summaryrefslogtreecommitdiffstats
path: root/kernel/sched/deadline.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/sched/deadline.c')
-rw-r--r--kernel/sched/deadline.c3103
1 files changed, 3103 insertions, 0 deletions
diff --git a/kernel/sched/deadline.c b/kernel/sched/deadline.c
new file mode 100644
index 000000000..389290e95
--- /dev/null
+++ b/kernel/sched/deadline.c
@@ -0,0 +1,3103 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Deadline Scheduling Class (SCHED_DEADLINE)
+ *
+ * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
+ *
+ * Tasks that periodically executes their instances for less than their
+ * runtime won't miss any of their deadlines.
+ * Tasks that are not periodic or sporadic or that tries to execute more
+ * than their reserved bandwidth will be slowed down (and may potentially
+ * miss some of their deadlines), and won't affect any other task.
+ *
+ * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
+ * Juri Lelli <juri.lelli@gmail.com>,
+ * Michael Trimarchi <michael@amarulasolutions.com>,
+ * Fabio Checconi <fchecconi@gmail.com>
+ */
+
+#include <linux/cpuset.h>
+
+/*
+ * Default limits for DL period; on the top end we guard against small util
+ * tasks still getting ridiculously long effective runtimes, on the bottom end we
+ * guard against timer DoS.
+ */
+static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
+static unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */
+#ifdef CONFIG_SYSCTL
+static struct ctl_table sched_dl_sysctls[] = {
+ {
+ .procname = "sched_deadline_period_max_us",
+ .data = &sysctl_sched_dl_period_max,
+ .maxlen = sizeof(unsigned int),
+ .mode = 0644,
+ .proc_handler = proc_douintvec_minmax,
+ .extra1 = (void *)&sysctl_sched_dl_period_min,
+ },
+ {
+ .procname = "sched_deadline_period_min_us",
+ .data = &sysctl_sched_dl_period_min,
+ .maxlen = sizeof(unsigned int),
+ .mode = 0644,
+ .proc_handler = proc_douintvec_minmax,
+ .extra2 = (void *)&sysctl_sched_dl_period_max,
+ },
+ {}
+};
+
+static int __init sched_dl_sysctl_init(void)
+{
+ register_sysctl_init("kernel", sched_dl_sysctls);
+ return 0;
+}
+late_initcall(sched_dl_sysctl_init);
+#endif
+
+static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
+{
+ return container_of(dl_se, struct task_struct, dl);
+}
+
+static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
+{
+ return container_of(dl_rq, struct rq, dl);
+}
+
+static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
+{
+ struct task_struct *p = dl_task_of(dl_se);
+ struct rq *rq = task_rq(p);
+
+ return &rq->dl;
+}
+
+static inline int on_dl_rq(struct sched_dl_entity *dl_se)
+{
+ return !RB_EMPTY_NODE(&dl_se->rb_node);
+}
+
+#ifdef CONFIG_RT_MUTEXES
+static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
+{
+ return dl_se->pi_se;
+}
+
+static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
+{
+ return pi_of(dl_se) != dl_se;
+}
+#else
+static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
+{
+ return dl_se;
+}
+
+static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
+{
+ return false;
+}
+#endif
+
+#ifdef CONFIG_SMP
+static inline struct dl_bw *dl_bw_of(int i)
+{
+ RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
+ "sched RCU must be held");
+ return &cpu_rq(i)->rd->dl_bw;
+}
+
+static inline int dl_bw_cpus(int i)
+{
+ struct root_domain *rd = cpu_rq(i)->rd;
+ int cpus;
+
+ RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
+ "sched RCU must be held");
+
+ if (cpumask_subset(rd->span, cpu_active_mask))
+ return cpumask_weight(rd->span);
+
+ cpus = 0;
+
+ for_each_cpu_and(i, rd->span, cpu_active_mask)
+ cpus++;
+
+ return cpus;
+}
+
+static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
+{
+ unsigned long cap = 0;
+ int i;
+
+ for_each_cpu_and(i, mask, cpu_active_mask)
+ cap += capacity_orig_of(i);
+
+ return cap;
+}
+
+/*
+ * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
+ * of the CPU the task is running on rather rd's \Sum CPU capacity.
+ */
+static inline unsigned long dl_bw_capacity(int i)
+{
+ if (!sched_asym_cpucap_active() &&
+ capacity_orig_of(i) == SCHED_CAPACITY_SCALE) {
+ return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
+ } else {
+ RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
+ "sched RCU must be held");
+
+ return __dl_bw_capacity(cpu_rq(i)->rd->span);
+ }
+}
+
+static inline bool dl_bw_visited(int cpu, u64 gen)
+{
+ struct root_domain *rd = cpu_rq(cpu)->rd;
+
+ if (rd->visit_gen == gen)
+ return true;
+
+ rd->visit_gen = gen;
+ return false;
+}
+
+static inline
+void __dl_update(struct dl_bw *dl_b, s64 bw)
+{
+ struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
+ int i;
+
+ RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
+ "sched RCU must be held");
+ for_each_cpu_and(i, rd->span, cpu_active_mask) {
+ struct rq *rq = cpu_rq(i);
+
+ rq->dl.extra_bw += bw;
+ }
+}
+#else
+static inline struct dl_bw *dl_bw_of(int i)
+{
+ return &cpu_rq(i)->dl.dl_bw;
+}
+
+static inline int dl_bw_cpus(int i)
+{
+ return 1;
+}
+
+static inline unsigned long dl_bw_capacity(int i)
+{
+ return SCHED_CAPACITY_SCALE;
+}
+
+static inline bool dl_bw_visited(int cpu, u64 gen)
+{
+ return false;
+}
+
+static inline
+void __dl_update(struct dl_bw *dl_b, s64 bw)
+{
+ struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
+
+ dl->extra_bw += bw;
+}
+#endif
+
+static inline
+void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
+{
+ dl_b->total_bw -= tsk_bw;
+ __dl_update(dl_b, (s32)tsk_bw / cpus);
+}
+
+static inline
+void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
+{
+ dl_b->total_bw += tsk_bw;
+ __dl_update(dl_b, -((s32)tsk_bw / cpus));
+}
+
+static inline bool
+__dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
+{
+ return dl_b->bw != -1 &&
+ cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
+}
+
+static inline
+void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
+{
+ u64 old = dl_rq->running_bw;
+
+ lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
+ dl_rq->running_bw += dl_bw;
+ SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
+ SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
+ /* kick cpufreq (see the comment in kernel/sched/sched.h). */
+ cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
+}
+
+static inline
+void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
+{
+ u64 old = dl_rq->running_bw;
+
+ lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
+ dl_rq->running_bw -= dl_bw;
+ SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
+ if (dl_rq->running_bw > old)
+ dl_rq->running_bw = 0;
+ /* kick cpufreq (see the comment in kernel/sched/sched.h). */
+ cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
+}
+
+static inline
+void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
+{
+ u64 old = dl_rq->this_bw;
+
+ lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
+ dl_rq->this_bw += dl_bw;
+ SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
+}
+
+static inline
+void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
+{
+ u64 old = dl_rq->this_bw;
+
+ lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
+ dl_rq->this_bw -= dl_bw;
+ SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
+ if (dl_rq->this_bw > old)
+ dl_rq->this_bw = 0;
+ SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
+}
+
+static inline
+void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
+{
+ if (!dl_entity_is_special(dl_se))
+ __add_rq_bw(dl_se->dl_bw, dl_rq);
+}
+
+static inline
+void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
+{
+ if (!dl_entity_is_special(dl_se))
+ __sub_rq_bw(dl_se->dl_bw, dl_rq);
+}
+
+static inline
+void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
+{
+ if (!dl_entity_is_special(dl_se))
+ __add_running_bw(dl_se->dl_bw, dl_rq);
+}
+
+static inline
+void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
+{
+ if (!dl_entity_is_special(dl_se))
+ __sub_running_bw(dl_se->dl_bw, dl_rq);
+}
+
+static void dl_change_utilization(struct task_struct *p, u64 new_bw)
+{
+ struct rq *rq;
+
+ WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
+
+ if (task_on_rq_queued(p))
+ return;
+
+ rq = task_rq(p);
+ if (p->dl.dl_non_contending) {
+ sub_running_bw(&p->dl, &rq->dl);
+ p->dl.dl_non_contending = 0;
+ /*
+ * If the timer handler is currently running and the
+ * timer cannot be canceled, inactive_task_timer()
+ * will see that dl_not_contending is not set, and
+ * will not touch the rq's active utilization,
+ * so we are still safe.
+ */
+ if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
+ put_task_struct(p);
+ }
+ __sub_rq_bw(p->dl.dl_bw, &rq->dl);
+ __add_rq_bw(new_bw, &rq->dl);
+}
+
+/*
+ * The utilization of a task cannot be immediately removed from
+ * the rq active utilization (running_bw) when the task blocks.
+ * Instead, we have to wait for the so called "0-lag time".
+ *
+ * If a task blocks before the "0-lag time", a timer (the inactive
+ * timer) is armed, and running_bw is decreased when the timer
+ * fires.
+ *
+ * If the task wakes up again before the inactive timer fires,
+ * the timer is canceled, whereas if the task wakes up after the
+ * inactive timer fired (and running_bw has been decreased) the
+ * task's utilization has to be added to running_bw again.
+ * A flag in the deadline scheduling entity (dl_non_contending)
+ * is used to avoid race conditions between the inactive timer handler
+ * and task wakeups.
+ *
+ * The following diagram shows how running_bw is updated. A task is
+ * "ACTIVE" when its utilization contributes to running_bw; an
+ * "ACTIVE contending" task is in the TASK_RUNNING state, while an
+ * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
+ * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
+ * time already passed, which does not contribute to running_bw anymore.
+ * +------------------+
+ * wakeup | ACTIVE |
+ * +------------------>+ contending |
+ * | add_running_bw | |
+ * | +----+------+------+
+ * | | ^
+ * | dequeue | |
+ * +--------+-------+ | |
+ * | | t >= 0-lag | | wakeup
+ * | INACTIVE |<---------------+ |
+ * | | sub_running_bw | |
+ * +--------+-------+ | |
+ * ^ | |
+ * | t < 0-lag | |
+ * | | |
+ * | V |
+ * | +----+------+------+
+ * | sub_running_bw | ACTIVE |
+ * +-------------------+ |
+ * inactive timer | non contending |
+ * fired +------------------+
+ *
+ * The task_non_contending() function is invoked when a task
+ * blocks, and checks if the 0-lag time already passed or
+ * not (in the first case, it directly updates running_bw;
+ * in the second case, it arms the inactive timer).
+ *
+ * The task_contending() function is invoked when a task wakes
+ * up, and checks if the task is still in the "ACTIVE non contending"
+ * state or not (in the second case, it updates running_bw).
+ */
+static void task_non_contending(struct task_struct *p)
+{
+ struct sched_dl_entity *dl_se = &p->dl;
+ struct hrtimer *timer = &dl_se->inactive_timer;
+ struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
+ struct rq *rq = rq_of_dl_rq(dl_rq);
+ s64 zerolag_time;
+
+ /*
+ * If this is a non-deadline task that has been boosted,
+ * do nothing
+ */
+ if (dl_se->dl_runtime == 0)
+ return;
+
+ if (dl_entity_is_special(dl_se))
+ return;
+
+ WARN_ON(dl_se->dl_non_contending);
+
+ zerolag_time = dl_se->deadline -
+ div64_long((dl_se->runtime * dl_se->dl_period),
+ dl_se->dl_runtime);
+
+ /*
+ * Using relative times instead of the absolute "0-lag time"
+ * allows to simplify the code
+ */
+ zerolag_time -= rq_clock(rq);
+
+ /*
+ * If the "0-lag time" already passed, decrease the active
+ * utilization now, instead of starting a timer
+ */
+ if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
+ if (dl_task(p))
+ sub_running_bw(dl_se, dl_rq);
+ if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
+ struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
+
+ if (READ_ONCE(p->__state) == TASK_DEAD)
+ sub_rq_bw(&p->dl, &rq->dl);
+ raw_spin_lock(&dl_b->lock);
+ __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
+ raw_spin_unlock(&dl_b->lock);
+ __dl_clear_params(p);
+ }
+
+ return;
+ }
+
+ dl_se->dl_non_contending = 1;
+ get_task_struct(p);
+ hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
+}
+
+static void task_contending(struct sched_dl_entity *dl_se, int flags)
+{
+ struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
+
+ /*
+ * If this is a non-deadline task that has been boosted,
+ * do nothing
+ */
+ if (dl_se->dl_runtime == 0)
+ return;
+
+ if (flags & ENQUEUE_MIGRATED)
+ add_rq_bw(dl_se, dl_rq);
+
+ if (dl_se->dl_non_contending) {
+ dl_se->dl_non_contending = 0;
+ /*
+ * If the timer handler is currently running and the
+ * timer cannot be canceled, inactive_task_timer()
+ * will see that dl_not_contending is not set, and
+ * will not touch the rq's active utilization,
+ * so we are still safe.
+ */
+ if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
+ put_task_struct(dl_task_of(dl_se));
+ } else {
+ /*
+ * Since "dl_non_contending" is not set, the
+ * task's utilization has already been removed from
+ * active utilization (either when the task blocked,
+ * when the "inactive timer" fired).
+ * So, add it back.
+ */
+ add_running_bw(dl_se, dl_rq);
+ }
+}
+
+static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
+{
+ struct sched_dl_entity *dl_se = &p->dl;
+
+ return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
+}
+
+static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
+
+void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
+{
+ raw_spin_lock_init(&dl_b->dl_runtime_lock);
+ dl_b->dl_period = period;
+ dl_b->dl_runtime = runtime;
+}
+
+void init_dl_bw(struct dl_bw *dl_b)
+{
+ raw_spin_lock_init(&dl_b->lock);
+ if (global_rt_runtime() == RUNTIME_INF)
+ dl_b->bw = -1;
+ else
+ dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
+ dl_b->total_bw = 0;
+}
+
+void init_dl_rq(struct dl_rq *dl_rq)
+{
+ dl_rq->root = RB_ROOT_CACHED;
+
+#ifdef CONFIG_SMP
+ /* zero means no -deadline tasks */
+ dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
+
+ dl_rq->dl_nr_migratory = 0;
+ dl_rq->overloaded = 0;
+ dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
+#else
+ init_dl_bw(&dl_rq->dl_bw);
+#endif
+
+ dl_rq->running_bw = 0;
+ dl_rq->this_bw = 0;
+ init_dl_rq_bw_ratio(dl_rq);
+}
+
+#ifdef CONFIG_SMP
+
+static inline int dl_overloaded(struct rq *rq)
+{
+ return atomic_read(&rq->rd->dlo_count);
+}
+
+static inline void dl_set_overload(struct rq *rq)
+{
+ if (!rq->online)
+ return;
+
+ cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
+ /*
+ * Must be visible before the overload count is
+ * set (as in sched_rt.c).
+ *
+ * Matched by the barrier in pull_dl_task().
+ */
+ smp_wmb();
+ atomic_inc(&rq->rd->dlo_count);
+}
+
+static inline void dl_clear_overload(struct rq *rq)
+{
+ if (!rq->online)
+ return;
+
+ atomic_dec(&rq->rd->dlo_count);
+ cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
+}
+
+static void update_dl_migration(struct dl_rq *dl_rq)
+{
+ if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
+ if (!dl_rq->overloaded) {
+ dl_set_overload(rq_of_dl_rq(dl_rq));
+ dl_rq->overloaded = 1;
+ }
+ } else if (dl_rq->overloaded) {
+ dl_clear_overload(rq_of_dl_rq(dl_rq));
+ dl_rq->overloaded = 0;
+ }
+}
+
+static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
+{
+ struct task_struct *p = dl_task_of(dl_se);
+
+ if (p->nr_cpus_allowed > 1)
+ dl_rq->dl_nr_migratory++;
+
+ update_dl_migration(dl_rq);
+}
+
+static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
+{
+ struct task_struct *p = dl_task_of(dl_se);
+
+ if (p->nr_cpus_allowed > 1)
+ dl_rq->dl_nr_migratory--;
+
+ update_dl_migration(dl_rq);
+}
+
+#define __node_2_pdl(node) \
+ rb_entry((node), struct task_struct, pushable_dl_tasks)
+
+static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
+{
+ return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
+}
+
+/*
+ * The list of pushable -deadline task is not a plist, like in
+ * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
+ */
+static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
+{
+ struct rb_node *leftmost;
+
+ WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
+
+ leftmost = rb_add_cached(&p->pushable_dl_tasks,
+ &rq->dl.pushable_dl_tasks_root,
+ __pushable_less);
+ if (leftmost)
+ rq->dl.earliest_dl.next = p->dl.deadline;
+}
+
+static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
+{
+ struct dl_rq *dl_rq = &rq->dl;
+ struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
+ struct rb_node *leftmost;
+
+ if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
+ return;
+
+ leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
+ if (leftmost)
+ dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
+
+ RB_CLEAR_NODE(&p->pushable_dl_tasks);
+}
+
+static inline int has_pushable_dl_tasks(struct rq *rq)
+{
+ return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
+}
+
+static int push_dl_task(struct rq *rq);
+
+static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
+{
+ return rq->online && dl_task(prev);
+}
+
+static DEFINE_PER_CPU(struct balance_callback, dl_push_head);
+static DEFINE_PER_CPU(struct balance_callback, dl_pull_head);
+
+static void push_dl_tasks(struct rq *);
+static void pull_dl_task(struct rq *);
+
+static inline void deadline_queue_push_tasks(struct rq *rq)
+{
+ if (!has_pushable_dl_tasks(rq))
+ return;
+
+ queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
+}
+
+static inline void deadline_queue_pull_task(struct rq *rq)
+{
+ queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
+}
+
+static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
+
+static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
+{
+ struct rq *later_rq = NULL;
+ struct dl_bw *dl_b;
+
+ later_rq = find_lock_later_rq(p, rq);
+ if (!later_rq) {
+ int cpu;
+
+ /*
+ * If we cannot preempt any rq, fall back to pick any
+ * online CPU:
+ */
+ cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
+ if (cpu >= nr_cpu_ids) {
+ /*
+ * Failed to find any suitable CPU.
+ * The task will never come back!
+ */
+ WARN_ON_ONCE(dl_bandwidth_enabled());
+
+ /*
+ * If admission control is disabled we
+ * try a little harder to let the task
+ * run.
+ */
+ cpu = cpumask_any(cpu_active_mask);
+ }
+ later_rq = cpu_rq(cpu);
+ double_lock_balance(rq, later_rq);
+ }
+
+ if (p->dl.dl_non_contending || p->dl.dl_throttled) {
+ /*
+ * Inactive timer is armed (or callback is running, but
+ * waiting for us to release rq locks). In any case, when it
+ * will fire (or continue), it will see running_bw of this
+ * task migrated to later_rq (and correctly handle it).
+ */
+ sub_running_bw(&p->dl, &rq->dl);
+ sub_rq_bw(&p->dl, &rq->dl);
+
+ add_rq_bw(&p->dl, &later_rq->dl);
+ add_running_bw(&p->dl, &later_rq->dl);
+ } else {
+ sub_rq_bw(&p->dl, &rq->dl);
+ add_rq_bw(&p->dl, &later_rq->dl);
+ }
+
+ /*
+ * And we finally need to fixup root_domain(s) bandwidth accounting,
+ * since p is still hanging out in the old (now moved to default) root
+ * domain.
+ */
+ dl_b = &rq->rd->dl_bw;
+ raw_spin_lock(&dl_b->lock);
+ __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
+ raw_spin_unlock(&dl_b->lock);
+
+ dl_b = &later_rq->rd->dl_bw;
+ raw_spin_lock(&dl_b->lock);
+ __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
+ raw_spin_unlock(&dl_b->lock);
+
+ set_task_cpu(p, later_rq->cpu);
+ double_unlock_balance(later_rq, rq);
+
+ return later_rq;
+}
+
+#else
+
+static inline
+void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
+{
+}
+
+static inline
+void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
+{
+}
+
+static inline
+void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
+{
+}
+
+static inline
+void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
+{
+}
+
+static inline void deadline_queue_push_tasks(struct rq *rq)
+{
+}
+
+static inline void deadline_queue_pull_task(struct rq *rq)
+{
+}
+#endif /* CONFIG_SMP */
+
+static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
+static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
+static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
+
+static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
+ struct rq *rq)
+{
+ /* for non-boosted task, pi_of(dl_se) == dl_se */
+ dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
+ dl_se->runtime = pi_of(dl_se)->dl_runtime;
+}
+
+/*
+ * We are being explicitly informed that a new instance is starting,
+ * and this means that:
+ * - the absolute deadline of the entity has to be placed at
+ * current time + relative deadline;
+ * - the runtime of the entity has to be set to the maximum value.
+ *
+ * The capability of specifying such event is useful whenever a -deadline
+ * entity wants to (try to!) synchronize its behaviour with the scheduler's
+ * one, and to (try to!) reconcile itself with its own scheduling
+ * parameters.
+ */
+static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
+{
+ struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
+ struct rq *rq = rq_of_dl_rq(dl_rq);
+
+ WARN_ON(is_dl_boosted(dl_se));
+ WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
+
+ /*
+ * We are racing with the deadline timer. So, do nothing because
+ * the deadline timer handler will take care of properly recharging
+ * the runtime and postponing the deadline
+ */
+ if (dl_se->dl_throttled)
+ return;
+
+ /*
+ * We use the regular wall clock time to set deadlines in the
+ * future; in fact, we must consider execution overheads (time
+ * spent on hardirq context, etc.).
+ */
+ replenish_dl_new_period(dl_se, rq);
+}
+
+/*
+ * Pure Earliest Deadline First (EDF) scheduling does not deal with the
+ * possibility of a entity lasting more than what it declared, and thus
+ * exhausting its runtime.
+ *
+ * Here we are interested in making runtime overrun possible, but we do
+ * not want a entity which is misbehaving to affect the scheduling of all
+ * other entities.
+ * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
+ * is used, in order to confine each entity within its own bandwidth.
+ *
+ * This function deals exactly with that, and ensures that when the runtime
+ * of a entity is replenished, its deadline is also postponed. That ensures
+ * the overrunning entity can't interfere with other entity in the system and
+ * can't make them miss their deadlines. Reasons why this kind of overruns
+ * could happen are, typically, a entity voluntarily trying to overcome its
+ * runtime, or it just underestimated it during sched_setattr().
+ */
+static void replenish_dl_entity(struct sched_dl_entity *dl_se)
+{
+ struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
+ struct rq *rq = rq_of_dl_rq(dl_rq);
+
+ WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0);
+
+ /*
+ * This could be the case for a !-dl task that is boosted.
+ * Just go with full inherited parameters.
+ */
+ if (dl_se->dl_deadline == 0)
+ replenish_dl_new_period(dl_se, rq);
+
+ if (dl_se->dl_yielded && dl_se->runtime > 0)
+ dl_se->runtime = 0;
+
+ /*
+ * We keep moving the deadline away until we get some
+ * available runtime for the entity. This ensures correct
+ * handling of situations where the runtime overrun is
+ * arbitrary large.
+ */
+ while (dl_se->runtime <= 0) {
+ dl_se->deadline += pi_of(dl_se)->dl_period;
+ dl_se->runtime += pi_of(dl_se)->dl_runtime;
+ }
+
+ /*
+ * At this point, the deadline really should be "in
+ * the future" with respect to rq->clock. If it's
+ * not, we are, for some reason, lagging too much!
+ * Anyway, after having warn userspace abut that,
+ * we still try to keep the things running by
+ * resetting the deadline and the budget of the
+ * entity.
+ */
+ if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
+ printk_deferred_once("sched: DL replenish lagged too much\n");
+ replenish_dl_new_period(dl_se, rq);
+ }
+
+ if (dl_se->dl_yielded)
+ dl_se->dl_yielded = 0;
+ if (dl_se->dl_throttled)
+ dl_se->dl_throttled = 0;
+}
+
+/*
+ * Here we check if --at time t-- an entity (which is probably being
+ * [re]activated or, in general, enqueued) can use its remaining runtime
+ * and its current deadline _without_ exceeding the bandwidth it is
+ * assigned (function returns true if it can't). We are in fact applying
+ * one of the CBS rules: when a task wakes up, if the residual runtime
+ * over residual deadline fits within the allocated bandwidth, then we
+ * can keep the current (absolute) deadline and residual budget without
+ * disrupting the schedulability of the system. Otherwise, we should
+ * refill the runtime and set the deadline a period in the future,
+ * because keeping the current (absolute) deadline of the task would
+ * result in breaking guarantees promised to other tasks (refer to
+ * Documentation/scheduler/sched-deadline.rst for more information).
+ *
+ * This function returns true if:
+ *
+ * runtime / (deadline - t) > dl_runtime / dl_deadline ,
+ *
+ * IOW we can't recycle current parameters.
+ *
+ * Notice that the bandwidth check is done against the deadline. For
+ * task with deadline equal to period this is the same of using
+ * dl_period instead of dl_deadline in the equation above.
+ */
+static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
+{
+ u64 left, right;
+
+ /*
+ * left and right are the two sides of the equation above,
+ * after a bit of shuffling to use multiplications instead
+ * of divisions.
+ *
+ * Note that none of the time values involved in the two
+ * multiplications are absolute: dl_deadline and dl_runtime
+ * are the relative deadline and the maximum runtime of each
+ * instance, runtime is the runtime left for the last instance
+ * and (deadline - t), since t is rq->clock, is the time left
+ * to the (absolute) deadline. Even if overflowing the u64 type
+ * is very unlikely to occur in both cases, here we scale down
+ * as we want to avoid that risk at all. Scaling down by 10
+ * means that we reduce granularity to 1us. We are fine with it,
+ * since this is only a true/false check and, anyway, thinking
+ * of anything below microseconds resolution is actually fiction
+ * (but still we want to give the user that illusion >;).
+ */
+ left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
+ right = ((dl_se->deadline - t) >> DL_SCALE) *
+ (pi_of(dl_se)->dl_runtime >> DL_SCALE);
+
+ return dl_time_before(right, left);
+}
+
+/*
+ * Revised wakeup rule [1]: For self-suspending tasks, rather then
+ * re-initializing task's runtime and deadline, the revised wakeup
+ * rule adjusts the task's runtime to avoid the task to overrun its
+ * density.
+ *
+ * Reasoning: a task may overrun the density if:
+ * runtime / (deadline - t) > dl_runtime / dl_deadline
+ *
+ * Therefore, runtime can be adjusted to:
+ * runtime = (dl_runtime / dl_deadline) * (deadline - t)
+ *
+ * In such way that runtime will be equal to the maximum density
+ * the task can use without breaking any rule.
+ *
+ * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
+ * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
+ */
+static void
+update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
+{
+ u64 laxity = dl_se->deadline - rq_clock(rq);
+
+ /*
+ * If the task has deadline < period, and the deadline is in the past,
+ * it should already be throttled before this check.
+ *
+ * See update_dl_entity() comments for further details.
+ */
+ WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
+
+ dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
+}
+
+/*
+ * Regarding the deadline, a task with implicit deadline has a relative
+ * deadline == relative period. A task with constrained deadline has a
+ * relative deadline <= relative period.
+ *
+ * We support constrained deadline tasks. However, there are some restrictions
+ * applied only for tasks which do not have an implicit deadline. See
+ * update_dl_entity() to know more about such restrictions.
+ *
+ * The dl_is_implicit() returns true if the task has an implicit deadline.
+ */
+static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
+{
+ return dl_se->dl_deadline == dl_se->dl_period;
+}
+
+/*
+ * When a deadline entity is placed in the runqueue, its runtime and deadline
+ * might need to be updated. This is done by a CBS wake up rule. There are two
+ * different rules: 1) the original CBS; and 2) the Revisited CBS.
+ *
+ * When the task is starting a new period, the Original CBS is used. In this
+ * case, the runtime is replenished and a new absolute deadline is set.
+ *
+ * When a task is queued before the begin of the next period, using the
+ * remaining runtime and deadline could make the entity to overflow, see
+ * dl_entity_overflow() to find more about runtime overflow. When such case
+ * is detected, the runtime and deadline need to be updated.
+ *
+ * If the task has an implicit deadline, i.e., deadline == period, the Original
+ * CBS is applied. the runtime is replenished and a new absolute deadline is
+ * set, as in the previous cases.
+ *
+ * However, the Original CBS does not work properly for tasks with
+ * deadline < period, which are said to have a constrained deadline. By
+ * applying the Original CBS, a constrained deadline task would be able to run
+ * runtime/deadline in a period. With deadline < period, the task would
+ * overrun the runtime/period allowed bandwidth, breaking the admission test.
+ *
+ * In order to prevent this misbehave, the Revisited CBS is used for
+ * constrained deadline tasks when a runtime overflow is detected. In the
+ * Revisited CBS, rather than replenishing & setting a new absolute deadline,
+ * the remaining runtime of the task is reduced to avoid runtime overflow.
+ * Please refer to the comments update_dl_revised_wakeup() function to find
+ * more about the Revised CBS rule.
+ */
+static void update_dl_entity(struct sched_dl_entity *dl_se)
+{
+ struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
+ struct rq *rq = rq_of_dl_rq(dl_rq);
+
+ if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
+ dl_entity_overflow(dl_se, rq_clock(rq))) {
+
+ if (unlikely(!dl_is_implicit(dl_se) &&
+ !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
+ !is_dl_boosted(dl_se))) {
+ update_dl_revised_wakeup(dl_se, rq);
+ return;
+ }
+
+ replenish_dl_new_period(dl_se, rq);
+ }
+}
+
+static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
+{
+ return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
+}
+
+/*
+ * If the entity depleted all its runtime, and if we want it to sleep
+ * while waiting for some new execution time to become available, we
+ * set the bandwidth replenishment timer to the replenishment instant
+ * and try to activate it.
+ *
+ * Notice that it is important for the caller to know if the timer
+ * actually started or not (i.e., the replenishment instant is in
+ * the future or in the past).
+ */
+static int start_dl_timer(struct task_struct *p)
+{
+ struct sched_dl_entity *dl_se = &p->dl;
+ struct hrtimer *timer = &dl_se->dl_timer;
+ struct rq *rq = task_rq(p);
+ ktime_t now, act;
+ s64 delta;
+
+ lockdep_assert_rq_held(rq);
+
+ /*
+ * We want the timer to fire at the deadline, but considering
+ * that it is actually coming from rq->clock and not from
+ * hrtimer's time base reading.
+ */
+ act = ns_to_ktime(dl_next_period(dl_se));
+ now = hrtimer_cb_get_time(timer);
+ delta = ktime_to_ns(now) - rq_clock(rq);
+ act = ktime_add_ns(act, delta);
+
+ /*
+ * If the expiry time already passed, e.g., because the value
+ * chosen as the deadline is too small, don't even try to
+ * start the timer in the past!
+ */
+ if (ktime_us_delta(act, now) < 0)
+ return 0;
+
+ /*
+ * !enqueued will guarantee another callback; even if one is already in
+ * progress. This ensures a balanced {get,put}_task_struct().
+ *
+ * The race against __run_timer() clearing the enqueued state is
+ * harmless because we're holding task_rq()->lock, therefore the timer
+ * expiring after we've done the check will wait on its task_rq_lock()
+ * and observe our state.
+ */
+ if (!hrtimer_is_queued(timer)) {
+ get_task_struct(p);
+ hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
+ }
+
+ return 1;
+}
+
+/*
+ * This is the bandwidth enforcement timer callback. If here, we know
+ * a task is not on its dl_rq, since the fact that the timer was running
+ * means the task is throttled and needs a runtime replenishment.
+ *
+ * However, what we actually do depends on the fact the task is active,
+ * (it is on its rq) or has been removed from there by a call to
+ * dequeue_task_dl(). In the former case we must issue the runtime
+ * replenishment and add the task back to the dl_rq; in the latter, we just
+ * do nothing but clearing dl_throttled, so that runtime and deadline
+ * updating (and the queueing back to dl_rq) will be done by the
+ * next call to enqueue_task_dl().
+ */
+static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
+{
+ struct sched_dl_entity *dl_se = container_of(timer,
+ struct sched_dl_entity,
+ dl_timer);
+ struct task_struct *p = dl_task_of(dl_se);
+ struct rq_flags rf;
+ struct rq *rq;
+
+ rq = task_rq_lock(p, &rf);
+
+ /*
+ * The task might have changed its scheduling policy to something
+ * different than SCHED_DEADLINE (through switched_from_dl()).
+ */
+ if (!dl_task(p))
+ goto unlock;
+
+ /*
+ * The task might have been boosted by someone else and might be in the
+ * boosting/deboosting path, its not throttled.
+ */
+ if (is_dl_boosted(dl_se))
+ goto unlock;
+
+ /*
+ * Spurious timer due to start_dl_timer() race; or we already received
+ * a replenishment from rt_mutex_setprio().
+ */
+ if (!dl_se->dl_throttled)
+ goto unlock;
+
+ sched_clock_tick();
+ update_rq_clock(rq);
+
+ /*
+ * If the throttle happened during sched-out; like:
+ *
+ * schedule()
+ * deactivate_task()
+ * dequeue_task_dl()
+ * update_curr_dl()
+ * start_dl_timer()
+ * __dequeue_task_dl()
+ * prev->on_rq = 0;
+ *
+ * We can be both throttled and !queued. Replenish the counter
+ * but do not enqueue -- wait for our wakeup to do that.
+ */
+ if (!task_on_rq_queued(p)) {
+ replenish_dl_entity(dl_se);
+ goto unlock;
+ }
+
+#ifdef CONFIG_SMP
+ if (unlikely(!rq->online)) {
+ /*
+ * If the runqueue is no longer available, migrate the
+ * task elsewhere. This necessarily changes rq.
+ */
+ lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
+ rq = dl_task_offline_migration(rq, p);
+ rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
+ update_rq_clock(rq);
+
+ /*
+ * Now that the task has been migrated to the new RQ and we
+ * have that locked, proceed as normal and enqueue the task
+ * there.
+ */
+ }
+#endif
+
+ enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
+ if (dl_task(rq->curr))
+ check_preempt_curr_dl(rq, p, 0);
+ else
+ resched_curr(rq);
+
+#ifdef CONFIG_SMP
+ /*
+ * Queueing this task back might have overloaded rq, check if we need
+ * to kick someone away.
+ */
+ if (has_pushable_dl_tasks(rq)) {
+ /*
+ * Nothing relies on rq->lock after this, so its safe to drop
+ * rq->lock.
+ */
+ rq_unpin_lock(rq, &rf);
+ push_dl_task(rq);
+ rq_repin_lock(rq, &rf);
+ }
+#endif
+
+unlock:
+ task_rq_unlock(rq, p, &rf);
+
+ /*
+ * This can free the task_struct, including this hrtimer, do not touch
+ * anything related to that after this.
+ */
+ put_task_struct(p);
+
+ return HRTIMER_NORESTART;
+}
+
+void init_dl_task_timer(struct sched_dl_entity *dl_se)
+{
+ struct hrtimer *timer = &dl_se->dl_timer;
+
+ hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
+ timer->function = dl_task_timer;
+}
+
+/*
+ * During the activation, CBS checks if it can reuse the current task's
+ * runtime and period. If the deadline of the task is in the past, CBS
+ * cannot use the runtime, and so it replenishes the task. This rule
+ * works fine for implicit deadline tasks (deadline == period), and the
+ * CBS was designed for implicit deadline tasks. However, a task with
+ * constrained deadline (deadline < period) might be awakened after the
+ * deadline, but before the next period. In this case, replenishing the
+ * task would allow it to run for runtime / deadline. As in this case
+ * deadline < period, CBS enables a task to run for more than the
+ * runtime / period. In a very loaded system, this can cause a domino
+ * effect, making other tasks miss their deadlines.
+ *
+ * To avoid this problem, in the activation of a constrained deadline
+ * task after the deadline but before the next period, throttle the
+ * task and set the replenishing timer to the begin of the next period,
+ * unless it is boosted.
+ */
+static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
+{
+ struct task_struct *p = dl_task_of(dl_se);
+ struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
+
+ if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
+ dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
+ if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(p)))
+ return;
+ dl_se->dl_throttled = 1;
+ if (dl_se->runtime > 0)
+ dl_se->runtime = 0;
+ }
+}
+
+static
+int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
+{
+ return (dl_se->runtime <= 0);
+}
+
+/*
+ * This function implements the GRUB accounting rule:
+ * according to the GRUB reclaiming algorithm, the runtime is
+ * not decreased as "dq = -dt", but as
+ * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
+ * where u is the utilization of the task, Umax is the maximum reclaimable
+ * utilization, Uinact is the (per-runqueue) inactive utilization, computed
+ * as the difference between the "total runqueue utilization" and the
+ * runqueue active utilization, and Uextra is the (per runqueue) extra
+ * reclaimable utilization.
+ * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
+ * multiplied by 2^BW_SHIFT, the result has to be shifted right by
+ * BW_SHIFT.
+ * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT,
+ * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
+ * Since delta is a 64 bit variable, to have an overflow its value
+ * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
+ * So, overflow is not an issue here.
+ */
+static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
+{
+ u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
+ u64 u_act;
+ u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
+
+ /*
+ * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
+ * we compare u_inact + rq->dl.extra_bw with
+ * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
+ * u_inact + rq->dl.extra_bw can be larger than
+ * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
+ * leading to wrong results)
+ */
+ if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
+ u_act = u_act_min;
+ else
+ u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
+
+ return (delta * u_act) >> BW_SHIFT;
+}
+
+/*
+ * Update the current task's runtime statistics (provided it is still
+ * a -deadline task and has not been removed from the dl_rq).
+ */
+static void update_curr_dl(struct rq *rq)
+{
+ struct task_struct *curr = rq->curr;
+ struct sched_dl_entity *dl_se = &curr->dl;
+ u64 delta_exec, scaled_delta_exec;
+ int cpu = cpu_of(rq);
+ u64 now;
+
+ if (!dl_task(curr) || !on_dl_rq(dl_se))
+ return;
+
+ /*
+ * Consumed budget is computed considering the time as
+ * observed by schedulable tasks (excluding time spent
+ * in hardirq context, etc.). Deadlines are instead
+ * computed using hard walltime. This seems to be the more
+ * natural solution, but the full ramifications of this
+ * approach need further study.
+ */
+ now = rq_clock_task(rq);
+ delta_exec = now - curr->se.exec_start;
+ if (unlikely((s64)delta_exec <= 0)) {
+ if (unlikely(dl_se->dl_yielded))
+ goto throttle;
+ return;
+ }
+
+ schedstat_set(curr->stats.exec_max,
+ max(curr->stats.exec_max, delta_exec));
+
+ trace_sched_stat_runtime(curr, delta_exec, 0);
+
+ update_current_exec_runtime(curr, now, delta_exec);
+
+ if (dl_entity_is_special(dl_se))
+ return;
+
+ /*
+ * For tasks that participate in GRUB, we implement GRUB-PA: the
+ * spare reclaimed bandwidth is used to clock down frequency.
+ *
+ * For the others, we still need to scale reservation parameters
+ * according to current frequency and CPU maximum capacity.
+ */
+ if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
+ scaled_delta_exec = grub_reclaim(delta_exec,
+ rq,
+ &curr->dl);
+ } else {
+ unsigned long scale_freq = arch_scale_freq_capacity(cpu);
+ unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
+
+ scaled_delta_exec = cap_scale(delta_exec, scale_freq);
+ scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
+ }
+
+ dl_se->runtime -= scaled_delta_exec;
+
+throttle:
+ if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
+ dl_se->dl_throttled = 1;
+
+ /* If requested, inform the user about runtime overruns. */
+ if (dl_runtime_exceeded(dl_se) &&
+ (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
+ dl_se->dl_overrun = 1;
+
+ __dequeue_task_dl(rq, curr, 0);
+ if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(curr)))
+ enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
+
+ if (!is_leftmost(curr, &rq->dl))
+ resched_curr(rq);
+ }
+
+ /*
+ * Because -- for now -- we share the rt bandwidth, we need to
+ * account our runtime there too, otherwise actual rt tasks
+ * would be able to exceed the shared quota.
+ *
+ * Account to the root rt group for now.
+ *
+ * The solution we're working towards is having the RT groups scheduled
+ * using deadline servers -- however there's a few nasties to figure
+ * out before that can happen.
+ */
+ if (rt_bandwidth_enabled()) {
+ struct rt_rq *rt_rq = &rq->rt;
+
+ raw_spin_lock(&rt_rq->rt_runtime_lock);
+ /*
+ * We'll let actual RT tasks worry about the overflow here, we
+ * have our own CBS to keep us inline; only account when RT
+ * bandwidth is relevant.
+ */
+ if (sched_rt_bandwidth_account(rt_rq))
+ rt_rq->rt_time += delta_exec;
+ raw_spin_unlock(&rt_rq->rt_runtime_lock);
+ }
+}
+
+static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
+{
+ struct sched_dl_entity *dl_se = container_of(timer,
+ struct sched_dl_entity,
+ inactive_timer);
+ struct task_struct *p = dl_task_of(dl_se);
+ struct rq_flags rf;
+ struct rq *rq;
+
+ rq = task_rq_lock(p, &rf);
+
+ sched_clock_tick();
+ update_rq_clock(rq);
+
+ if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
+ struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
+
+ if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
+ sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
+ sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
+ dl_se->dl_non_contending = 0;
+ }
+
+ raw_spin_lock(&dl_b->lock);
+ __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
+ raw_spin_unlock(&dl_b->lock);
+ __dl_clear_params(p);
+
+ goto unlock;
+ }
+ if (dl_se->dl_non_contending == 0)
+ goto unlock;
+
+ sub_running_bw(dl_se, &rq->dl);
+ dl_se->dl_non_contending = 0;
+unlock:
+ task_rq_unlock(rq, p, &rf);
+ put_task_struct(p);
+
+ return HRTIMER_NORESTART;
+}
+
+void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
+{
+ struct hrtimer *timer = &dl_se->inactive_timer;
+
+ hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
+ timer->function = inactive_task_timer;
+}
+
+#define __node_2_dle(node) \
+ rb_entry((node), struct sched_dl_entity, rb_node)
+
+#ifdef CONFIG_SMP
+
+static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
+{
+ struct rq *rq = rq_of_dl_rq(dl_rq);
+
+ if (dl_rq->earliest_dl.curr == 0 ||
+ dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
+ if (dl_rq->earliest_dl.curr == 0)
+ cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
+ dl_rq->earliest_dl.curr = deadline;
+ cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
+ }
+}
+
+static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
+{
+ struct rq *rq = rq_of_dl_rq(dl_rq);
+
+ /*
+ * Since we may have removed our earliest (and/or next earliest)
+ * task we must recompute them.
+ */
+ if (!dl_rq->dl_nr_running) {
+ dl_rq->earliest_dl.curr = 0;
+ dl_rq->earliest_dl.next = 0;
+ cpudl_clear(&rq->rd->cpudl, rq->cpu);
+ cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
+ } else {
+ struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
+ struct sched_dl_entity *entry = __node_2_dle(leftmost);
+
+ dl_rq->earliest_dl.curr = entry->deadline;
+ cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
+ }
+}
+
+#else
+
+static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
+static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
+
+#endif /* CONFIG_SMP */
+
+static inline
+void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
+{
+ int prio = dl_task_of(dl_se)->prio;
+ u64 deadline = dl_se->deadline;
+
+ WARN_ON(!dl_prio(prio));
+ dl_rq->dl_nr_running++;
+ add_nr_running(rq_of_dl_rq(dl_rq), 1);
+
+ inc_dl_deadline(dl_rq, deadline);
+ inc_dl_migration(dl_se, dl_rq);
+}
+
+static inline
+void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
+{
+ int prio = dl_task_of(dl_se)->prio;
+
+ WARN_ON(!dl_prio(prio));
+ WARN_ON(!dl_rq->dl_nr_running);
+ dl_rq->dl_nr_running--;
+ sub_nr_running(rq_of_dl_rq(dl_rq), 1);
+
+ dec_dl_deadline(dl_rq, dl_se->deadline);
+ dec_dl_migration(dl_se, dl_rq);
+}
+
+static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
+{
+ return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
+}
+
+static inline struct sched_statistics *
+__schedstats_from_dl_se(struct sched_dl_entity *dl_se)
+{
+ return &dl_task_of(dl_se)->stats;
+}
+
+static inline void
+update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
+{
+ struct sched_statistics *stats;
+
+ if (!schedstat_enabled())
+ return;
+
+ stats = __schedstats_from_dl_se(dl_se);
+ __update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
+}
+
+static inline void
+update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
+{
+ struct sched_statistics *stats;
+
+ if (!schedstat_enabled())
+ return;
+
+ stats = __schedstats_from_dl_se(dl_se);
+ __update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
+}
+
+static inline void
+update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
+{
+ struct sched_statistics *stats;
+
+ if (!schedstat_enabled())
+ return;
+
+ stats = __schedstats_from_dl_se(dl_se);
+ __update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
+}
+
+static inline void
+update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
+ int flags)
+{
+ if (!schedstat_enabled())
+ return;
+
+ if (flags & ENQUEUE_WAKEUP)
+ update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
+}
+
+static inline void
+update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
+ int flags)
+{
+ struct task_struct *p = dl_task_of(dl_se);
+
+ if (!schedstat_enabled())
+ return;
+
+ if ((flags & DEQUEUE_SLEEP)) {
+ unsigned int state;
+
+ state = READ_ONCE(p->__state);
+ if (state & TASK_INTERRUPTIBLE)
+ __schedstat_set(p->stats.sleep_start,
+ rq_clock(rq_of_dl_rq(dl_rq)));
+
+ if (state & TASK_UNINTERRUPTIBLE)
+ __schedstat_set(p->stats.block_start,
+ rq_clock(rq_of_dl_rq(dl_rq)));
+ }
+}
+
+static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
+{
+ struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
+
+ WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node));
+
+ rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
+
+ inc_dl_tasks(dl_se, dl_rq);
+}
+
+static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
+{
+ struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
+
+ if (RB_EMPTY_NODE(&dl_se->rb_node))
+ return;
+
+ rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
+
+ RB_CLEAR_NODE(&dl_se->rb_node);
+
+ dec_dl_tasks(dl_se, dl_rq);
+}
+
+static void
+enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
+{
+ WARN_ON_ONCE(on_dl_rq(dl_se));
+
+ update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
+
+ /*
+ * If this is a wakeup or a new instance, the scheduling
+ * parameters of the task might need updating. Otherwise,
+ * we want a replenishment of its runtime.
+ */
+ if (flags & ENQUEUE_WAKEUP) {
+ task_contending(dl_se, flags);
+ update_dl_entity(dl_se);
+ } else if (flags & ENQUEUE_REPLENISH) {
+ replenish_dl_entity(dl_se);
+ } else if ((flags & ENQUEUE_RESTORE) &&
+ dl_time_before(dl_se->deadline,
+ rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
+ setup_new_dl_entity(dl_se);
+ }
+
+ __enqueue_dl_entity(dl_se);
+}
+
+static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
+{
+ __dequeue_dl_entity(dl_se);
+}
+
+static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
+{
+ if (is_dl_boosted(&p->dl)) {
+ /*
+ * Because of delays in the detection of the overrun of a
+ * thread's runtime, it might be the case that a thread
+ * goes to sleep in a rt mutex with negative runtime. As
+ * a consequence, the thread will be throttled.
+ *
+ * While waiting for the mutex, this thread can also be
+ * boosted via PI, resulting in a thread that is throttled
+ * and boosted at the same time.
+ *
+ * In this case, the boost overrides the throttle.
+ */
+ if (p->dl.dl_throttled) {
+ /*
+ * The replenish timer needs to be canceled. No
+ * problem if it fires concurrently: boosted threads
+ * are ignored in dl_task_timer().
+ */
+ hrtimer_try_to_cancel(&p->dl.dl_timer);
+ p->dl.dl_throttled = 0;
+ }
+ } else if (!dl_prio(p->normal_prio)) {
+ /*
+ * Special case in which we have a !SCHED_DEADLINE task that is going
+ * to be deboosted, but exceeds its runtime while doing so. No point in
+ * replenishing it, as it's going to return back to its original
+ * scheduling class after this. If it has been throttled, we need to
+ * clear the flag, otherwise the task may wake up as throttled after
+ * being boosted again with no means to replenish the runtime and clear
+ * the throttle.
+ */
+ p->dl.dl_throttled = 0;
+ if (!(flags & ENQUEUE_REPLENISH))
+ printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
+ task_pid_nr(p));
+
+ return;
+ }
+
+ /*
+ * Check if a constrained deadline task was activated
+ * after the deadline but before the next period.
+ * If that is the case, the task will be throttled and
+ * the replenishment timer will be set to the next period.
+ */
+ if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
+ dl_check_constrained_dl(&p->dl);
+
+ if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
+ add_rq_bw(&p->dl, &rq->dl);
+ add_running_bw(&p->dl, &rq->dl);
+ }
+
+ /*
+ * If p is throttled, we do not enqueue it. In fact, if it exhausted
+ * its budget it needs a replenishment and, since it now is on
+ * its rq, the bandwidth timer callback (which clearly has not
+ * run yet) will take care of this.
+ * However, the active utilization does not depend on the fact
+ * that the task is on the runqueue or not (but depends on the
+ * task's state - in GRUB parlance, "inactive" vs "active contending").
+ * In other words, even if a task is throttled its utilization must
+ * be counted in the active utilization; hence, we need to call
+ * add_running_bw().
+ */
+ if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
+ if (flags & ENQUEUE_WAKEUP)
+ task_contending(&p->dl, flags);
+
+ return;
+ }
+
+ check_schedstat_required();
+ update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
+
+ enqueue_dl_entity(&p->dl, flags);
+
+ if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
+ enqueue_pushable_dl_task(rq, p);
+}
+
+static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
+{
+ update_stats_dequeue_dl(&rq->dl, &p->dl, flags);
+ dequeue_dl_entity(&p->dl);
+ dequeue_pushable_dl_task(rq, p);
+}
+
+static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
+{
+ update_curr_dl(rq);
+ __dequeue_task_dl(rq, p, flags);
+
+ if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
+ sub_running_bw(&p->dl, &rq->dl);
+ sub_rq_bw(&p->dl, &rq->dl);
+ }
+
+ /*
+ * This check allows to start the inactive timer (or to immediately
+ * decrease the active utilization, if needed) in two cases:
+ * when the task blocks and when it is terminating
+ * (p->state == TASK_DEAD). We can handle the two cases in the same
+ * way, because from GRUB's point of view the same thing is happening
+ * (the task moves from "active contending" to "active non contending"
+ * or "inactive")
+ */
+ if (flags & DEQUEUE_SLEEP)
+ task_non_contending(p);
+}
+
+/*
+ * Yield task semantic for -deadline tasks is:
+ *
+ * get off from the CPU until our next instance, with
+ * a new runtime. This is of little use now, since we
+ * don't have a bandwidth reclaiming mechanism. Anyway,
+ * bandwidth reclaiming is planned for the future, and
+ * yield_task_dl will indicate that some spare budget
+ * is available for other task instances to use it.
+ */
+static void yield_task_dl(struct rq *rq)
+{
+ /*
+ * We make the task go to sleep until its current deadline by
+ * forcing its runtime to zero. This way, update_curr_dl() stops
+ * it and the bandwidth timer will wake it up and will give it
+ * new scheduling parameters (thanks to dl_yielded=1).
+ */
+ rq->curr->dl.dl_yielded = 1;
+
+ update_rq_clock(rq);
+ update_curr_dl(rq);
+ /*
+ * Tell update_rq_clock() that we've just updated,
+ * so we don't do microscopic update in schedule()
+ * and double the fastpath cost.
+ */
+ rq_clock_skip_update(rq);
+}
+
+#ifdef CONFIG_SMP
+
+static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
+ struct rq *rq)
+{
+ return (!rq->dl.dl_nr_running ||
+ dl_time_before(p->dl.deadline,
+ rq->dl.earliest_dl.curr));
+}
+
+static int find_later_rq(struct task_struct *task);
+
+static int
+select_task_rq_dl(struct task_struct *p, int cpu, int flags)
+{
+ struct task_struct *curr;
+ bool select_rq;
+ struct rq *rq;
+
+ if (!(flags & WF_TTWU))
+ goto out;
+
+ rq = cpu_rq(cpu);
+
+ rcu_read_lock();
+ curr = READ_ONCE(rq->curr); /* unlocked access */
+
+ /*
+ * If we are dealing with a -deadline task, we must
+ * decide where to wake it up.
+ * If it has a later deadline and the current task
+ * on this rq can't move (provided the waking task
+ * can!) we prefer to send it somewhere else. On the
+ * other hand, if it has a shorter deadline, we
+ * try to make it stay here, it might be important.
+ */
+ select_rq = unlikely(dl_task(curr)) &&
+ (curr->nr_cpus_allowed < 2 ||
+ !dl_entity_preempt(&p->dl, &curr->dl)) &&
+ p->nr_cpus_allowed > 1;
+
+ /*
+ * Take the capacity of the CPU into account to
+ * ensure it fits the requirement of the task.
+ */
+ if (sched_asym_cpucap_active())
+ select_rq |= !dl_task_fits_capacity(p, cpu);
+
+ if (select_rq) {
+ int target = find_later_rq(p);
+
+ if (target != -1 &&
+ dl_task_is_earliest_deadline(p, cpu_rq(target)))
+ cpu = target;
+ }
+ rcu_read_unlock();
+
+out:
+ return cpu;
+}
+
+static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
+{
+ struct rq_flags rf;
+ struct rq *rq;
+
+ if (READ_ONCE(p->__state) != TASK_WAKING)
+ return;
+
+ rq = task_rq(p);
+ /*
+ * Since p->state == TASK_WAKING, set_task_cpu() has been called
+ * from try_to_wake_up(). Hence, p->pi_lock is locked, but
+ * rq->lock is not... So, lock it
+ */
+ rq_lock(rq, &rf);
+ if (p->dl.dl_non_contending) {
+ update_rq_clock(rq);
+ sub_running_bw(&p->dl, &rq->dl);
+ p->dl.dl_non_contending = 0;
+ /*
+ * If the timer handler is currently running and the
+ * timer cannot be canceled, inactive_task_timer()
+ * will see that dl_not_contending is not set, and
+ * will not touch the rq's active utilization,
+ * so we are still safe.
+ */
+ if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
+ put_task_struct(p);
+ }
+ sub_rq_bw(&p->dl, &rq->dl);
+ rq_unlock(rq, &rf);
+}
+
+static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
+{
+ /*
+ * Current can't be migrated, useless to reschedule,
+ * let's hope p can move out.
+ */
+ if (rq->curr->nr_cpus_allowed == 1 ||
+ !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
+ return;
+
+ /*
+ * p is migratable, so let's not schedule it and
+ * see if it is pushed or pulled somewhere else.
+ */
+ if (p->nr_cpus_allowed != 1 &&
+ cpudl_find(&rq->rd->cpudl, p, NULL))
+ return;
+
+ resched_curr(rq);
+}
+
+static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
+{
+ if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
+ /*
+ * This is OK, because current is on_cpu, which avoids it being
+ * picked for load-balance and preemption/IRQs are still
+ * disabled avoiding further scheduler activity on it and we've
+ * not yet started the picking loop.
+ */
+ rq_unpin_lock(rq, rf);
+ pull_dl_task(rq);
+ rq_repin_lock(rq, rf);
+ }
+
+ return sched_stop_runnable(rq) || sched_dl_runnable(rq);
+}
+#endif /* CONFIG_SMP */
+
+/*
+ * Only called when both the current and waking task are -deadline
+ * tasks.
+ */
+static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
+ int flags)
+{
+ if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
+ resched_curr(rq);
+ return;
+ }
+
+#ifdef CONFIG_SMP
+ /*
+ * In the unlikely case current and p have the same deadline
+ * let us try to decide what's the best thing to do...
+ */
+ if ((p->dl.deadline == rq->curr->dl.deadline) &&
+ !test_tsk_need_resched(rq->curr))
+ check_preempt_equal_dl(rq, p);
+#endif /* CONFIG_SMP */
+}
+
+#ifdef CONFIG_SCHED_HRTICK
+static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
+{
+ hrtick_start(rq, p->dl.runtime);
+}
+#else /* !CONFIG_SCHED_HRTICK */
+static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
+{
+}
+#endif
+
+static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
+{
+ struct sched_dl_entity *dl_se = &p->dl;
+ struct dl_rq *dl_rq = &rq->dl;
+
+ p->se.exec_start = rq_clock_task(rq);
+ if (on_dl_rq(&p->dl))
+ update_stats_wait_end_dl(dl_rq, dl_se);
+
+ /* You can't push away the running task */
+ dequeue_pushable_dl_task(rq, p);
+
+ if (!first)
+ return;
+
+ if (hrtick_enabled_dl(rq))
+ start_hrtick_dl(rq, p);
+
+ if (rq->curr->sched_class != &dl_sched_class)
+ update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
+
+ deadline_queue_push_tasks(rq);
+}
+
+static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
+{
+ struct rb_node *left = rb_first_cached(&dl_rq->root);
+
+ if (!left)
+ return NULL;
+
+ return __node_2_dle(left);
+}
+
+static struct task_struct *pick_task_dl(struct rq *rq)
+{
+ struct sched_dl_entity *dl_se;
+ struct dl_rq *dl_rq = &rq->dl;
+ struct task_struct *p;
+
+ if (!sched_dl_runnable(rq))
+ return NULL;
+
+ dl_se = pick_next_dl_entity(dl_rq);
+ WARN_ON_ONCE(!dl_se);
+ p = dl_task_of(dl_se);
+
+ return p;
+}
+
+static struct task_struct *pick_next_task_dl(struct rq *rq)
+{
+ struct task_struct *p;
+
+ p = pick_task_dl(rq);
+ if (p)
+ set_next_task_dl(rq, p, true);
+
+ return p;
+}
+
+static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
+{
+ struct sched_dl_entity *dl_se = &p->dl;
+ struct dl_rq *dl_rq = &rq->dl;
+
+ if (on_dl_rq(&p->dl))
+ update_stats_wait_start_dl(dl_rq, dl_se);
+
+ update_curr_dl(rq);
+
+ update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
+ if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
+ enqueue_pushable_dl_task(rq, p);
+}
+
+/*
+ * scheduler tick hitting a task of our scheduling class.
+ *
+ * NOTE: This function can be called remotely by the tick offload that
+ * goes along full dynticks. Therefore no local assumption can be made
+ * and everything must be accessed through the @rq and @curr passed in
+ * parameters.
+ */
+static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
+{
+ update_curr_dl(rq);
+
+ update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
+ /*
+ * Even when we have runtime, update_curr_dl() might have resulted in us
+ * not being the leftmost task anymore. In that case NEED_RESCHED will
+ * be set and schedule() will start a new hrtick for the next task.
+ */
+ if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
+ is_leftmost(p, &rq->dl))
+ start_hrtick_dl(rq, p);
+}
+
+static void task_fork_dl(struct task_struct *p)
+{
+ /*
+ * SCHED_DEADLINE tasks cannot fork and this is achieved through
+ * sched_fork()
+ */
+}
+
+#ifdef CONFIG_SMP
+
+/* Only try algorithms three times */
+#define DL_MAX_TRIES 3
+
+static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
+{
+ if (!task_on_cpu(rq, p) &&
+ cpumask_test_cpu(cpu, &p->cpus_mask))
+ return 1;
+ return 0;
+}
+
+/*
+ * Return the earliest pushable rq's task, which is suitable to be executed
+ * on the CPU, NULL otherwise:
+ */
+static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
+{
+ struct task_struct *p = NULL;
+ struct rb_node *next_node;
+
+ if (!has_pushable_dl_tasks(rq))
+ return NULL;
+
+ next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
+
+next_node:
+ if (next_node) {
+ p = __node_2_pdl(next_node);
+
+ if (pick_dl_task(rq, p, cpu))
+ return p;
+
+ next_node = rb_next(next_node);
+ goto next_node;
+ }
+
+ return NULL;
+}
+
+static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
+
+static int find_later_rq(struct task_struct *task)
+{
+ struct sched_domain *sd;
+ struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
+ int this_cpu = smp_processor_id();
+ int cpu = task_cpu(task);
+
+ /* Make sure the mask is initialized first */
+ if (unlikely(!later_mask))
+ return -1;
+
+ if (task->nr_cpus_allowed == 1)
+ return -1;
+
+ /*
+ * We have to consider system topology and task affinity
+ * first, then we can look for a suitable CPU.
+ */
+ if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
+ return -1;
+
+ /*
+ * If we are here, some targets have been found, including
+ * the most suitable which is, among the runqueues where the
+ * current tasks have later deadlines than the task's one, the
+ * rq with the latest possible one.
+ *
+ * Now we check how well this matches with task's
+ * affinity and system topology.
+ *
+ * The last CPU where the task run is our first
+ * guess, since it is most likely cache-hot there.
+ */
+ if (cpumask_test_cpu(cpu, later_mask))
+ return cpu;
+ /*
+ * Check if this_cpu is to be skipped (i.e., it is
+ * not in the mask) or not.
+ */
+ if (!cpumask_test_cpu(this_cpu, later_mask))
+ this_cpu = -1;
+
+ rcu_read_lock();
+ for_each_domain(cpu, sd) {
+ if (sd->flags & SD_WAKE_AFFINE) {
+ int best_cpu;
+
+ /*
+ * If possible, preempting this_cpu is
+ * cheaper than migrating.
+ */
+ if (this_cpu != -1 &&
+ cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
+ rcu_read_unlock();
+ return this_cpu;
+ }
+
+ best_cpu = cpumask_any_and_distribute(later_mask,
+ sched_domain_span(sd));
+ /*
+ * Last chance: if a CPU being in both later_mask
+ * and current sd span is valid, that becomes our
+ * choice. Of course, the latest possible CPU is
+ * already under consideration through later_mask.
+ */
+ if (best_cpu < nr_cpu_ids) {
+ rcu_read_unlock();
+ return best_cpu;
+ }
+ }
+ }
+ rcu_read_unlock();
+
+ /*
+ * At this point, all our guesses failed, we just return
+ * 'something', and let the caller sort the things out.
+ */
+ if (this_cpu != -1)
+ return this_cpu;
+
+ cpu = cpumask_any_distribute(later_mask);
+ if (cpu < nr_cpu_ids)
+ return cpu;
+
+ return -1;
+}
+
+/* Locks the rq it finds */
+static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
+{
+ struct rq *later_rq = NULL;
+ int tries;
+ int cpu;
+
+ for (tries = 0; tries < DL_MAX_TRIES; tries++) {
+ cpu = find_later_rq(task);
+
+ if ((cpu == -1) || (cpu == rq->cpu))
+ break;
+
+ later_rq = cpu_rq(cpu);
+
+ if (!dl_task_is_earliest_deadline(task, later_rq)) {
+ /*
+ * Target rq has tasks of equal or earlier deadline,
+ * retrying does not release any lock and is unlikely
+ * to yield a different result.
+ */
+ later_rq = NULL;
+ break;
+ }
+
+ /* Retry if something changed. */
+ if (double_lock_balance(rq, later_rq)) {
+ if (unlikely(task_rq(task) != rq ||
+ !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
+ task_on_cpu(rq, task) ||
+ !dl_task(task) ||
+ is_migration_disabled(task) ||
+ !task_on_rq_queued(task))) {
+ double_unlock_balance(rq, later_rq);
+ later_rq = NULL;
+ break;
+ }
+ }
+
+ /*
+ * If the rq we found has no -deadline task, or
+ * its earliest one has a later deadline than our
+ * task, the rq is a good one.
+ */
+ if (dl_task_is_earliest_deadline(task, later_rq))
+ break;
+
+ /* Otherwise we try again. */
+ double_unlock_balance(rq, later_rq);
+ later_rq = NULL;
+ }
+
+ return later_rq;
+}
+
+static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
+{
+ struct task_struct *p;
+
+ if (!has_pushable_dl_tasks(rq))
+ return NULL;
+
+ p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
+
+ WARN_ON_ONCE(rq->cpu != task_cpu(p));
+ WARN_ON_ONCE(task_current(rq, p));
+ WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
+
+ WARN_ON_ONCE(!task_on_rq_queued(p));
+ WARN_ON_ONCE(!dl_task(p));
+
+ return p;
+}
+
+/*
+ * See if the non running -deadline tasks on this rq
+ * can be sent to some other CPU where they can preempt
+ * and start executing.
+ */
+static int push_dl_task(struct rq *rq)
+{
+ struct task_struct *next_task;
+ struct rq *later_rq;
+ int ret = 0;
+
+ if (!rq->dl.overloaded)
+ return 0;
+
+ next_task = pick_next_pushable_dl_task(rq);
+ if (!next_task)
+ return 0;
+
+retry:
+ /*
+ * If next_task preempts rq->curr, and rq->curr
+ * can move away, it makes sense to just reschedule
+ * without going further in pushing next_task.
+ */
+ if (dl_task(rq->curr) &&
+ dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
+ rq->curr->nr_cpus_allowed > 1) {
+ resched_curr(rq);
+ return 0;
+ }
+
+ if (is_migration_disabled(next_task))
+ return 0;
+
+ if (WARN_ON(next_task == rq->curr))
+ return 0;
+
+ /* We might release rq lock */
+ get_task_struct(next_task);
+
+ /* Will lock the rq it'll find */
+ later_rq = find_lock_later_rq(next_task, rq);
+ if (!later_rq) {
+ struct task_struct *task;
+
+ /*
+ * We must check all this again, since
+ * find_lock_later_rq releases rq->lock and it is
+ * then possible that next_task has migrated.
+ */
+ task = pick_next_pushable_dl_task(rq);
+ if (task == next_task) {
+ /*
+ * The task is still there. We don't try
+ * again, some other CPU will pull it when ready.
+ */
+ goto out;
+ }
+
+ if (!task)
+ /* No more tasks */
+ goto out;
+
+ put_task_struct(next_task);
+ next_task = task;
+ goto retry;
+ }
+
+ deactivate_task(rq, next_task, 0);
+ set_task_cpu(next_task, later_rq->cpu);
+ activate_task(later_rq, next_task, 0);
+ ret = 1;
+
+ resched_curr(later_rq);
+
+ double_unlock_balance(rq, later_rq);
+
+out:
+ put_task_struct(next_task);
+
+ return ret;
+}
+
+static void push_dl_tasks(struct rq *rq)
+{
+ /* push_dl_task() will return true if it moved a -deadline task */
+ while (push_dl_task(rq))
+ ;
+}
+
+static void pull_dl_task(struct rq *this_rq)
+{
+ int this_cpu = this_rq->cpu, cpu;
+ struct task_struct *p, *push_task;
+ bool resched = false;
+ struct rq *src_rq;
+ u64 dmin = LONG_MAX;
+
+ if (likely(!dl_overloaded(this_rq)))
+ return;
+
+ /*
+ * Match the barrier from dl_set_overloaded; this guarantees that if we
+ * see overloaded we must also see the dlo_mask bit.
+ */
+ smp_rmb();
+
+ for_each_cpu(cpu, this_rq->rd->dlo_mask) {
+ if (this_cpu == cpu)
+ continue;
+
+ src_rq = cpu_rq(cpu);
+
+ /*
+ * It looks racy, abd it is! However, as in sched_rt.c,
+ * we are fine with this.
+ */
+ if (this_rq->dl.dl_nr_running &&
+ dl_time_before(this_rq->dl.earliest_dl.curr,
+ src_rq->dl.earliest_dl.next))
+ continue;
+
+ /* Might drop this_rq->lock */
+ push_task = NULL;
+ double_lock_balance(this_rq, src_rq);
+
+ /*
+ * If there are no more pullable tasks on the
+ * rq, we're done with it.
+ */
+ if (src_rq->dl.dl_nr_running <= 1)
+ goto skip;
+
+ p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
+
+ /*
+ * We found a task to be pulled if:
+ * - it preempts our current (if there's one),
+ * - it will preempt the last one we pulled (if any).
+ */
+ if (p && dl_time_before(p->dl.deadline, dmin) &&
+ dl_task_is_earliest_deadline(p, this_rq)) {
+ WARN_ON(p == src_rq->curr);
+ WARN_ON(!task_on_rq_queued(p));
+
+ /*
+ * Then we pull iff p has actually an earlier
+ * deadline than the current task of its runqueue.
+ */
+ if (dl_time_before(p->dl.deadline,
+ src_rq->curr->dl.deadline))
+ goto skip;
+
+ if (is_migration_disabled(p)) {
+ push_task = get_push_task(src_rq);
+ } else {
+ deactivate_task(src_rq, p, 0);
+ set_task_cpu(p, this_cpu);
+ activate_task(this_rq, p, 0);
+ dmin = p->dl.deadline;
+ resched = true;
+ }
+
+ /* Is there any other task even earlier? */
+ }
+skip:
+ double_unlock_balance(this_rq, src_rq);
+
+ if (push_task) {
+ preempt_disable();
+ raw_spin_rq_unlock(this_rq);
+ stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
+ push_task, &src_rq->push_work);
+ preempt_enable();
+ raw_spin_rq_lock(this_rq);
+ }
+ }
+
+ if (resched)
+ resched_curr(this_rq);
+}
+
+/*
+ * Since the task is not running and a reschedule is not going to happen
+ * anytime soon on its runqueue, we try pushing it away now.
+ */
+static void task_woken_dl(struct rq *rq, struct task_struct *p)
+{
+ if (!task_on_cpu(rq, p) &&
+ !test_tsk_need_resched(rq->curr) &&
+ p->nr_cpus_allowed > 1 &&
+ dl_task(rq->curr) &&
+ (rq->curr->nr_cpus_allowed < 2 ||
+ !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
+ push_dl_tasks(rq);
+ }
+}
+
+static void set_cpus_allowed_dl(struct task_struct *p,
+ const struct cpumask *new_mask,
+ u32 flags)
+{
+ struct root_domain *src_rd;
+ struct rq *rq;
+
+ WARN_ON_ONCE(!dl_task(p));
+
+ rq = task_rq(p);
+ src_rd = rq->rd;
+ /*
+ * Migrating a SCHED_DEADLINE task between exclusive
+ * cpusets (different root_domains) entails a bandwidth
+ * update. We already made space for us in the destination
+ * domain (see cpuset_can_attach()).
+ */
+ if (!cpumask_intersects(src_rd->span, new_mask)) {
+ struct dl_bw *src_dl_b;
+
+ src_dl_b = dl_bw_of(cpu_of(rq));
+ /*
+ * We now free resources of the root_domain we are migrating
+ * off. In the worst case, sched_setattr() may temporary fail
+ * until we complete the update.
+ */
+ raw_spin_lock(&src_dl_b->lock);
+ __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
+ raw_spin_unlock(&src_dl_b->lock);
+ }
+
+ set_cpus_allowed_common(p, new_mask, flags);
+}
+
+/* Assumes rq->lock is held */
+static void rq_online_dl(struct rq *rq)
+{
+ if (rq->dl.overloaded)
+ dl_set_overload(rq);
+
+ cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
+ if (rq->dl.dl_nr_running > 0)
+ cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
+}
+
+/* Assumes rq->lock is held */
+static void rq_offline_dl(struct rq *rq)
+{
+ if (rq->dl.overloaded)
+ dl_clear_overload(rq);
+
+ cpudl_clear(&rq->rd->cpudl, rq->cpu);
+ cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
+}
+
+void __init init_sched_dl_class(void)
+{
+ unsigned int i;
+
+ for_each_possible_cpu(i)
+ zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
+ GFP_KERNEL, cpu_to_node(i));
+}
+
+void dl_add_task_root_domain(struct task_struct *p)
+{
+ struct rq_flags rf;
+ struct rq *rq;
+ struct dl_bw *dl_b;
+
+ raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
+ if (!dl_task(p)) {
+ raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
+ return;
+ }
+
+ rq = __task_rq_lock(p, &rf);
+
+ dl_b = &rq->rd->dl_bw;
+ raw_spin_lock(&dl_b->lock);
+
+ __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
+
+ raw_spin_unlock(&dl_b->lock);
+
+ task_rq_unlock(rq, p, &rf);
+}
+
+void dl_clear_root_domain(struct root_domain *rd)
+{
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
+ rd->dl_bw.total_bw = 0;
+ raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
+}
+
+#endif /* CONFIG_SMP */
+
+static void switched_from_dl(struct rq *rq, struct task_struct *p)
+{
+ /*
+ * task_non_contending() can start the "inactive timer" (if the 0-lag
+ * time is in the future). If the task switches back to dl before
+ * the "inactive timer" fires, it can continue to consume its current
+ * runtime using its current deadline. If it stays outside of
+ * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
+ * will reset the task parameters.
+ */
+ if (task_on_rq_queued(p) && p->dl.dl_runtime)
+ task_non_contending(p);
+
+ /*
+ * In case a task is setscheduled out from SCHED_DEADLINE we need to
+ * keep track of that on its cpuset (for correct bandwidth tracking).
+ */
+ dec_dl_tasks_cs(p);
+
+ if (!task_on_rq_queued(p)) {
+ /*
+ * Inactive timer is armed. However, p is leaving DEADLINE and
+ * might migrate away from this rq while continuing to run on
+ * some other class. We need to remove its contribution from
+ * this rq running_bw now, or sub_rq_bw (below) will complain.
+ */
+ if (p->dl.dl_non_contending)
+ sub_running_bw(&p->dl, &rq->dl);
+ sub_rq_bw(&p->dl, &rq->dl);
+ }
+
+ /*
+ * We cannot use inactive_task_timer() to invoke sub_running_bw()
+ * at the 0-lag time, because the task could have been migrated
+ * while SCHED_OTHER in the meanwhile.
+ */
+ if (p->dl.dl_non_contending)
+ p->dl.dl_non_contending = 0;
+
+ /*
+ * Since this might be the only -deadline task on the rq,
+ * this is the right place to try to pull some other one
+ * from an overloaded CPU, if any.
+ */
+ if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
+ return;
+
+ deadline_queue_pull_task(rq);
+}
+
+/*
+ * When switching to -deadline, we may overload the rq, then
+ * we try to push someone off, if possible.
+ */
+static void switched_to_dl(struct rq *rq, struct task_struct *p)
+{
+ if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
+ put_task_struct(p);
+
+ /*
+ * In case a task is setscheduled to SCHED_DEADLINE we need to keep
+ * track of that on its cpuset (for correct bandwidth tracking).
+ */
+ inc_dl_tasks_cs(p);
+
+ /* If p is not queued we will update its parameters at next wakeup. */
+ if (!task_on_rq_queued(p)) {
+ add_rq_bw(&p->dl, &rq->dl);
+
+ return;
+ }
+
+ if (rq->curr != p) {
+#ifdef CONFIG_SMP
+ if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
+ deadline_queue_push_tasks(rq);
+#endif
+ if (dl_task(rq->curr))
+ check_preempt_curr_dl(rq, p, 0);
+ else
+ resched_curr(rq);
+ } else {
+ update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
+ }
+}
+
+/*
+ * If the scheduling parameters of a -deadline task changed,
+ * a push or pull operation might be needed.
+ */
+static void prio_changed_dl(struct rq *rq, struct task_struct *p,
+ int oldprio)
+{
+ if (task_on_rq_queued(p) || task_current(rq, p)) {
+#ifdef CONFIG_SMP
+ /*
+ * This might be too much, but unfortunately
+ * we don't have the old deadline value, and
+ * we can't argue if the task is increasing
+ * or lowering its prio, so...
+ */
+ if (!rq->dl.overloaded)
+ deadline_queue_pull_task(rq);
+
+ /*
+ * If we now have a earlier deadline task than p,
+ * then reschedule, provided p is still on this
+ * runqueue.
+ */
+ if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
+ resched_curr(rq);
+#else
+ /*
+ * Again, we don't know if p has a earlier
+ * or later deadline, so let's blindly set a
+ * (maybe not needed) rescheduling point.
+ */
+ resched_curr(rq);
+#endif /* CONFIG_SMP */
+ }
+}
+
+DEFINE_SCHED_CLASS(dl) = {
+
+ .enqueue_task = enqueue_task_dl,
+ .dequeue_task = dequeue_task_dl,
+ .yield_task = yield_task_dl,
+
+ .check_preempt_curr = check_preempt_curr_dl,
+
+ .pick_next_task = pick_next_task_dl,
+ .put_prev_task = put_prev_task_dl,
+ .set_next_task = set_next_task_dl,
+
+#ifdef CONFIG_SMP
+ .balance = balance_dl,
+ .pick_task = pick_task_dl,
+ .select_task_rq = select_task_rq_dl,
+ .migrate_task_rq = migrate_task_rq_dl,
+ .set_cpus_allowed = set_cpus_allowed_dl,
+ .rq_online = rq_online_dl,
+ .rq_offline = rq_offline_dl,
+ .task_woken = task_woken_dl,
+ .find_lock_rq = find_lock_later_rq,
+#endif
+
+ .task_tick = task_tick_dl,
+ .task_fork = task_fork_dl,
+
+ .prio_changed = prio_changed_dl,
+ .switched_from = switched_from_dl,
+ .switched_to = switched_to_dl,
+
+ .update_curr = update_curr_dl,
+};
+
+/* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
+static u64 dl_generation;
+
+int sched_dl_global_validate(void)
+{
+ u64 runtime = global_rt_runtime();
+ u64 period = global_rt_period();
+ u64 new_bw = to_ratio(period, runtime);
+ u64 gen = ++dl_generation;
+ struct dl_bw *dl_b;
+ int cpu, cpus, ret = 0;
+ unsigned long flags;
+
+ /*
+ * Here we want to check the bandwidth not being set to some
+ * value smaller than the currently allocated bandwidth in
+ * any of the root_domains.
+ */
+ for_each_possible_cpu(cpu) {
+ rcu_read_lock_sched();
+
+ if (dl_bw_visited(cpu, gen))
+ goto next;
+
+ dl_b = dl_bw_of(cpu);
+ cpus = dl_bw_cpus(cpu);
+
+ raw_spin_lock_irqsave(&dl_b->lock, flags);
+ if (new_bw * cpus < dl_b->total_bw)
+ ret = -EBUSY;
+ raw_spin_unlock_irqrestore(&dl_b->lock, flags);
+
+next:
+ rcu_read_unlock_sched();
+
+ if (ret)
+ break;
+ }
+
+ return ret;
+}
+
+static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
+{
+ if (global_rt_runtime() == RUNTIME_INF) {
+ dl_rq->bw_ratio = 1 << RATIO_SHIFT;
+ dl_rq->extra_bw = 1 << BW_SHIFT;
+ } else {
+ dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
+ global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
+ dl_rq->extra_bw = to_ratio(global_rt_period(),
+ global_rt_runtime());
+ }
+}
+
+void sched_dl_do_global(void)
+{
+ u64 new_bw = -1;
+ u64 gen = ++dl_generation;
+ struct dl_bw *dl_b;
+ int cpu;
+ unsigned long flags;
+
+ if (global_rt_runtime() != RUNTIME_INF)
+ new_bw = to_ratio(global_rt_period(), global_rt_runtime());
+
+ for_each_possible_cpu(cpu) {
+ rcu_read_lock_sched();
+
+ if (dl_bw_visited(cpu, gen)) {
+ rcu_read_unlock_sched();
+ continue;
+ }
+
+ dl_b = dl_bw_of(cpu);
+
+ raw_spin_lock_irqsave(&dl_b->lock, flags);
+ dl_b->bw = new_bw;
+ raw_spin_unlock_irqrestore(&dl_b->lock, flags);
+
+ rcu_read_unlock_sched();
+ init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
+ }
+}
+
+/*
+ * We must be sure that accepting a new task (or allowing changing the
+ * parameters of an existing one) is consistent with the bandwidth
+ * constraints. If yes, this function also accordingly updates the currently
+ * allocated bandwidth to reflect the new situation.
+ *
+ * This function is called while holding p's rq->lock.
+ */
+int sched_dl_overflow(struct task_struct *p, int policy,
+ const struct sched_attr *attr)
+{
+ u64 period = attr->sched_period ?: attr->sched_deadline;
+ u64 runtime = attr->sched_runtime;
+ u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
+ int cpus, err = -1, cpu = task_cpu(p);
+ struct dl_bw *dl_b = dl_bw_of(cpu);
+ unsigned long cap;
+
+ if (attr->sched_flags & SCHED_FLAG_SUGOV)
+ return 0;
+
+ /* !deadline task may carry old deadline bandwidth */
+ if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
+ return 0;
+
+ /*
+ * Either if a task, enters, leave, or stays -deadline but changes
+ * its parameters, we may need to update accordingly the total
+ * allocated bandwidth of the container.
+ */
+ raw_spin_lock(&dl_b->lock);
+ cpus = dl_bw_cpus(cpu);
+ cap = dl_bw_capacity(cpu);
+
+ if (dl_policy(policy) && !task_has_dl_policy(p) &&
+ !__dl_overflow(dl_b, cap, 0, new_bw)) {
+ if (hrtimer_active(&p->dl.inactive_timer))
+ __dl_sub(dl_b, p->dl.dl_bw, cpus);
+ __dl_add(dl_b, new_bw, cpus);
+ err = 0;
+ } else if (dl_policy(policy) && task_has_dl_policy(p) &&
+ !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
+ /*
+ * XXX this is slightly incorrect: when the task
+ * utilization decreases, we should delay the total
+ * utilization change until the task's 0-lag point.
+ * But this would require to set the task's "inactive
+ * timer" when the task is not inactive.
+ */
+ __dl_sub(dl_b, p->dl.dl_bw, cpus);
+ __dl_add(dl_b, new_bw, cpus);
+ dl_change_utilization(p, new_bw);
+ err = 0;
+ } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
+ /*
+ * Do not decrease the total deadline utilization here,
+ * switched_from_dl() will take care to do it at the correct
+ * (0-lag) time.
+ */
+ err = 0;
+ }
+ raw_spin_unlock(&dl_b->lock);
+
+ return err;
+}
+
+/*
+ * This function initializes the sched_dl_entity of a newly becoming
+ * SCHED_DEADLINE task.
+ *
+ * Only the static values are considered here, the actual runtime and the
+ * absolute deadline will be properly calculated when the task is enqueued
+ * for the first time with its new policy.
+ */
+void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
+{
+ struct sched_dl_entity *dl_se = &p->dl;
+
+ dl_se->dl_runtime = attr->sched_runtime;
+ dl_se->dl_deadline = attr->sched_deadline;
+ dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
+ dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
+ dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
+ dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
+}
+
+void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
+{
+ struct sched_dl_entity *dl_se = &p->dl;
+
+ attr->sched_priority = p->rt_priority;
+ attr->sched_runtime = dl_se->dl_runtime;
+ attr->sched_deadline = dl_se->dl_deadline;
+ attr->sched_period = dl_se->dl_period;
+ attr->sched_flags &= ~SCHED_DL_FLAGS;
+ attr->sched_flags |= dl_se->flags;
+}
+
+/*
+ * This function validates the new parameters of a -deadline task.
+ * We ask for the deadline not being zero, and greater or equal
+ * than the runtime, as well as the period of being zero or
+ * greater than deadline. Furthermore, we have to be sure that
+ * user parameters are above the internal resolution of 1us (we
+ * check sched_runtime only since it is always the smaller one) and
+ * below 2^63 ns (we have to check both sched_deadline and
+ * sched_period, as the latter can be zero).
+ */
+bool __checkparam_dl(const struct sched_attr *attr)
+{
+ u64 period, max, min;
+
+ /* special dl tasks don't actually use any parameter */
+ if (attr->sched_flags & SCHED_FLAG_SUGOV)
+ return true;
+
+ /* deadline != 0 */
+ if (attr->sched_deadline == 0)
+ return false;
+
+ /*
+ * Since we truncate DL_SCALE bits, make sure we're at least
+ * that big.
+ */
+ if (attr->sched_runtime < (1ULL << DL_SCALE))
+ return false;
+
+ /*
+ * Since we use the MSB for wrap-around and sign issues, make
+ * sure it's not set (mind that period can be equal to zero).
+ */
+ if (attr->sched_deadline & (1ULL << 63) ||
+ attr->sched_period & (1ULL << 63))
+ return false;
+
+ period = attr->sched_period;
+ if (!period)
+ period = attr->sched_deadline;
+
+ /* runtime <= deadline <= period (if period != 0) */
+ if (period < attr->sched_deadline ||
+ attr->sched_deadline < attr->sched_runtime)
+ return false;
+
+ max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
+ min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
+
+ if (period < min || period > max)
+ return false;
+
+ return true;
+}
+
+/*
+ * This function clears the sched_dl_entity static params.
+ */
+void __dl_clear_params(struct task_struct *p)
+{
+ struct sched_dl_entity *dl_se = &p->dl;
+
+ dl_se->dl_runtime = 0;
+ dl_se->dl_deadline = 0;
+ dl_se->dl_period = 0;
+ dl_se->flags = 0;
+ dl_se->dl_bw = 0;
+ dl_se->dl_density = 0;
+
+ dl_se->dl_throttled = 0;
+ dl_se->dl_yielded = 0;
+ dl_se->dl_non_contending = 0;
+ dl_se->dl_overrun = 0;
+
+#ifdef CONFIG_RT_MUTEXES
+ dl_se->pi_se = dl_se;
+#endif
+}
+
+bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
+{
+ struct sched_dl_entity *dl_se = &p->dl;
+
+ if (dl_se->dl_runtime != attr->sched_runtime ||
+ dl_se->dl_deadline != attr->sched_deadline ||
+ dl_se->dl_period != attr->sched_period ||
+ dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
+ return true;
+
+ return false;
+}
+
+#ifdef CONFIG_SMP
+int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
+ const struct cpumask *trial)
+{
+ unsigned long flags, cap;
+ struct dl_bw *cur_dl_b;
+ int ret = 1;
+
+ rcu_read_lock_sched();
+ cur_dl_b = dl_bw_of(cpumask_any(cur));
+ cap = __dl_bw_capacity(trial);
+ raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
+ if (__dl_overflow(cur_dl_b, cap, 0, 0))
+ ret = 0;
+ raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
+ rcu_read_unlock_sched();
+
+ return ret;
+}
+
+enum dl_bw_request {
+ dl_bw_req_check_overflow = 0,
+ dl_bw_req_alloc,
+ dl_bw_req_free
+};
+
+static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
+{
+ unsigned long flags;
+ struct dl_bw *dl_b;
+ bool overflow = 0;
+
+ rcu_read_lock_sched();
+ dl_b = dl_bw_of(cpu);
+ raw_spin_lock_irqsave(&dl_b->lock, flags);
+
+ if (req == dl_bw_req_free) {
+ __dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu));
+ } else {
+ unsigned long cap = dl_bw_capacity(cpu);
+
+ overflow = __dl_overflow(dl_b, cap, 0, dl_bw);
+
+ if (req == dl_bw_req_alloc && !overflow) {
+ /*
+ * We reserve space in the destination
+ * root_domain, as we can't fail after this point.
+ * We will free resources in the source root_domain
+ * later on (see set_cpus_allowed_dl()).
+ */
+ __dl_add(dl_b, dl_bw, dl_bw_cpus(cpu));
+ }
+ }
+
+ raw_spin_unlock_irqrestore(&dl_b->lock, flags);
+ rcu_read_unlock_sched();
+
+ return overflow ? -EBUSY : 0;
+}
+
+int dl_bw_check_overflow(int cpu)
+{
+ return dl_bw_manage(dl_bw_req_check_overflow, cpu, 0);
+}
+
+int dl_bw_alloc(int cpu, u64 dl_bw)
+{
+ return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw);
+}
+
+void dl_bw_free(int cpu, u64 dl_bw)
+{
+ dl_bw_manage(dl_bw_req_free, cpu, dl_bw);
+}
+#endif
+
+#ifdef CONFIG_SCHED_DEBUG
+void print_dl_stats(struct seq_file *m, int cpu)
+{
+ print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
+}
+#endif /* CONFIG_SCHED_DEBUG */