 3 => Some(crate::VectorSize::Tri),
+ 4 => Some(crate::VectorSize::Quad),
+ _ => None,
+ };
+ self.get_type_id(LookupType::Local(LocalType::Value {
+ vector_size,
+ kind: crate::ScalarKind::Sint,
+ width: 4,
+ pointer_space: None,
+ }))
+ };
+
+ let (query_op, level_id) = match class {
+ Ic::Sampled { multi: true, .. }
+ | Ic::Depth { multi: true }
+ | Ic::Storage { .. } => (spirv::Op::ImageQuerySize, None),
+ _ => {
+ let level_id = match level {
+ Some(expr) => self.cached[expr],
+ None => self.get_index_constant(0),
+ };
+ (spirv::Op::ImageQuerySizeLod, Some(level_id))
+ }
+ };
+
+ // The ID of the vector returned by SPIR-V, which contains the dimensions
+ // as well as the layer count.
+ let id_extended = self.gen_id();
+ let mut inst = Instruction::image_query(
+ query_op,
+ extended_size_type_id,
+ id_extended,
+ image_id,
+ );
+ if let Some(expr_id) = level_id {
+ inst.add_operand(expr_id);
+ }
+ block.body.push(inst);
+
+ if result_type_id != extended_size_type_id {
+ let id = self.gen_id();
+ let components = match dim {
+ // always pick the first component, and duplicate it for all 3 dimensions
+ Id::Cube => &[0u32, 0][..],
+ _ => &[0u32, 1, 2, 3][..dim_coords],
+ };
+ block.body.push(Instruction::vector_shuffle(
+ result_type_id,
+ id,
+ id_extended,
+ id_extended,
+ components,
+ ));
+ id
+ } else {
+ id_extended
+ }
+ }
+ Iq::NumLevels => {
+ let id = self.gen_id();
+ block.body.push(Instruction::image_query(
+ spirv::Op::ImageQueryLevels,
+ result_type_id,
+ id,
+ image_id,
+ ));
+ id
+ }
+ Iq::NumLayers => {
+ let vec_size = match dim {
+ Id::D1 => crate::VectorSize::Bi,
+ Id::D2 | Id::Cube => crate::VectorSize::Tri,
+ Id::D3 => crate::VectorSize::Quad,
+ };
+ let extended_size_type_id = self.get_type_id(LookupType::Local(LocalType::Value {
+ vector_size: Some(vec_size),
+ kind: crate::ScalarKind::Sint,
+ width: 4,
+ pointer_space: None,
+ }));
+ let id_extended = self.gen_id();
+ let mut inst = Instruction::image_query(
+ spirv::Op::ImageQuerySizeLod,
+ extended_size_type_id,
+ id_extended,
+ image_id,
+ );
+ inst.add_operand(self.get_index_constant(0));
+ block.body.push(inst);
+ let id = self.gen_id();
+ block.body.push(Instruction::composite_extract(
+ result_type_id,
+ id,
+ id_extended,
+ &[vec_size as u32 - 1],
+ ));
+ id
+ }
+ Iq::NumSamples => {
+ let id = self.gen_id();
+ block.body.push(Instruction::image_query(
+ spirv::Op::ImageQuerySamples,
+ result_type_id,
+ id,
+ image_id,
+ ));
+ id
+ }
+ };
+
+ Ok(id)
+ }
+
+ pub(super) fn write_image_store(
+ &mut self,
+ image: Handle<crate::Expression>,
+ coordinate: Handle<crate::Expression>,
+ array_index: Option<Handle<crate::Expression>>,
+ value: Handle<crate::Expression>,
+ block: &mut Block,
+ ) -> Result<(), Error> {
+ let image_id = self.get_image_id(image);
+ let coordinates = self.write_image_coordinates(coordinate, array_index, block)?;
+ let value_id = self.cached[value];
+
+ let write = Store { image_id, value_id };
+
+ match self.writer.bounds_check_policies.image {
+ crate::proc::BoundsCheckPolicy::Restrict => {
+ let (coords, _, _) =
+ self.write_restricted_coordinates(image_id, coordinates, None, None, block)?;
+ write.generate(&mut self.writer.id_gen, coords, None, None, block);
+ }
+ crate::proc::BoundsCheckPolicy::ReadZeroSkipWrite => {
+ self.write_conditional_image_access(
+ image_id,
+ coordinates,
+ None,
+ None,
+ block,
+ &write,
+ )?;
+ }
+ crate::proc::BoundsCheckPolicy::Unchecked => {
+ write.generate(
+ &mut self.writer.id_gen,
+ coordinates.value_id,
+ None,
+ None,
+ block,
+ );
+ }
+ }
+
+ Ok(())
+ }
+}