summaryrefslogtreecommitdiffstats
path: root/src/VBox/VMM/VMMR3/TM.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/VBox/VMM/VMMR3/TM.cpp')
-rw-r--r--src/VBox/VMM/VMMR3/TM.cpp4314
1 files changed, 4314 insertions, 0 deletions
diff --git a/src/VBox/VMM/VMMR3/TM.cpp b/src/VBox/VMM/VMMR3/TM.cpp
new file mode 100644
index 00000000..b1375216
--- /dev/null
+++ b/src/VBox/VMM/VMMR3/TM.cpp
@@ -0,0 +1,4314 @@
+/* $Id: TM.cpp $ */
+/** @file
+ * TM - Time Manager.
+ */
+
+/*
+ * Copyright (C) 2006-2022 Oracle and/or its affiliates.
+ *
+ * This file is part of VirtualBox base platform packages, as
+ * available from https://www.virtualbox.org.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation, in version 3 of the
+ * License.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, see <https://www.gnu.org/licenses>.
+ *
+ * SPDX-License-Identifier: GPL-3.0-only
+ */
+
+/** @page pg_tm TM - The Time Manager
+ *
+ * The Time Manager abstracts the CPU clocks and manages timers used by the VMM,
+ * device and drivers.
+ *
+ * @see grp_tm
+ *
+ *
+ * @section sec_tm_clocks Clocks
+ *
+ * There are currently 4 clocks:
+ * - Virtual (guest).
+ * - Synchronous virtual (guest).
+ * - CPU Tick (TSC) (guest). Only current use is rdtsc emulation. Usually a
+ * function of the virtual clock.
+ * - Real (host). This is only used for display updates atm.
+ *
+ * The most important clocks are the three first ones and of these the second is
+ * the most interesting.
+ *
+ *
+ * The synchronous virtual clock is tied to the virtual clock except that it
+ * will take into account timer delivery lag caused by host scheduling. It will
+ * normally never advance beyond the head timer, and when lagging too far behind
+ * it will gradually speed up to catch up with the virtual clock. All devices
+ * implementing time sources accessible to and used by the guest is using this
+ * clock (for timers and other things). This ensures consistency between the
+ * time sources.
+ *
+ * The virtual clock is implemented as an offset to a monotonic, high
+ * resolution, wall clock. The current time source is using the RTTimeNanoTS()
+ * machinery based upon the Global Info Pages (GIP), that is, we're using TSC
+ * deltas (usually 10 ms) to fill the gaps between GIP updates. The result is
+ * a fairly high res clock that works in all contexts and on all hosts. The
+ * virtual clock is paused when the VM isn't in the running state.
+ *
+ * The CPU tick (TSC) is normally virtualized as a function of the synchronous
+ * virtual clock, where the frequency defaults to the host cpu frequency (as we
+ * measure it). In this mode it is possible to configure the frequency. Another
+ * (non-default) option is to use the raw unmodified host TSC values. And yet
+ * another, to tie it to time spent executing guest code. All these things are
+ * configurable should non-default behavior be desirable.
+ *
+ * The real clock is a monotonic clock (when available) with relatively low
+ * resolution, though this a bit host specific. Note that we're currently not
+ * servicing timers using the real clock when the VM is not running, this is
+ * simply because it has not been needed yet therefore not implemented.
+ *
+ *
+ * @subsection subsec_tm_timesync Guest Time Sync / UTC time
+ *
+ * Guest time syncing is primarily taken care of by the VMM device. The
+ * principle is very simple, the guest additions periodically asks the VMM
+ * device what the current UTC time is and makes adjustments accordingly.
+ *
+ * A complicating factor is that the synchronous virtual clock might be doing
+ * catchups and the guest perception is currently a little bit behind the world
+ * but it will (hopefully) be catching up soon as we're feeding timer interrupts
+ * at a slightly higher rate. Adjusting the guest clock to the current wall
+ * time in the real world would be a bad idea then because the guest will be
+ * advancing too fast and run ahead of world time (if the catchup works out).
+ * To solve this problem TM provides the VMM device with an UTC time source that
+ * gets adjusted with the current lag, so that when the guest eventually catches
+ * up the lag it will be showing correct real world time.
+ *
+ *
+ * @section sec_tm_timers Timers
+ *
+ * The timers can use any of the TM clocks described in the previous section.
+ * Each clock has its own scheduling facility, or timer queue if you like.
+ * There are a few factors which makes it a bit complex. First, there is the
+ * usual R0 vs R3 vs. RC thing. Then there are multiple threads, and then there
+ * is the timer thread that periodically checks whether any timers has expired
+ * without EMT noticing. On the API level, all but the create and save APIs
+ * must be multithreaded. EMT will always run the timers.
+ *
+ * The design is using a doubly linked list of active timers which is ordered
+ * by expire date. This list is only modified by the EMT thread. Updates to
+ * the list are batched in a singly linked list, which is then processed by the
+ * EMT thread at the first opportunity (immediately, next time EMT modifies a
+ * timer on that clock, or next timer timeout). Both lists are offset based and
+ * all the elements are therefore allocated from the hyper heap.
+ *
+ * For figuring out when there is need to schedule and run timers TM will:
+ * - Poll whenever somebody queries the virtual clock.
+ * - Poll the virtual clocks from the EM and REM loops.
+ * - Poll the virtual clocks from trap exit path.
+ * - Poll the virtual clocks and calculate first timeout from the halt loop.
+ * - Employ a thread which periodically (100Hz) polls all the timer queues.
+ *
+ *
+ * @image html TMTIMER-Statechart-Diagram.gif
+ *
+ * @section sec_tm_timer Logging
+ *
+ * Level 2: Logs a most of the timer state transitions and queue servicing.
+ * Level 3: Logs a few oddments.
+ * Level 4: Logs TMCLOCK_VIRTUAL_SYNC catch-up events.
+ *
+ */
+
+
+/*********************************************************************************************************************************
+* Header Files *
+*********************************************************************************************************************************/
+#define LOG_GROUP LOG_GROUP_TM
+#ifdef DEBUG_bird
+# define DBGFTRACE_DISABLED /* annoying */
+#endif
+#include <VBox/vmm/tm.h>
+#include <VBox/vmm/vmm.h>
+#include <VBox/vmm/mm.h>
+#include <VBox/vmm/hm.h>
+#include <VBox/vmm/nem.h>
+#include <VBox/vmm/gim.h>
+#include <VBox/vmm/ssm.h>
+#include <VBox/vmm/dbgf.h>
+#include <VBox/vmm/dbgftrace.h>
+#include <VBox/vmm/pdmapi.h>
+#include <VBox/vmm/iom.h>
+#include "TMInternal.h"
+#include <VBox/vmm/vm.h>
+#include <VBox/vmm/uvm.h>
+
+#include <VBox/vmm/pdmdev.h>
+#include <VBox/log.h>
+#include <VBox/param.h>
+#include <VBox/err.h>
+
+#include <iprt/asm.h>
+#include <iprt/asm-math.h>
+#include <iprt/assert.h>
+#include <iprt/env.h>
+#include <iprt/file.h>
+#include <iprt/getopt.h>
+#include <iprt/mem.h>
+#include <iprt/rand.h>
+#include <iprt/semaphore.h>
+#include <iprt/string.h>
+#include <iprt/thread.h>
+#include <iprt/time.h>
+#include <iprt/timer.h>
+
+#include "TMInline.h"
+
+
+/*********************************************************************************************************************************
+* Defined Constants And Macros *
+*********************************************************************************************************************************/
+/** The current saved state version.*/
+#define TM_SAVED_STATE_VERSION 3
+
+
+/*********************************************************************************************************************************
+* Internal Functions *
+*********************************************************************************************************************************/
+static bool tmR3HasFixedTSC(PVM pVM);
+static uint64_t tmR3CalibrateTSC(void);
+static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM);
+static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
+#ifdef VBOX_WITH_STATISTICS
+static void tmR3TimerQueueRegisterStats(PVM pVM, PTMTIMERQUEUE pQueue, uint32_t cTimers);
+#endif
+static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
+static DECLCALLBACK(int) tmR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent);
+#ifndef VBOX_WITHOUT_NS_ACCOUNTING
+static DECLCALLBACK(void) tmR3CpuLoadTimer(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser);
+#endif
+static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
+static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
+static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
+static DECLCALLBACK(void) tmR3InfoCpuLoad(PVM pVM, PCDBGFINFOHLP pHlp, int cArgs, char **papszArgs);
+static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtDisable(PVM pVM, PVMCPU pVCpu, void *pvData);
+static const char *tmR3GetTSCModeName(PVM pVM);
+static const char *tmR3GetTSCModeNameEx(TMTSCMODE enmMode);
+static int tmR3TimerQueueGrow(PVM pVM, PTMTIMERQUEUE pQueue, uint32_t cNewTimers);
+
+
+/**
+ * Initializes the TM.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ */
+VMM_INT_DECL(int) TMR3Init(PVM pVM)
+{
+ LogFlow(("TMR3Init:\n"));
+
+ /*
+ * Assert alignment and sizes.
+ */
+ AssertCompileMemberAlignment(VM, tm.s, 32);
+ AssertCompile(sizeof(pVM->tm.s) <= sizeof(pVM->tm.padding));
+ AssertCompileMemberAlignment(TM, VirtualSyncLock, 8);
+
+ /*
+ * Init the structure.
+ */
+ pVM->tm.s.idTimerCpu = pVM->cCpus - 1; /* The last CPU. */
+
+ int rc = PDMR3CritSectInit(pVM, &pVM->tm.s.VirtualSyncLock, RT_SRC_POS, "TM VirtualSync Lock");
+ AssertLogRelRCReturn(rc, rc);
+
+ strcpy(pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].szName, "virtual");
+ strcpy(pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].szName, "virtual_sync"); /* Underscore is for STAM ordering issue. */
+ strcpy(pVM->tm.s.aTimerQueues[TMCLOCK_REAL].szName, "real");
+ strcpy(pVM->tm.s.aTimerQueues[TMCLOCK_TSC].szName, "tsc");
+
+ for (uint32_t i = 0; i < RT_ELEMENTS(pVM->tm.s.aTimerQueues); i++)
+ {
+ Assert(pVM->tm.s.aTimerQueues[i].szName[0] != '\0');
+ pVM->tm.s.aTimerQueues[i].enmClock = (TMCLOCK)i;
+ pVM->tm.s.aTimerQueues[i].u64Expire = INT64_MAX;
+ pVM->tm.s.aTimerQueues[i].idxActive = UINT32_MAX;
+ pVM->tm.s.aTimerQueues[i].idxSchedule = UINT32_MAX;
+ pVM->tm.s.aTimerQueues[i].idxFreeHint = 1;
+ pVM->tm.s.aTimerQueues[i].fBeingProcessed = false;
+ pVM->tm.s.aTimerQueues[i].fCannotGrow = false;
+ pVM->tm.s.aTimerQueues[i].hThread = NIL_RTTHREAD;
+ pVM->tm.s.aTimerQueues[i].hWorkerEvt = NIL_SUPSEMEVENT;
+
+ rc = PDMR3CritSectInit(pVM, &pVM->tm.s.aTimerQueues[i].TimerLock, RT_SRC_POS,
+ "TM %s queue timer lock", pVM->tm.s.aTimerQueues[i].szName);
+ AssertLogRelRCReturn(rc, rc);
+
+ rc = PDMR3CritSectRwInit(pVM, &pVM->tm.s.aTimerQueues[i].AllocLock, RT_SRC_POS,
+ "TM %s queue alloc lock", pVM->tm.s.aTimerQueues[i].szName);
+ AssertLogRelRCReturn(rc, rc);
+ }
+
+ /*
+ * We directly use the GIP to calculate the virtual time. We map the
+ * the GIP into the guest context so we can do this calculation there
+ * as well and save costly world switches.
+ */
+ PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
+ if (pGip || !SUPR3IsDriverless())
+ {
+ pVM->tm.s.pvGIPR3 = (void *)pGip;
+ AssertMsgReturn(pVM->tm.s.pvGIPR3, ("GIP support is now required!\n"), VERR_TM_GIP_REQUIRED);
+ AssertMsgReturn((pGip->u32Version >> 16) == (SUPGLOBALINFOPAGE_VERSION >> 16),
+ ("Unsupported GIP version %#x! (expected=%#x)\n", pGip->u32Version, SUPGLOBALINFOPAGE_VERSION),
+ VERR_TM_GIP_VERSION);
+
+ /* Check assumptions made in TMAllVirtual.cpp about the GIP update interval. */
+ if ( pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC
+ && pGip->u32UpdateIntervalNS >= 250000000 /* 0.25s */)
+ return VMSetError(pVM, VERR_TM_GIP_UPDATE_INTERVAL_TOO_BIG, RT_SRC_POS,
+ N_("The GIP update interval is too big. u32UpdateIntervalNS=%RU32 (u32UpdateHz=%RU32)"),
+ pGip->u32UpdateIntervalNS, pGip->u32UpdateHz);
+
+ /* Log GIP info that may come in handy. */
+ LogRel(("TM: GIP - u32Mode=%d (%s) u32UpdateHz=%u u32UpdateIntervalNS=%u enmUseTscDelta=%d (%s) fGetGipCpu=%#x cCpus=%d\n",
+ pGip->u32Mode, SUPGetGIPModeName(pGip), pGip->u32UpdateHz, pGip->u32UpdateIntervalNS,
+ pGip->enmUseTscDelta, SUPGetGIPTscDeltaModeName(pGip), pGip->fGetGipCpu, pGip->cCpus));
+ LogRel(("TM: GIP - u64CpuHz=%'RU64 (%#RX64) SUPGetCpuHzFromGip => %'RU64\n",
+ pGip->u64CpuHz, pGip->u64CpuHz, SUPGetCpuHzFromGip(pGip)));
+ for (uint32_t iCpuSet = 0; iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx); iCpuSet++)
+ {
+ uint16_t iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet];
+ if (iGipCpu != UINT16_MAX)
+ LogRel(("TM: GIP - CPU: iCpuSet=%#x idCpu=%#x idApic=%#x iGipCpu=%#x i64TSCDelta=%RI64 enmState=%d u64CpuHz=%RU64(*) cErrors=%u\n",
+ iCpuSet, pGip->aCPUs[iGipCpu].idCpu, pGip->aCPUs[iGipCpu].idApic, iGipCpu, pGip->aCPUs[iGipCpu].i64TSCDelta,
+ pGip->aCPUs[iGipCpu].enmState, pGip->aCPUs[iGipCpu].u64CpuHz, pGip->aCPUs[iGipCpu].cErrors));
+ }
+ }
+
+ /*
+ * Setup the VirtualGetRaw backend.
+ */
+ pVM->tm.s.pfnVirtualGetRaw = tmVirtualNanoTSRediscover;
+ pVM->tm.s.VirtualGetRawData.pfnRediscover = tmVirtualNanoTSRediscover;
+ pVM->tm.s.VirtualGetRawData.pfnBad = tmVirtualNanoTSBad;
+ pVM->tm.s.VirtualGetRawData.pfnBadCpuIndex = tmVirtualNanoTSBadCpuIndex;
+ pVM->tm.s.VirtualGetRawData.pu64Prev = &pVM->tm.s.u64VirtualRawPrev;
+
+ /*
+ * Get our CFGM node, create it if necessary.
+ */
+ PCFGMNODE pCfgHandle = CFGMR3GetChild(CFGMR3GetRoot(pVM), "TM");
+ if (!pCfgHandle)
+ {
+ rc = CFGMR3InsertNode(CFGMR3GetRoot(pVM), "TM", &pCfgHandle);
+ AssertRCReturn(rc, rc);
+ }
+
+ /*
+ * Specific errors about some obsolete TM settings (remove after 2015-12-03).
+ */
+ if (CFGMR3Exists(pCfgHandle, "TSCVirtualized"))
+ return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
+ N_("Configuration error: TM setting \"TSCVirtualized\" is no longer supported. Use the \"TSCMode\" setting instead."));
+ if (CFGMR3Exists(pCfgHandle, "UseRealTSC"))
+ return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
+ N_("Configuration error: TM setting \"UseRealTSC\" is no longer supported. Use the \"TSCMode\" setting instead."));
+
+ if (CFGMR3Exists(pCfgHandle, "MaybeUseOffsettedHostTSC"))
+ return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
+ N_("Configuration error: TM setting \"MaybeUseOffsettedHostTSC\" is no longer supported. Use the \"TSCMode\" setting instead."));
+
+ /*
+ * Validate the rest of the TM settings.
+ */
+ rc = CFGMR3ValidateConfig(pCfgHandle, "/TM/",
+ "TSCMode|"
+ "TSCModeSwitchAllowed|"
+ "TSCTicksPerSecond|"
+ "TSCTiedToExecution|"
+ "TSCNotTiedToHalt|"
+ "ScheduleSlack|"
+ "CatchUpStopThreshold|"
+ "CatchUpGiveUpThreshold|"
+ "CatchUpStartThreshold0|CatchUpStartThreshold1|CatchUpStartThreshold2|CatchUpStartThreshold3|"
+ "CatchUpStartThreshold4|CatchUpStartThreshold5|CatchUpStartThreshold6|CatchUpStartThreshold7|"
+ "CatchUpStartThreshold8|CatchUpStartThreshold9|"
+ "CatchUpPrecentage0|CatchUpPrecentage1|CatchUpPrecentage2|CatchUpPrecentage3|"
+ "CatchUpPrecentage4|CatchUpPrecentage5|CatchUpPrecentage6|CatchUpPrecentage7|"
+ "CatchUpPrecentage8|CatchUpPrecentage9|"
+ "UTCOffset|"
+ "UTCTouchFileOnJump|"
+ "WarpDrivePercentage|"
+ "HostHzMax|"
+ "HostHzFudgeFactorTimerCpu|"
+ "HostHzFudgeFactorOtherCpu|"
+ "HostHzFudgeFactorCatchUp100|"
+ "HostHzFudgeFactorCatchUp200|"
+ "HostHzFudgeFactorCatchUp400|"
+ "TimerMillies"
+ ,
+ "",
+ "TM", 0);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ /*
+ * Determine the TSC configuration and frequency.
+ */
+ /** @cfgm{/TM/TSCMode, string, Depends on the CPU and VM config}
+ * The name of the TSC mode to use: VirtTSCEmulated, RealTSCOffset or Dynamic.
+ * The default depends on the VM configuration and the capabilities of the
+ * host CPU. Other config options or runtime changes may override the TSC
+ * mode specified here.
+ */
+ char szTSCMode[32];
+ rc = CFGMR3QueryString(pCfgHandle, "TSCMode", szTSCMode, sizeof(szTSCMode));
+ if (rc == VERR_CFGM_VALUE_NOT_FOUND)
+ {
+ /** @todo Rainy-day/never: Dynamic mode isn't currently suitable for SMP VMs, so
+ * fall back on the more expensive emulated mode. With the current TSC handling
+ * (frequent switching between offsetted mode and taking VM exits, on all VCPUs
+ * without any kind of coordination) will lead to inconsistent TSC behavior with
+ * guest SMP, including TSC going backwards. */
+ pVM->tm.s.enmTSCMode = NEMR3NeedSpecialTscMode(pVM) ? TMTSCMODE_NATIVE_API
+ : pVM->cCpus == 1 && tmR3HasFixedTSC(pVM) ? TMTSCMODE_DYNAMIC : TMTSCMODE_VIRT_TSC_EMULATED;
+ }
+ else if (RT_FAILURE(rc))
+ return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying string value \"TSCMode\""));
+ else
+ {
+ if (!RTStrCmp(szTSCMode, "VirtTSCEmulated"))
+ pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
+ else if (!RTStrCmp(szTSCMode, "RealTSCOffset"))
+ pVM->tm.s.enmTSCMode = TMTSCMODE_REAL_TSC_OFFSET;
+ else if (!RTStrCmp(szTSCMode, "Dynamic"))
+ pVM->tm.s.enmTSCMode = TMTSCMODE_DYNAMIC;
+ else
+ return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Unrecognized TM TSC mode value \"%s\""), szTSCMode);
+ if (NEMR3NeedSpecialTscMode(pVM))
+ {
+ LogRel(("TM: NEM overrides the /TM/TSCMode=%s settings.\n", szTSCMode));
+ pVM->tm.s.enmTSCMode = TMTSCMODE_NATIVE_API;
+ }
+ }
+
+ /**
+ * @cfgm{/TM/TSCModeSwitchAllowed, bool, Whether TM TSC mode switch is allowed
+ * at runtime}
+ * When using paravirtualized guests, we dynamically switch TSC modes to a more
+ * optimal one for performance. This setting allows overriding this behaviour.
+ */
+ rc = CFGMR3QueryBool(pCfgHandle, "TSCModeSwitchAllowed", &pVM->tm.s.fTSCModeSwitchAllowed);
+ if (rc == VERR_CFGM_VALUE_NOT_FOUND)
+ {
+ /* This is finally determined in TMR3InitFinalize() as GIM isn't initialized yet. */
+ pVM->tm.s.fTSCModeSwitchAllowed = true;
+ }
+ else if (RT_FAILURE(rc))
+ return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying bool value \"TSCModeSwitchAllowed\""));
+ if (pVM->tm.s.fTSCModeSwitchAllowed && pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API)
+ {
+ LogRel(("TM: NEM overrides the /TM/TSCModeSwitchAllowed setting.\n"));
+ pVM->tm.s.fTSCModeSwitchAllowed = false;
+ }
+
+ /** @cfgm{/TM/TSCTicksPerSecond, uint32_t, Current TSC frequency from GIP}
+ * The number of TSC ticks per second (i.e. the TSC frequency). This will
+ * override enmTSCMode.
+ */
+ pVM->tm.s.cTSCTicksPerSecondHost = tmR3CalibrateTSC();
+ rc = CFGMR3QueryU64(pCfgHandle, "TSCTicksPerSecond", &pVM->tm.s.cTSCTicksPerSecond);
+ if (rc == VERR_CFGM_VALUE_NOT_FOUND)
+ {
+ pVM->tm.s.cTSCTicksPerSecond = pVM->tm.s.cTSCTicksPerSecondHost;
+ if ( ( pVM->tm.s.enmTSCMode == TMTSCMODE_DYNAMIC
+ || pVM->tm.s.enmTSCMode == TMTSCMODE_VIRT_TSC_EMULATED)
+ && pVM->tm.s.cTSCTicksPerSecond >= _4G)
+ {
+ pVM->tm.s.cTSCTicksPerSecond = _4G - 1; /* (A limitation of our math code) */
+ pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
+ }
+ }
+ else if (RT_FAILURE(rc))
+ return VMSetError(pVM, rc, RT_SRC_POS,
+ N_("Configuration error: Failed to querying uint64_t value \"TSCTicksPerSecond\""));
+ else if ( pVM->tm.s.cTSCTicksPerSecond < _1M
+ || pVM->tm.s.cTSCTicksPerSecond >= _4G)
+ return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
+ N_("Configuration error: \"TSCTicksPerSecond\" = %RI64 is not in the range 1MHz..4GHz-1"),
+ pVM->tm.s.cTSCTicksPerSecond);
+ else if (pVM->tm.s.enmTSCMode != TMTSCMODE_NATIVE_API)
+ pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
+ else
+ {
+ LogRel(("TM: NEM overrides the /TM/TSCTicksPerSecond=%RU64 setting.\n", pVM->tm.s.cTSCTicksPerSecond));
+ pVM->tm.s.cTSCTicksPerSecond = pVM->tm.s.cTSCTicksPerSecondHost;
+ }
+
+ /** @cfgm{/TM/TSCTiedToExecution, bool, false}
+ * Whether the TSC should be tied to execution. This will exclude most of the
+ * virtualization overhead, but will by default include the time spent in the
+ * halt state (see TM/TSCNotTiedToHalt). This setting will override all other
+ * TSC settings except for TSCTicksPerSecond and TSCNotTiedToHalt, which should
+ * be used avoided or used with great care. Note that this will only work right
+ * together with VT-x or AMD-V, and with a single virtual CPU. */
+ rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCTiedToExecution", &pVM->tm.s.fTSCTiedToExecution, false);
+ if (RT_FAILURE(rc))
+ return VMSetError(pVM, rc, RT_SRC_POS,
+ N_("Configuration error: Failed to querying bool value \"TSCTiedToExecution\""));
+ if (pVM->tm.s.fTSCTiedToExecution && pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API)
+ return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("/TM/TSCTiedToExecution is not supported in NEM mode!"));
+ if (pVM->tm.s.fTSCTiedToExecution)
+ pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
+
+
+ /** @cfgm{/TM/TSCNotTiedToHalt, bool, false}
+ * This is used with /TM/TSCTiedToExecution to control how TSC operates
+ * accross HLT instructions. When true HLT is considered execution time and
+ * TSC continues to run, while when false (default) TSC stops during halt. */
+ rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCNotTiedToHalt", &pVM->tm.s.fTSCNotTiedToHalt, false);
+ if (RT_FAILURE(rc))
+ return VMSetError(pVM, rc, RT_SRC_POS,
+ N_("Configuration error: Failed to querying bool value \"TSCNotTiedToHalt\""));
+
+ /*
+ * Configure the timer synchronous virtual time.
+ */
+ /** @cfgm{/TM/ScheduleSlack, uint32_t, ns, 0, UINT32_MAX, 100000}
+ * Scheduling slack when processing timers. */
+ rc = CFGMR3QueryU32(pCfgHandle, "ScheduleSlack", &pVM->tm.s.u32VirtualSyncScheduleSlack);
+ if (rc == VERR_CFGM_VALUE_NOT_FOUND)
+ pVM->tm.s.u32VirtualSyncScheduleSlack = 100000; /* 0.100ms (ASSUMES virtual time is nanoseconds) */
+ else if (RT_FAILURE(rc))
+ return VMSetError(pVM, rc, RT_SRC_POS,
+ N_("Configuration error: Failed to querying 32-bit integer value \"ScheduleSlack\""));
+
+ /** @cfgm{/TM/CatchUpStopThreshold, uint64_t, ns, 0, UINT64_MAX, 500000}
+ * When to stop a catch-up, considering it successful. */
+ rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStopThreshold", &pVM->tm.s.u64VirtualSyncCatchUpStopThreshold);
+ if (rc == VERR_CFGM_VALUE_NOT_FOUND)
+ pVM->tm.s.u64VirtualSyncCatchUpStopThreshold = 500000; /* 0.5ms */
+ else if (RT_FAILURE(rc))
+ return VMSetError(pVM, rc, RT_SRC_POS,
+ N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpStopThreshold\""));
+
+ /** @cfgm{/TM/CatchUpGiveUpThreshold, uint64_t, ns, 0, UINT64_MAX, 60000000000}
+ * When to give up a catch-up attempt. */
+ rc = CFGMR3QueryU64(pCfgHandle, "CatchUpGiveUpThreshold", &pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold);
+ if (rc == VERR_CFGM_VALUE_NOT_FOUND)
+ pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold = UINT64_C(60000000000); /* 60 sec */
+ else if (RT_FAILURE(rc))
+ return VMSetError(pVM, rc, RT_SRC_POS,
+ N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpGiveUpThreshold\""));
+
+
+ /** @cfgm{/TM/CatchUpPrecentage[0..9], uint32_t, %, 1, 2000, various}
+ * The catch-up percent for a given period. */
+ /** @cfgm{/TM/CatchUpStartThreshold[0..9], uint64_t, ns, 0, UINT64_MAX}
+ * The catch-up period threshold, or if you like, when a period starts. */
+#define TM_CFG_PERIOD(iPeriod, DefStart, DefPct) \
+ do \
+ { \
+ uint64_t u64; \
+ rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStartThreshold" #iPeriod, &u64); \
+ if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
+ u64 = UINT64_C(DefStart); \
+ else if (RT_FAILURE(rc)) \
+ return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpThreshold" #iPeriod "\"")); \
+ if ( (iPeriod > 0 && u64 <= pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod - 1].u64Start) \
+ || u64 >= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold) \
+ return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("Configuration error: Invalid start of period #" #iPeriod ": %'RU64"), u64); \
+ pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u64Start = u64; \
+ rc = CFGMR3QueryU32(pCfgHandle, "CatchUpPrecentage" #iPeriod, &pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage); \
+ if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
+ pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage = (DefPct); \
+ else if (RT_FAILURE(rc)) \
+ return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 32-bit integer value \"CatchUpPrecentage" #iPeriod "\"")); \
+ } while (0)
+ /* This needs more tuning. Not sure if we really need so many period and be so gentle. */
+ TM_CFG_PERIOD(0, 750000, 5); /* 0.75ms at 1.05x */
+ TM_CFG_PERIOD(1, 1500000, 10); /* 1.50ms at 1.10x */
+ TM_CFG_PERIOD(2, 8000000, 25); /* 8ms at 1.25x */
+ TM_CFG_PERIOD(3, 30000000, 50); /* 30ms at 1.50x */
+ TM_CFG_PERIOD(4, 75000000, 75); /* 75ms at 1.75x */
+ TM_CFG_PERIOD(5, 175000000, 100); /* 175ms at 2x */
+ TM_CFG_PERIOD(6, 500000000, 200); /* 500ms at 3x */
+ TM_CFG_PERIOD(7, 3000000000, 300); /* 3s at 4x */
+ TM_CFG_PERIOD(8,30000000000, 400); /* 30s at 5x */
+ TM_CFG_PERIOD(9,55000000000, 500); /* 55s at 6x */
+ AssertCompile(RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods) == 10);
+#undef TM_CFG_PERIOD
+
+ /*
+ * Configure real world time (UTC).
+ */
+ /** @cfgm{/TM/UTCOffset, int64_t, ns, INT64_MIN, INT64_MAX, 0}
+ * The UTC offset. This is used to put the guest back or forwards in time. */
+ rc = CFGMR3QueryS64(pCfgHandle, "UTCOffset", &pVM->tm.s.offUTC);
+ if (rc == VERR_CFGM_VALUE_NOT_FOUND)
+ pVM->tm.s.offUTC = 0; /* ns */
+ else if (RT_FAILURE(rc))
+ return VMSetError(pVM, rc, RT_SRC_POS,
+ N_("Configuration error: Failed to querying 64-bit integer value \"UTCOffset\""));
+
+ /** @cfgm{/TM/UTCTouchFileOnJump, string, none}
+ * File to be written to everytime the host time jumps. */
+ rc = CFGMR3QueryStringAlloc(pCfgHandle, "UTCTouchFileOnJump", &pVM->tm.s.pszUtcTouchFileOnJump);
+ if (rc == VERR_CFGM_VALUE_NOT_FOUND)
+ pVM->tm.s.pszUtcTouchFileOnJump = NULL;
+ else if (RT_FAILURE(rc))
+ return VMSetError(pVM, rc, RT_SRC_POS,
+ N_("Configuration error: Failed to querying string value \"UTCTouchFileOnJump\""));
+
+ /*
+ * Setup the warp drive.
+ */
+ /** @cfgm{/TM/WarpDrivePercentage, uint32_t, %, 0, 20000, 100}
+ * The warp drive percentage, 100% is normal speed. This is used to speed up
+ * or slow down the virtual clock, which can be useful for fast forwarding
+ * borring periods during tests. */
+ rc = CFGMR3QueryU32(pCfgHandle, "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage);
+ if (rc == VERR_CFGM_VALUE_NOT_FOUND)
+ rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage); /* legacy */
+ if (rc == VERR_CFGM_VALUE_NOT_FOUND)
+ pVM->tm.s.u32VirtualWarpDrivePercentage = 100;
+ else if (RT_FAILURE(rc))
+ return VMSetError(pVM, rc, RT_SRC_POS,
+ N_("Configuration error: Failed to querying uint32_t value \"WarpDrivePercent\""));
+ else if ( pVM->tm.s.u32VirtualWarpDrivePercentage < 2
+ || pVM->tm.s.u32VirtualWarpDrivePercentage > 20000)
+ return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
+ N_("Configuration error: \"WarpDrivePercent\" = %RI32 is not in the range 2..20000"),
+ pVM->tm.s.u32VirtualWarpDrivePercentage);
+ pVM->tm.s.fVirtualWarpDrive = pVM->tm.s.u32VirtualWarpDrivePercentage != 100;
+ if (pVM->tm.s.fVirtualWarpDrive)
+ {
+ if (pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API)
+ LogRel(("TM: Warp-drive active, escept for TSC which is in NEM mode. u32VirtualWarpDrivePercentage=%RI32\n",
+ pVM->tm.s.u32VirtualWarpDrivePercentage));
+ else
+ {
+ pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
+ LogRel(("TM: Warp-drive active. u32VirtualWarpDrivePercentage=%RI32\n", pVM->tm.s.u32VirtualWarpDrivePercentage));
+ }
+ }
+
+ /*
+ * Gather the Host Hz configuration values.
+ */
+ rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzMax", &pVM->tm.s.cHostHzMax, 20000);
+ if (RT_FAILURE(rc))
+ return VMSetError(pVM, rc, RT_SRC_POS,
+ N_("Configuration error: Failed to querying uint32_t value \"HostHzMax\""));
+
+ rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorTimerCpu", &pVM->tm.s.cPctHostHzFudgeFactorTimerCpu, 111);
+ if (RT_FAILURE(rc))
+ return VMSetError(pVM, rc, RT_SRC_POS,
+ N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorTimerCpu\""));
+
+ rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorOtherCpu", &pVM->tm.s.cPctHostHzFudgeFactorOtherCpu, 110);
+ if (RT_FAILURE(rc))
+ return VMSetError(pVM, rc, RT_SRC_POS,
+ N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorOtherCpu\""));
+
+ rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp100", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp100, 300);
+ if (RT_FAILURE(rc))
+ return VMSetError(pVM, rc, RT_SRC_POS,
+ N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp100\""));
+
+ rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp200", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp200, 250);
+ if (RT_FAILURE(rc))
+ return VMSetError(pVM, rc, RT_SRC_POS,
+ N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp200\""));
+
+ rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp400", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp400, 200);
+ if (RT_FAILURE(rc))
+ return VMSetError(pVM, rc, RT_SRC_POS,
+ N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp400\""));
+
+ /*
+ * Finally, setup and report.
+ */
+ pVM->tm.s.enmOriginalTSCMode = pVM->tm.s.enmTSCMode;
+ CPUMR3SetCR4Feature(pVM, X86_CR4_TSD, ~X86_CR4_TSD);
+ LogRel(("TM: cTSCTicksPerSecond=%'RU64 (%#RX64) enmTSCMode=%d (%s)\n"
+ "TM: cTSCTicksPerSecondHost=%'RU64 (%#RX64)\n"
+ "TM: TSCTiedToExecution=%RTbool TSCNotTiedToHalt=%RTbool\n",
+ pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM),
+ pVM->tm.s.cTSCTicksPerSecondHost, pVM->tm.s.cTSCTicksPerSecondHost,
+ pVM->tm.s.fTSCTiedToExecution, pVM->tm.s.fTSCNotTiedToHalt));
+
+ /*
+ * Start the timer (guard against REM not yielding).
+ */
+ /** @cfgm{/TM/TimerMillies, uint32_t, ms, 1, 1000, 10}
+ * The watchdog timer interval. */
+ uint32_t u32Millies;
+ rc = CFGMR3QueryU32(pCfgHandle, "TimerMillies", &u32Millies);
+ if (rc == VERR_CFGM_VALUE_NOT_FOUND)
+ u32Millies = VM_IS_HM_ENABLED(pVM) ? 1000 : 10;
+ else if (RT_FAILURE(rc))
+ return VMSetError(pVM, rc, RT_SRC_POS,
+ N_("Configuration error: Failed to query uint32_t value \"TimerMillies\""));
+ rc = RTTimerCreate(&pVM->tm.s.pTimer, u32Millies, tmR3TimerCallback, pVM);
+ if (RT_FAILURE(rc))
+ {
+ AssertMsgFailed(("Failed to create timer, u32Millies=%d rc=%Rrc.\n", u32Millies, rc));
+ return rc;
+ }
+ Log(("TM: Created timer %p firing every %d milliseconds\n", pVM->tm.s.pTimer, u32Millies));
+ pVM->tm.s.u32TimerMillies = u32Millies;
+
+ /*
+ * Register saved state.
+ */
+ rc = SSMR3RegisterInternal(pVM, "tm", 1, TM_SAVED_STATE_VERSION, sizeof(uint64_t) * 8,
+ NULL, NULL, NULL,
+ NULL, tmR3Save, NULL,
+ NULL, tmR3Load, NULL);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ /*
+ * Register statistics.
+ */
+ STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawData.c1nsSteps,STAMTYPE_U32, "/TM/R3/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
+ STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawData.cBadPrev, STAMTYPE_U32, "/TM/R3/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
+#if 0 /** @todo retreive from ring-0 */
+ STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.c1nsSteps,STAMTYPE_U32, "/TM/R0/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
+ STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.cBadPrev, STAMTYPE_U32, "/TM/R0/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
+#endif
+ STAM_REL_REG( pVM,(void*)&pVM->tm.s.offVirtualSync, STAMTYPE_U64, "/TM/VirtualSync/CurrentOffset", STAMUNIT_NS, "The current offset. (subtract GivenUp to get the lag)");
+ STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.offVirtualSyncGivenUp, STAMTYPE_U64, "/TM/VirtualSync/GivenUp", STAMUNIT_NS, "Nanoseconds of the 'CurrentOffset' that's been given up and won't ever be attempted caught up with.");
+ STAM_REL_REG( pVM,(void*)&pVM->tm.s.HzHint.s.uMax, STAMTYPE_U32, "/TM/MaxHzHint", STAMUNIT_HZ, "Max guest timer frequency hint.");
+ for (uint32_t i = 0; i < RT_ELEMENTS(pVM->tm.s.aTimerQueues); i++)
+ {
+ rc = STAMR3RegisterF(pVM, (void *)&pVM->tm.s.aTimerQueues[i].uMaxHzHint, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_HZ,
+ "", "/TM/MaxHzHint/%s", pVM->tm.s.aTimerQueues[i].szName);
+ AssertRC(rc);
+ }
+
+#ifdef VBOX_WITH_STATISTICS
+ STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawData.cExpired, STAMTYPE_U32, "/TM/R3/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
+ STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawData.cUpdateRaces,STAMTYPE_U32, "/TM/R3/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
+# if 0 /** @todo retreive from ring-0 */
+ STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cExpired, STAMTYPE_U32, "/TM/R0/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
+ STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cUpdateRaces,STAMTYPE_U32, "/TM/R0/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
+# endif
+ STAM_REG(pVM, &pVM->tm.s.StatDoQueues, STAMTYPE_PROFILE, "/TM/DoQueues", STAMUNIT_TICKS_PER_CALL, "Profiling timer TMR3TimerQueuesDo.");
+ STAM_REG(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].StatDo, STAMTYPE_PROFILE, "/TM/DoQueues/Virtual", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual clock queue.");
+ STAM_REG(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].StatDo,STAMTYPE_PROFILE,"/TM/DoQueues/VirtualSync", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual sync clock queue.");
+ STAM_REG(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_REAL].StatDo, STAMTYPE_PROFILE, "/TM/DoQueues/Real", STAMUNIT_TICKS_PER_CALL, "Time spent on the real clock queue.");
+
+ STAM_REG(pVM, &pVM->tm.s.StatPoll, STAMTYPE_COUNTER, "/TM/Poll", STAMUNIT_OCCURENCES, "TMTimerPoll calls.");
+ STAM_REG(pVM, &pVM->tm.s.StatPollAlreadySet, STAMTYPE_COUNTER, "/TM/Poll/AlreadySet", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the FF was already set.");
+ STAM_REG(pVM, &pVM->tm.s.StatPollELoop, STAMTYPE_COUNTER, "/TM/Poll/ELoop", STAMUNIT_OCCURENCES, "Times TMTimerPoll has given up getting a consistent virtual sync data set.");
+ STAM_REG(pVM, &pVM->tm.s.StatPollMiss, STAMTYPE_COUNTER, "/TM/Poll/Miss", STAMUNIT_OCCURENCES, "TMTimerPoll calls where nothing had expired.");
+ STAM_REG(pVM, &pVM->tm.s.StatPollRunning, STAMTYPE_COUNTER, "/TM/Poll/Running", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the queues were being run.");
+ STAM_REG(pVM, &pVM->tm.s.StatPollSimple, STAMTYPE_COUNTER, "/TM/Poll/Simple", STAMUNIT_OCCURENCES, "TMTimerPoll calls where we could take the simple path.");
+ STAM_REG(pVM, &pVM->tm.s.StatPollVirtual, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtual", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL queue.");
+ STAM_REG(pVM, &pVM->tm.s.StatPollVirtualSync, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtualSync", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL_SYNC queue.");
+
+ STAM_REG(pVM, &pVM->tm.s.StatPostponedR3, STAMTYPE_COUNTER, "/TM/PostponedR3", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-3.");
+ STAM_REG(pVM, &pVM->tm.s.StatPostponedRZ, STAMTYPE_COUNTER, "/TM/PostponedRZ", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-0 / RC.");
+
+ STAM_REG(pVM, &pVM->tm.s.StatScheduleOneR3, STAMTYPE_PROFILE, "/TM/ScheduleOneR3", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
+ STAM_REG(pVM, &pVM->tm.s.StatScheduleOneRZ, STAMTYPE_PROFILE, "/TM/ScheduleOneRZ", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
+ STAM_REG(pVM, &pVM->tm.s.StatScheduleSetFF, STAMTYPE_COUNTER, "/TM/ScheduleSetFF", STAMUNIT_OCCURENCES, "The number of times the timer FF was set instead of doing scheduling.");
+
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSet, STAMTYPE_COUNTER, "/TM/TimerSet", STAMUNIT_OCCURENCES, "Calls, except virtual sync timers");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetOpt, STAMTYPE_COUNTER, "/TM/TimerSet/Opt", STAMUNIT_OCCURENCES, "Optimized path taken.");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetR3, STAMTYPE_PROFILE, "/TM/TimerSet/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3.");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetRZ, STAMTYPE_PROFILE, "/TM/TimerSet/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC.");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetStActive, STAMTYPE_COUNTER, "/TM/TimerSet/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSet/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetStOther, STAMTYPE_COUNTER, "/TM/TimerSet/StOther", STAMUNIT_OCCURENCES, "Other states");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStop, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStopSched", STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendResched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetStStopped, STAMTYPE_COUNTER, "/TM/TimerSet/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
+
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetVs, STAMTYPE_COUNTER, "/TM/TimerSetVs", STAMUNIT_OCCURENCES, "TMTimerSet calls on virtual sync timers");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsR3, STAMTYPE_PROFILE, "/TM/TimerSetVs/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3 on virtual sync timers.");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsRZ, STAMTYPE_PROFILE, "/TM/TimerSetVs/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC on virtual sync timers.");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStActive, STAMTYPE_COUNTER, "/TM/TimerSetVs/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetVs/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStStopped, STAMTYPE_COUNTER, "/TM/TimerSetVs/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
+
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelative, STAMTYPE_COUNTER, "/TM/TimerSetRelative", STAMUNIT_OCCURENCES, "Calls, except virtual sync timers");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeOpt, STAMTYPE_COUNTER, "/TM/TimerSetRelative/Opt", STAMUNIT_OCCURENCES, "Optimized path taken.");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeR3, STAMTYPE_PROFILE, "/TM/TimerSetRelative/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetRelative calls made in ring-3 (sans virtual sync).");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeRZ, STAMTYPE_PROFILE, "/TM/TimerSetRelative/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetReltaive calls made in ring-0 / RC (sans virtual sync).");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStActive, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStOther, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StOther", STAMUNIT_OCCURENCES, "Other states");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStop, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStopSched",STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendResched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStStopped, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
+
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVs, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs", STAMUNIT_OCCURENCES, "TMTimerSetRelative calls on virtual sync timers");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsR3, STAMTYPE_PROFILE, "/TM/TimerSetRelativeVs/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetRelative calls made in ring-3 on virtual sync timers.");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsRZ, STAMTYPE_PROFILE, "/TM/TimerSetRelativeVs/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetReltaive calls made in ring-0 / RC on virtual sync timers.");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStActive, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStStopped, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
+
+ STAM_REG(pVM, &pVM->tm.s.StatTimerStopR3, STAMTYPE_PROFILE, "/TM/TimerStopR3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-3.");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerStopRZ, STAMTYPE_PROFILE, "/TM/TimerStopRZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-0 / RC.");
+
+ STAM_REG(pVM, &pVM->tm.s.StatVirtualGet, STAMTYPE_COUNTER, "/TM/VirtualGet", STAMUNIT_OCCURENCES, "The number of times TMTimerGet was called when the clock was running.");
+ STAM_REG(pVM, &pVM->tm.s.StatVirtualGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualGetSetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling TMTimerGet.");
+ STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGet, STAMTYPE_COUNTER, "/TM/VirtualSyncGet", STAMUNIT_OCCURENCES, "The number of times tmVirtualSyncGetEx was called.");
+ STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetAdjLast, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/AdjLast", STAMUNIT_OCCURENCES, "Times we've adjusted against the last returned time stamp .");
+ STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetELoop, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/ELoop", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx has given up getting a consistent virtual sync data set.");
+ STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetExpired, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Expired", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx encountered an expired timer stopping the clock.");
+ STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLocked, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Locked", STAMUNIT_OCCURENCES, "Times we successfully acquired the lock in tmVirtualSyncGetEx.");
+ STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLockless, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Lockless", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx returned without needing to take the lock.");
+ STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/SetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling tmVirtualSyncGetEx.");
+ STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/VirtualPause", STAMUNIT_OCCURENCES, "The number of times TMR3TimerPause was called.");
+ STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/VirtualResume", STAMUNIT_OCCURENCES, "The number of times TMR3TimerResume was called.");
+
+ STAM_REG(pVM, &pVM->tm.s.StatTimerCallbackSetFF, STAMTYPE_COUNTER, "/TM/CallbackSetFF", STAMUNIT_OCCURENCES, "The number of times the timer callback set FF.");
+ STAM_REG(pVM, &pVM->tm.s.StatTimerCallback, STAMTYPE_COUNTER, "/TM/Callback", STAMUNIT_OCCURENCES, "The number of times the timer callback is invoked.");
+
+ STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE010, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE010", STAMUNIT_OCCURENCES, "In catch-up mode, 10% or lower.");
+ STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE025, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE025", STAMUNIT_OCCURENCES, "In catch-up mode, 25%-11%.");
+ STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE100, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE100", STAMUNIT_OCCURENCES, "In catch-up mode, 100%-26%.");
+ STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupOther, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupOther", STAMUNIT_OCCURENCES, "In catch-up mode, > 100%.");
+ STAM_REG(pVM, &pVM->tm.s.StatTSCNotFixed, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotFixed", STAMUNIT_OCCURENCES, "TSC is not fixed, it may run at variable speed.");
+ STAM_REG(pVM, &pVM->tm.s.StatTSCNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotTicking", STAMUNIT_OCCURENCES, "TSC is not ticking.");
+ STAM_REG(pVM, &pVM->tm.s.StatTSCSyncNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/SyncNotTicking", STAMUNIT_OCCURENCES, "VirtualSync isn't ticking.");
+ STAM_REG(pVM, &pVM->tm.s.StatTSCWarp, STAMTYPE_COUNTER, "/TM/TSC/Intercept/Warp", STAMUNIT_OCCURENCES, "Warpdrive is active.");
+ STAM_REG(pVM, &pVM->tm.s.StatTSCSet, STAMTYPE_COUNTER, "/TM/TSC/Sets", STAMUNIT_OCCURENCES, "Calls to TMCpuTickSet.");
+ STAM_REG(pVM, &pVM->tm.s.StatTSCUnderflow, STAMTYPE_COUNTER, "/TM/TSC/Underflow", STAMUNIT_OCCURENCES, "TSC underflow; corrected with last seen value .");
+ STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/TSC/Pause", STAMUNIT_OCCURENCES, "The number of times the TSC was paused.");
+ STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/TSC/Resume", STAMUNIT_OCCURENCES, "The number of times the TSC was resumed.");
+#endif /* VBOX_WITH_STATISTICS */
+
+ for (VMCPUID i = 0; i < pVM->cCpus; i++)
+ {
+ PVMCPU pVCpu = pVM->apCpusR3[i];
+ STAMR3RegisterF(pVM, &pVCpu->tm.s.offTSCRawSrc, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS, "TSC offset relative the raw source", "/TM/TSC/offCPU%u", i);
+#ifndef VBOX_WITHOUT_NS_ACCOUNTING
+# if defined(VBOX_WITH_STATISTICS) || defined(VBOX_WITH_NS_ACCOUNTING_STATS)
+ STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsTotal, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Resettable: Total CPU run time.", "/TM/CPU/%02u", i);
+ STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecuting, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code.", "/TM/CPU/%02u/PrfExecuting", i);
+ STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecLong, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - long hauls.", "/TM/CPU/%02u/PrfExecLong", i);
+ STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecShort, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - short stretches.", "/TM/CPU/%02u/PrfExecShort", i);
+ STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecTiny, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - tiny bits.", "/TM/CPU/%02u/PrfExecTiny", i);
+ STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsHalted, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent halted.", "/TM/CPU/%02u/PrfHalted", i);
+ STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsOther, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent in the VMM or preempted.", "/TM/CPU/%02u/PrfOther", i);
+# endif
+ STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsTotalStat, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Total CPU run time.", "/TM/CPU/%02u/cNsTotal", i);
+ STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsExecuting, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent executing guest code.", "/TM/CPU/%02u/cNsExecuting", i);
+ STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsHalted, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent halted.", "/TM/CPU/%02u/cNsHalted", i);
+ STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsOtherStat, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent in the VMM or preempted.", "/TM/CPU/%02u/cNsOther", i);
+ STAMR3RegisterF(pVM, &pVCpu->tm.s.cPeriodsExecuting, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Times executed guest code.", "/TM/CPU/%02u/cPeriodsExecuting", i);
+ STAMR3RegisterF(pVM, &pVCpu->tm.s.cPeriodsHalted, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Times halted.", "/TM/CPU/%02u/cPeriodsHalted", i);
+ STAMR3RegisterF(pVM, &pVCpu->tm.s.CpuLoad.cPctExecuting, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent executing guest code recently.", "/TM/CPU/%02u/pctExecuting", i);
+ STAMR3RegisterF(pVM, &pVCpu->tm.s.CpuLoad.cPctHalted, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent halted recently.", "/TM/CPU/%02u/pctHalted", i);
+ STAMR3RegisterF(pVM, &pVCpu->tm.s.CpuLoad.cPctOther, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent in the VMM or preempted recently.", "/TM/CPU/%02u/pctOther", i);
+#endif
+ }
+#ifndef VBOX_WITHOUT_NS_ACCOUNTING
+ STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctExecuting, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent executing guest code recently.", "/TM/CPU/pctExecuting");
+ STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctHalted, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent halted recently.", "/TM/CPU/pctHalted");
+ STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctOther, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent in the VMM or preempted recently.", "/TM/CPU/pctOther");
+#endif
+
+#ifdef VBOX_WITH_STATISTICS
+ STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncCatchup, STAMTYPE_PROFILE_ADV, "/TM/VirtualSync/CatchUp", STAMUNIT_TICKS_PER_OCCURENCE, "Counting and measuring the times spent catching up.");
+ STAM_REG(pVM, (void *)&pVM->tm.s.fVirtualSyncCatchUp, STAMTYPE_U8, "/TM/VirtualSync/CatchUpActive", STAMUNIT_NONE, "Catch-Up active indicator.");
+ STAM_REG(pVM, (void *)&pVM->tm.s.u32VirtualSyncCatchUpPercentage, STAMTYPE_U32, "/TM/VirtualSync/CatchUpPercentage", STAMUNIT_PCT, "The catch-up percentage. (+100/100 to get clock multiplier)");
+ STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncFF, STAMTYPE_PROFILE, "/TM/VirtualSync/FF", STAMUNIT_TICKS_PER_OCCURENCE, "Time spent in TMR3VirtualSyncFF by all but the dedicate timer EMT.");
+ STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUp, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUp", STAMUNIT_OCCURENCES, "Times the catch-up was abandoned.");
+ STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUpBeforeStarting",STAMUNIT_OCCURENCES, "Times the catch-up was abandoned before even starting. (Typically debugging++.)");
+ STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRun, STAMTYPE_COUNTER, "/TM/VirtualSync/Run", STAMUNIT_OCCURENCES, "Times the virtual sync timer queue was considered.");
+ STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunRestart, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Restarts", STAMUNIT_OCCURENCES, "Times the clock was restarted after a run.");
+ STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStop, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Stop", STAMUNIT_OCCURENCES, "Times the clock was stopped when calculating the current time before examining the timers.");
+ STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStoppedAlready, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/StoppedAlready", STAMUNIT_OCCURENCES, "Times the clock was already stopped elsewhere (TMVirtualSyncGet).");
+ STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunSlack, STAMTYPE_PROFILE, "/TM/VirtualSync/Run/Slack", STAMUNIT_NS_PER_OCCURENCE, "The scheduling slack. (Catch-up handed out when running timers.)");
+ for (unsigned i = 0; i < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods); i++)
+ {
+ STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "The catch-up percentage.", "/TM/VirtualSync/Periods/%u", i);
+ STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupAdjust[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times adjusted to this period.", "/TM/VirtualSync/Periods/%u/Adjust", i);
+ STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupInitial[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times started in this period.", "/TM/VirtualSync/Periods/%u/Initial", i);
+ STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u64Start, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Start of this period (lag).", "/TM/VirtualSync/Periods/%u/Start", i);
+ }
+#endif /* VBOX_WITH_STATISTICS */
+
+ /*
+ * Register info handlers.
+ */
+ DBGFR3InfoRegisterInternalEx(pVM, "timers", "Dumps all timers. No arguments.", tmR3TimerInfo, DBGFINFO_FLAGS_RUN_ON_EMT);
+ DBGFR3InfoRegisterInternalEx(pVM, "activetimers", "Dumps active all timers. No arguments.", tmR3TimerInfoActive, DBGFINFO_FLAGS_RUN_ON_EMT);
+ DBGFR3InfoRegisterInternalEx(pVM, "clocks", "Display the time of the various clocks.", tmR3InfoClocks, DBGFINFO_FLAGS_RUN_ON_EMT);
+ DBGFR3InfoRegisterInternalArgv(pVM, "cpuload", "Display the CPU load stats (--help for details).", tmR3InfoCpuLoad, 0);
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Checks if the host CPU has a fixed TSC frequency.
+ *
+ * @returns true if it has, false if it hasn't.
+ *
+ * @remarks This test doesn't bother with very old CPUs that don't do power
+ * management or any other stuff that might influence the TSC rate.
+ * This isn't currently relevant.
+ */
+static bool tmR3HasFixedTSC(PVM pVM)
+{
+ /*
+ * ASSUME that if the GIP is in invariant TSC mode, it's because the CPU
+ * actually has invariant TSC.
+ *
+ * In driverless mode we just assume sync TSC for now regardless of what
+ * the case actually is.
+ */
+ PSUPGLOBALINFOPAGE const pGip = g_pSUPGlobalInfoPage;
+ SUPGIPMODE const enmGipMode = pGip ? (SUPGIPMODE)pGip->u32Mode : SUPGIPMODE_INVARIANT_TSC;
+ if (enmGipMode == SUPGIPMODE_INVARIANT_TSC)
+ return true;
+
+#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
+ /*
+ * Go by features and model info from the CPUID instruction.
+ */
+ if (ASMHasCpuId())
+ {
+ uint32_t uEAX, uEBX, uECX, uEDX;
+
+ /*
+ * By feature. (Used to be AMD specific, intel seems to have picked it up.)
+ */
+ ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
+ if (uEAX >= 0x80000007 && RTX86IsValidExtRange(uEAX))
+ {
+ ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
+ if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */
+ && enmGipMode != SUPGIPMODE_ASYNC_TSC) /* No fixed tsc if the gip timer is in async mode. */
+ return true;
+ }
+
+ /*
+ * By model.
+ */
+ if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_AMD)
+ {
+ /*
+ * AuthenticAMD - Check for APM support and that TscInvariant is set.
+ *
+ * This test isn't correct with respect to fixed/non-fixed TSC and
+ * older models, but this isn't relevant since the result is currently
+ * only used for making a decision on AMD-V models.
+ */
+# if 0 /* Promoted to generic */
+ ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
+ if (uEAX >= 0x80000007)
+ {
+ ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
+ if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */
+ && ( enmGipMode == SUPGIPMODE_SYNC_TSC /* No fixed tsc if the gip timer is in async mode. */
+ || enmGipMode == SUPGIPMODE_INVARIANT_TSC))
+ return true;
+ }
+# endif
+ }
+ else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_INTEL)
+ {
+ /*
+ * GenuineIntel - Check the model number.
+ *
+ * This test is lacking in the same way and for the same reasons
+ * as the AMD test above.
+ */
+ /** @todo use RTX86GetCpuFamily() and RTX86GetCpuModel() here. */
+ ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
+ unsigned uModel = (uEAX >> 4) & 0x0f;
+ unsigned uFamily = (uEAX >> 8) & 0x0f;
+ if (uFamily == 0x0f)
+ uFamily += (uEAX >> 20) & 0xff;
+ if (uFamily >= 0x06)
+ uModel += ((uEAX >> 16) & 0x0f) << 4;
+ if ( (uFamily == 0x0f /*P4*/ && uModel >= 0x03)
+ || (uFamily == 0x06 /*P2/P3*/ && uModel >= 0x0e))
+ return true;
+ }
+ else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_VIA)
+ {
+ /*
+ * CentaurHauls - Check the model, family and stepping.
+ *
+ * This only checks for VIA CPU models Nano X2, Nano X3,
+ * Eden X2 and QuadCore.
+ */
+ /** @todo use RTX86GetCpuFamily() and RTX86GetCpuModel() here. */
+ ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
+ unsigned uStepping = (uEAX & 0x0f);
+ unsigned uModel = (uEAX >> 4) & 0x0f;
+ unsigned uFamily = (uEAX >> 8) & 0x0f;
+ if ( uFamily == 0x06
+ && uModel == 0x0f
+ && uStepping >= 0x0c
+ && uStepping <= 0x0f)
+ return true;
+ }
+ else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_SHANGHAI)
+ {
+ /*
+ * Shanghai - Check the model, family and stepping.
+ */
+ /** @todo use RTX86GetCpuFamily() and RTX86GetCpuModel() here. */
+ ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
+ unsigned uFamily = (uEAX >> 8) & 0x0f;
+ if ( uFamily == 0x06
+ || uFamily == 0x07)
+ {
+ return true;
+ }
+ }
+ }
+
+# else /* !X86 && !AMD64 */
+ RT_NOREF_PV(pVM);
+# endif /* !X86 && !AMD64 */
+ return false;
+}
+
+
+/**
+ * Calibrate the CPU tick.
+ *
+ * @returns Number of ticks per second.
+ */
+static uint64_t tmR3CalibrateTSC(void)
+{
+ uint64_t u64Hz;
+
+ /*
+ * Use GIP when available. Prefere the nominal one, no need to wait for it.
+ */
+ PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
+ if (pGip)
+ {
+ u64Hz = pGip->u64CpuHz;
+ if (u64Hz < _1T && u64Hz > _1M)
+ return u64Hz;
+ AssertFailed(); /* This shouldn't happen. */
+
+ u64Hz = SUPGetCpuHzFromGip(pGip);
+ if (u64Hz < _1T && u64Hz > _1M)
+ return u64Hz;
+
+ AssertFailed(); /* This shouldn't happen. */
+ }
+ else
+ Assert(SUPR3IsDriverless());
+
+ /* Call this once first to make sure it's initialized. */
+ RTTimeNanoTS();
+
+ /*
+ * Yield the CPU to increase our chances of getting a correct value.
+ */
+ RTThreadYield(); /* Try avoid interruptions between TSC and NanoTS samplings. */
+ static const unsigned s_auSleep[5] = { 50, 30, 30, 40, 40 };
+ uint64_t au64Samples[5];
+ unsigned i;
+ for (i = 0; i < RT_ELEMENTS(au64Samples); i++)
+ {
+ RTMSINTERVAL cMillies;
+ int cTries = 5;
+ uint64_t u64Start = ASMReadTSC();
+ uint64_t u64End;
+ uint64_t StartTS = RTTimeNanoTS();
+ uint64_t EndTS;
+ do
+ {
+ RTThreadSleep(s_auSleep[i]);
+ u64End = ASMReadTSC();
+ EndTS = RTTimeNanoTS();
+ cMillies = (RTMSINTERVAL)((EndTS - StartTS + 500000) / 1000000);
+ } while ( cMillies == 0 /* the sleep may be interrupted... */
+ || (cMillies < 20 && --cTries > 0));
+ uint64_t u64Diff = u64End - u64Start;
+
+ au64Samples[i] = (u64Diff * 1000) / cMillies;
+ AssertMsg(cTries > 0, ("cMillies=%d i=%d\n", cMillies, i));
+ }
+
+ /*
+ * Discard the highest and lowest results and calculate the average.
+ */
+ unsigned iHigh = 0;
+ unsigned iLow = 0;
+ for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
+ {
+ if (au64Samples[i] < au64Samples[iLow])
+ iLow = i;
+ if (au64Samples[i] > au64Samples[iHigh])
+ iHigh = i;
+ }
+ au64Samples[iLow] = 0;
+ au64Samples[iHigh] = 0;
+
+ u64Hz = au64Samples[0];
+ for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
+ u64Hz += au64Samples[i];
+ u64Hz /= RT_ELEMENTS(au64Samples) - 2;
+
+ return u64Hz;
+}
+
+
+/**
+ * Finalizes the TM initialization.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ */
+VMM_INT_DECL(int) TMR3InitFinalize(PVM pVM)
+{
+ int rc;
+
+#ifndef VBOX_WITHOUT_NS_ACCOUNTING
+ /*
+ * Create a timer for refreshing the CPU load stats.
+ */
+ TMTIMERHANDLE hTimer;
+ rc = TMR3TimerCreate(pVM, TMCLOCK_REAL, tmR3CpuLoadTimer, NULL, TMTIMER_FLAGS_NO_RING0, "CPU Load Timer", &hTimer);
+ if (RT_SUCCESS(rc))
+ rc = TMTimerSetMillies(pVM, hTimer, 1000);
+#endif
+
+ /*
+ * GIM is now initialized. Determine if TSC mode switching is allowed (respecting CFGM override).
+ */
+ pVM->tm.s.fTSCModeSwitchAllowed &= tmR3HasFixedTSC(pVM) && GIMIsEnabled(pVM);
+ LogRel(("TM: TMR3InitFinalize: fTSCModeSwitchAllowed=%RTbool\n", pVM->tm.s.fTSCModeSwitchAllowed));
+
+ /*
+ * Grow the virtual & real timer tables so we've got sufficient
+ * space for dynamically created timers. We cannot allocate more
+ * after ring-0 init completes.
+ */
+ static struct { uint32_t idxQueue, cExtra; } s_aExtra[] = { {TMCLOCK_VIRTUAL, 128}, {TMCLOCK_REAL, 32} };
+ for (uint32_t i = 0; i < RT_ELEMENTS(s_aExtra); i++)
+ {
+ PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[s_aExtra[i].idxQueue];
+ PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED);
+ if (s_aExtra[i].cExtra > pQueue->cTimersFree)
+ {
+ uint32_t cTimersAlloc = pQueue->cTimersAlloc + s_aExtra[i].cExtra - pQueue->cTimersFree;
+ rc = tmR3TimerQueueGrow(pVM, pQueue, cTimersAlloc);
+ AssertLogRelMsgReturn(RT_SUCCESS(rc), ("rc=%Rrc cTimersAlloc=%u %s\n", rc, cTimersAlloc, pQueue->szName), rc);
+ }
+ PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
+ }
+
+#ifdef VBOX_WITH_STATISTICS
+ /*
+ * Register timer statistics now that we've fixed the timer table sizes.
+ */
+ for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
+ {
+ pVM->tm.s.aTimerQueues[idxQueue].fCannotGrow = true;
+ tmR3TimerQueueRegisterStats(pVM, &pVM->tm.s.aTimerQueues[idxQueue], UINT32_MAX);
+ }
+#endif
+
+ return rc;
+}
+
+
+/**
+ * Applies relocations to data and code managed by this
+ * component. This function will be called at init and
+ * whenever the VMM need to relocate it self inside the GC.
+ *
+ * @param pVM The cross context VM structure.
+ * @param offDelta Relocation delta relative to old location.
+ */
+VMM_INT_DECL(void) TMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
+{
+ LogFlow(("TMR3Relocate\n"));
+ RT_NOREF(pVM, offDelta);
+}
+
+
+/**
+ * Terminates the TM.
+ *
+ * Termination means cleaning up and freeing all resources,
+ * the VM it self is at this point powered off or suspended.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ */
+VMM_INT_DECL(int) TMR3Term(PVM pVM)
+{
+ if (pVM->tm.s.pTimer)
+ {
+ int rc = RTTimerDestroy(pVM->tm.s.pTimer);
+ AssertRC(rc);
+ pVM->tm.s.pTimer = NULL;
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * The VM is being reset.
+ *
+ * For the TM component this means that a rescheduling is preformed,
+ * the FF is cleared and but without running the queues. We'll have to
+ * check if this makes sense or not, but it seems like a good idea now....
+ *
+ * @param pVM The cross context VM structure.
+ */
+VMM_INT_DECL(void) TMR3Reset(PVM pVM)
+{
+ LogFlow(("TMR3Reset:\n"));
+ VM_ASSERT_EMT(pVM);
+
+ /*
+ * Abort any pending catch up.
+ * This isn't perfect...
+ */
+ if (pVM->tm.s.fVirtualSyncCatchUp)
+ {
+ const uint64_t offVirtualNow = TMVirtualGetNoCheck(pVM);
+ const uint64_t offVirtualSyncNow = TMVirtualSyncGetNoCheck(pVM);
+ if (pVM->tm.s.fVirtualSyncCatchUp)
+ {
+ STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
+
+ const uint64_t offOld = pVM->tm.s.offVirtualSyncGivenUp;
+ const uint64_t offNew = offVirtualNow - offVirtualSyncNow;
+ Assert(offOld <= offNew);
+ ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
+ ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSync, offNew);
+ ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
+ LogRel(("TM: Aborting catch-up attempt on reset with a %'RU64 ns lag on reset; new total: %'RU64 ns\n", offNew - offOld, offNew));
+ }
+ }
+
+ /*
+ * Process the queues.
+ */
+ for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
+ {
+ PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
+ PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
+ tmTimerQueueSchedule(pVM, pQueue, pQueue);
+ PDMCritSectLeave(pVM, &pQueue->TimerLock);
+ }
+#ifdef VBOX_STRICT
+ tmTimerQueuesSanityChecks(pVM, "TMR3Reset");
+#endif
+
+ PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu];
+ VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /** @todo FIXME: this isn't right. */
+
+ /*
+ * Switch TM TSC mode back to the original mode after a reset for
+ * paravirtualized guests that alter the TM TSC mode during operation.
+ * We're already in an EMT rendezvous at this point.
+ */
+ if ( pVM->tm.s.fTSCModeSwitchAllowed
+ && pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode)
+ {
+ VM_ASSERT_EMT0(pVM);
+ tmR3CpuTickParavirtDisable(pVM, pVM->apCpusR3[0], NULL /* pvData */);
+ }
+ Assert(!GIMIsParavirtTscEnabled(pVM));
+ pVM->tm.s.fParavirtTscEnabled = false;
+
+ /*
+ * Reset TSC to avoid a Windows 8+ bug (see @bugref{8926}). If Windows
+ * sees TSC value beyond 0x40000000000 at startup, it will reset the
+ * TSC on boot-up CPU only, causing confusion and mayhem with SMP.
+ */
+ VM_ASSERT_EMT0(pVM);
+ uint64_t offTscRawSrc;
+ switch (pVM->tm.s.enmTSCMode)
+ {
+ case TMTSCMODE_REAL_TSC_OFFSET:
+ offTscRawSrc = SUPReadTsc();
+ break;
+ case TMTSCMODE_DYNAMIC:
+ case TMTSCMODE_VIRT_TSC_EMULATED:
+ offTscRawSrc = TMVirtualSyncGetNoCheck(pVM);
+ offTscRawSrc = ASMMultU64ByU32DivByU32(offTscRawSrc, pVM->tm.s.cTSCTicksPerSecond, TMCLOCK_FREQ_VIRTUAL);
+ break;
+ case TMTSCMODE_NATIVE_API:
+ /** @todo NEM TSC reset on reset for Windows8+ bug workaround. */
+ offTscRawSrc = 0;
+ break;
+ default:
+ AssertFailedBreakStmt(offTscRawSrc = 0);
+ }
+ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
+ {
+ PVMCPU pVCpu = pVM->apCpusR3[idCpu];
+ pVCpu->tm.s.offTSCRawSrc = offTscRawSrc;
+ pVCpu->tm.s.u64TSC = 0;
+ pVCpu->tm.s.u64TSCLastSeen = 0;
+ }
+}
+
+
+/**
+ * Execute state save operation.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pSSM SSM operation handle.
+ */
+static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM)
+{
+ LogFlow(("tmR3Save:\n"));
+#ifdef VBOX_STRICT
+ for (VMCPUID i = 0; i < pVM->cCpus; i++)
+ {
+ PVMCPU pVCpu = pVM->apCpusR3[i];
+ Assert(!pVCpu->tm.s.fTSCTicking);
+ }
+ Assert(!pVM->tm.s.cVirtualTicking);
+ Assert(!pVM->tm.s.fVirtualSyncTicking);
+ Assert(!pVM->tm.s.cTSCsTicking);
+#endif
+
+ /*
+ * Save the virtual clocks.
+ */
+ /* the virtual clock. */
+ SSMR3PutU64(pSSM, TMCLOCK_FREQ_VIRTUAL);
+ SSMR3PutU64(pSSM, pVM->tm.s.u64Virtual);
+
+ /* the virtual timer synchronous clock. */
+ SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSync);
+ SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSync);
+ SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSyncGivenUp);
+ SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSyncCatchUpPrev);
+ SSMR3PutBool(pSSM, pVM->tm.s.fVirtualSyncCatchUp);
+
+ /* real time clock */
+ SSMR3PutU64(pSSM, TMCLOCK_FREQ_REAL);
+
+ /* the cpu tick clock. */
+ for (VMCPUID i = 0; i < pVM->cCpus; i++)
+ {
+ PVMCPU pVCpu = pVM->apCpusR3[i];
+ SSMR3PutU64(pSSM, TMCpuTickGet(pVCpu));
+ }
+ return SSMR3PutU64(pSSM, pVM->tm.s.cTSCTicksPerSecond);
+}
+
+
+/**
+ * Execute state load operation.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pSSM SSM operation handle.
+ * @param uVersion Data layout version.
+ * @param uPass The data pass.
+ */
+static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
+{
+ LogFlow(("tmR3Load:\n"));
+
+ Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
+#ifdef VBOX_STRICT
+ for (VMCPUID i = 0; i < pVM->cCpus; i++)
+ {
+ PVMCPU pVCpu = pVM->apCpusR3[i];
+ Assert(!pVCpu->tm.s.fTSCTicking);
+ }
+ Assert(!pVM->tm.s.cVirtualTicking);
+ Assert(!pVM->tm.s.fVirtualSyncTicking);
+ Assert(!pVM->tm.s.cTSCsTicking);
+#endif
+
+ /*
+ * Validate version.
+ */
+ if (uVersion != TM_SAVED_STATE_VERSION)
+ {
+ AssertMsgFailed(("tmR3Load: Invalid version uVersion=%d!\n", uVersion));
+ return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
+ }
+
+ /*
+ * Load the virtual clock.
+ */
+ pVM->tm.s.cVirtualTicking = 0;
+ /* the virtual clock. */
+ uint64_t u64Hz;
+ int rc = SSMR3GetU64(pSSM, &u64Hz);
+ if (RT_FAILURE(rc))
+ return rc;
+ if (u64Hz != TMCLOCK_FREQ_VIRTUAL)
+ {
+ AssertMsgFailed(("The virtual clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
+ u64Hz, TMCLOCK_FREQ_VIRTUAL));
+ return VERR_SSM_VIRTUAL_CLOCK_HZ;
+ }
+ SSMR3GetU64(pSSM, &pVM->tm.s.u64Virtual);
+ pVM->tm.s.u64VirtualOffset = 0;
+
+ /* the virtual timer synchronous clock. */
+ pVM->tm.s.fVirtualSyncTicking = false;
+ uint64_t u64;
+ SSMR3GetU64(pSSM, &u64);
+ pVM->tm.s.u64VirtualSync = u64;
+ SSMR3GetU64(pSSM, &u64);
+ pVM->tm.s.offVirtualSync = u64;
+ SSMR3GetU64(pSSM, &u64);
+ pVM->tm.s.offVirtualSyncGivenUp = u64;
+ SSMR3GetU64(pSSM, &u64);
+ pVM->tm.s.u64VirtualSyncCatchUpPrev = u64;
+ bool f;
+ SSMR3GetBool(pSSM, &f);
+ pVM->tm.s.fVirtualSyncCatchUp = f;
+
+ /* the real clock */
+ rc = SSMR3GetU64(pSSM, &u64Hz);
+ if (RT_FAILURE(rc))
+ return rc;
+ if (u64Hz != TMCLOCK_FREQ_REAL)
+ {
+ AssertMsgFailed(("The real clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
+ u64Hz, TMCLOCK_FREQ_REAL));
+ return VERR_SSM_VIRTUAL_CLOCK_HZ; /* misleading... */
+ }
+
+ /* the cpu tick clock. */
+ pVM->tm.s.cTSCsTicking = 0;
+ pVM->tm.s.offTSCPause = 0;
+ pVM->tm.s.u64LastPausedTSC = 0;
+ for (VMCPUID i = 0; i < pVM->cCpus; i++)
+ {
+ PVMCPU pVCpu = pVM->apCpusR3[i];
+
+ pVCpu->tm.s.fTSCTicking = false;
+ SSMR3GetU64(pSSM, &pVCpu->tm.s.u64TSC);
+ if (pVM->tm.s.u64LastPausedTSC < pVCpu->tm.s.u64TSC)
+ pVM->tm.s.u64LastPausedTSC = pVCpu->tm.s.u64TSC;
+
+ if (pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET)
+ pVCpu->tm.s.offTSCRawSrc = 0; /** @todo TSC restore stuff and HWACC. */
+ }
+
+ rc = SSMR3GetU64(pSSM, &u64Hz);
+ if (RT_FAILURE(rc))
+ return rc;
+ if (pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET)
+ pVM->tm.s.cTSCTicksPerSecond = u64Hz;
+
+ LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%'RU64) enmTSCMode=%d (%s) (state load)\n",
+ pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM)));
+
+ /* Disabled as this isn't tested, also should this apply only if GIM is enabled etc. */
+#if 0
+ /*
+ * If the current host TSC frequency is incompatible with what is in the
+ * saved state of the VM, fall back to emulating TSC and disallow TSC mode
+ * switches during VM runtime (e.g. by GIM).
+ */
+ if ( GIMIsEnabled(pVM)
+ || pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET)
+ {
+ uint64_t uGipCpuHz;
+ bool fRelax = RTSystemIsInsideVM();
+ bool fCompat = SUPIsTscFreqCompatible(pVM->tm.s.cTSCTicksPerSecond, &uGipCpuHz, fRelax);
+ if (!fCompat)
+ {
+ pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
+ pVM->tm.s.fTSCModeSwitchAllowed = false;
+ if (g_pSUPGlobalInfoPage->u32Mode != SUPGIPMODE_ASYNC_TSC)
+ {
+ LogRel(("TM: TSC frequency incompatible! uGipCpuHz=%#RX64 (%'RU64) enmTSCMode=%d (%s) fTSCModeSwitchAllowed=%RTbool (state load)\n",
+ uGipCpuHz, uGipCpuHz, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM), pVM->tm.s.fTSCModeSwitchAllowed));
+ }
+ else
+ {
+ LogRel(("TM: GIP is async, enmTSCMode=%d (%s) fTSCModeSwitchAllowed=%RTbool (state load)\n",
+ uGipCpuHz, uGipCpuHz, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM), pVM->tm.s.fTSCModeSwitchAllowed));
+ }
+ }
+ }
+#endif
+
+ /*
+ * Make sure timers get rescheduled immediately.
+ */
+ PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu];
+ VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
+
+ return VINF_SUCCESS;
+}
+
+#ifdef VBOX_WITH_STATISTICS
+
+/**
+ * Register statistics for a timer.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pQueue The queue the timer belongs to.
+ * @param pTimer The timer to register statistics for.
+ */
+static void tmR3TimerRegisterStats(PVM pVM, PTMTIMERQUEUE pQueue, PTMTIMER pTimer)
+{
+ STAMR3RegisterF(pVM, &pTimer->StatTimer, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL,
+ pQueue->szName, "/TM/Timers/%s", pTimer->szName);
+ STAMR3RegisterF(pVM, &pTimer->StatCritSectEnter, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL,
+ "", "/TM/Timers/%s/CritSectEnter", pTimer->szName);
+ STAMR3RegisterF(pVM, &pTimer->StatGet, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS,
+ "", "/TM/Timers/%s/Get", pTimer->szName);
+ STAMR3RegisterF(pVM, &pTimer->StatSetAbsolute, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS,
+ "", "/TM/Timers/%s/SetAbsolute", pTimer->szName);
+ STAMR3RegisterF(pVM, &pTimer->StatSetRelative, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS,
+ "", "/TM/Timers/%s/SetRelative", pTimer->szName);
+ STAMR3RegisterF(pVM, &pTimer->StatStop, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS,
+ "", "/TM/Timers/%s/Stop", pTimer->szName);
+}
+
+
+/**
+ * Deregister the statistics for a timer.
+ */
+static void tmR3TimerDeregisterStats(PVM pVM, PTMTIMER pTimer)
+{
+ char szPrefix[128];
+ size_t cchPrefix = RTStrPrintf(szPrefix, sizeof(szPrefix), "/TM/Timers/%s/", pTimer->szName);
+ STAMR3DeregisterByPrefix(pVM->pUVM, szPrefix);
+ szPrefix[cchPrefix - 1] = '\0';
+ STAMR3Deregister(pVM->pUVM, szPrefix);
+}
+
+
+/**
+ * Register statistics for all allocated timers in a queue.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pQueue The queue to register statistics for.
+ * @param cTimers Number of timers to consider (in growth scenario).
+ */
+static void tmR3TimerQueueRegisterStats(PVM pVM, PTMTIMERQUEUE pQueue, uint32_t cTimers)
+{
+ uint32_t idxTimer = RT_MIN(cTimers, pQueue->cTimersAlloc);
+ while (idxTimer-- > 0)
+ {
+ PTMTIMER pTimer = &pQueue->paTimers[idxTimer];
+ TMTIMERSTATE enmState = pTimer->enmState;
+ if (enmState > TMTIMERSTATE_INVALID && enmState < TMTIMERSTATE_DESTROY)
+ tmR3TimerRegisterStats(pVM, pQueue, pTimer);
+ }
+}
+
+#endif /* VBOX_WITH_STATISTICS */
+
+
+/**
+ * Grows a timer queue.
+ *
+ * @returns VBox status code (errors are LogRel'ed already).
+ * @param pVM The cross context VM structure.
+ * @param pQueue The timer queue to grow.
+ * @param cNewTimers The minimum number of timers after growing.
+ * @note Caller owns the queue's allocation lock.
+ */
+static int tmR3TimerQueueGrow(PVM pVM, PTMTIMERQUEUE pQueue, uint32_t cNewTimers)
+{
+ /*
+ * Validate input and state.
+ */
+ VM_ASSERT_EMT0_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
+ VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE); /** @todo must do better than this! */
+ AssertReturn(!pQueue->fCannotGrow, VERR_TM_TIMER_QUEUE_CANNOT_GROW);
+
+ uint32_t const cOldEntries = pQueue->cTimersAlloc;
+ AssertReturn(cNewTimers > cOldEntries, VERR_TM_IPE_1);
+ AssertReturn(cNewTimers < _32K, VERR_TM_IPE_1);
+
+ /*
+ * Do the growing.
+ */
+ int rc;
+ if (!SUPR3IsDriverless())
+ {
+ rc = VMMR3CallR0Emt(pVM, VMMGetCpu(pVM), VMMR0_DO_TM_GROW_TIMER_QUEUE,
+ RT_MAKE_U64(cNewTimers, (uint64_t)(pQueue - &pVM->tm.s.aTimerQueues[0])), NULL);
+ AssertLogRelRCReturn(rc, rc);
+ AssertReturn(pQueue->cTimersAlloc >= cNewTimers, VERR_TM_IPE_3);
+ }
+ else
+ {
+ AssertReturn(cNewTimers <= _32K && cOldEntries <= _32K, VERR_TM_TOO_MANY_TIMERS);
+ ASMCompilerBarrier();
+
+ /*
+ * Round up the request to the nearest page and do the allocation.
+ */
+ size_t cbNew = sizeof(TMTIMER) * cNewTimers;
+ cbNew = RT_ALIGN_Z(cbNew, HOST_PAGE_SIZE);
+ cNewTimers = (uint32_t)(cbNew / sizeof(TMTIMER));
+
+ PTMTIMER paTimers = (PTMTIMER)RTMemPageAllocZ(cbNew);
+ if (paTimers)
+ {
+ /*
+ * Copy over the old timer, init the new free ones, then switch over
+ * and free the old ones.
+ */
+ PTMTIMER const paOldTimers = pQueue->paTimers;
+ tmHCTimerQueueGrowInit(paTimers, paOldTimers, cNewTimers, cOldEntries);
+
+ pQueue->paTimers = paTimers;
+ pQueue->cTimersAlloc = cNewTimers;
+ pQueue->cTimersFree += cNewTimers - (cOldEntries ? cOldEntries : 1);
+
+ RTMemPageFree(paOldTimers, RT_ALIGN_Z(sizeof(TMTIMER) * cOldEntries, HOST_PAGE_SIZE));
+ rc = VINF_SUCCESS;
+ }
+ else
+ rc = VERR_NO_PAGE_MEMORY;
+ }
+ return rc;
+}
+
+
+/**
+ * Internal TMR3TimerCreate worker.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param enmClock The timer clock.
+ * @param fFlags TMTIMER_FLAGS_XXX.
+ * @param pszName The timer name.
+ * @param ppTimer Where to store the timer pointer on success.
+ */
+static int tmr3TimerCreate(PVM pVM, TMCLOCK enmClock, uint32_t fFlags, const char *pszName, PPTMTIMERR3 ppTimer)
+{
+ PTMTIMER pTimer;
+
+ /*
+ * Validate input.
+ */
+ VM_ASSERT_EMT(pVM);
+
+ AssertReturn((fFlags & (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0)) != (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0),
+ VERR_INVALID_FLAGS);
+
+ AssertPtrReturn(pszName, VERR_INVALID_POINTER);
+ size_t const cchName = strlen(pszName);
+ AssertMsgReturn(cchName < sizeof(pTimer->szName), ("timer name too long: %s\n", pszName), VERR_INVALID_NAME);
+ AssertMsgReturn(cchName > 2, ("Too short timer name: %s\n", pszName), VERR_INVALID_NAME);
+
+ AssertMsgReturn(enmClock >= TMCLOCK_REAL && enmClock < TMCLOCK_MAX,
+ ("%d\n", enmClock), VERR_INVALID_PARAMETER);
+ AssertReturn(enmClock != TMCLOCK_TSC, VERR_NOT_SUPPORTED);
+ if (enmClock == TMCLOCK_VIRTUAL_SYNC)
+ VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_WRONG_ORDER);
+
+ /*
+ * Exclusively lock the queue.
+ *
+ * Note! This means that it is not possible to allocate timers from a timer callback.
+ */
+ PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[enmClock];
+ int rc = PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED);
+ AssertRCReturn(rc, rc);
+
+ /*
+ * Allocate the timer.
+ */
+ if (!pQueue->cTimersFree)
+ {
+ rc = tmR3TimerQueueGrow(pVM, pQueue, pQueue->cTimersAlloc + 64);
+ AssertRCReturnStmt(rc, PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock), rc);
+ }
+
+ /* Scan the array for free timers. */
+ pTimer = NULL;
+ PTMTIMER const paTimers = pQueue->paTimers;
+ uint32_t const cTimersAlloc = pQueue->cTimersAlloc;
+ uint32_t idxTimer = pQueue->idxFreeHint;
+ for (uint32_t iScan = 0; iScan < 2; iScan++)
+ {
+ while (idxTimer < cTimersAlloc)
+ {
+ if (paTimers[idxTimer].enmState == TMTIMERSTATE_FREE)
+ {
+ pTimer = &paTimers[idxTimer];
+ pQueue->idxFreeHint = idxTimer + 1;
+ break;
+ }
+ idxTimer++;
+ }
+ if (pTimer != NULL)
+ break;
+ idxTimer = 1;
+ }
+ AssertLogRelMsgReturnStmt(pTimer != NULL, ("cTimersFree=%u cTimersAlloc=%u enmClock=%s\n", pQueue->cTimersFree,
+ pQueue->cTimersAlloc, pQueue->szName),
+ PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock), VERR_INTERNAL_ERROR_3);
+ pQueue->cTimersFree -= 1;
+
+ /*
+ * Initialize it.
+ */
+ Assert(idxTimer != 0);
+ Assert(idxTimer <= TMTIMERHANDLE_TIMER_IDX_MASK);
+ pTimer->hSelf = idxTimer
+ | ((uintptr_t)(pQueue - &pVM->tm.s.aTimerQueues[0]) << TMTIMERHANDLE_QUEUE_IDX_SHIFT);
+ Assert(!(pTimer->hSelf & TMTIMERHANDLE_RANDOM_MASK));
+ pTimer->hSelf |= (RTRandU64() & TMTIMERHANDLE_RANDOM_MASK);
+
+ pTimer->u64Expire = 0;
+ pTimer->enmState = TMTIMERSTATE_STOPPED;
+ pTimer->idxScheduleNext = UINT32_MAX;
+ pTimer->idxNext = UINT32_MAX;
+ pTimer->idxPrev = UINT32_MAX;
+ pTimer->fFlags = fFlags;
+ pTimer->uHzHint = 0;
+ pTimer->pvUser = NULL;
+ pTimer->pCritSect = NULL;
+ memcpy(pTimer->szName, pszName, cchName);
+ pTimer->szName[cchName] = '\0';
+
+#ifdef VBOX_STRICT
+ tmTimerQueuesSanityChecks(pVM, "tmR3TimerCreate");
+#endif
+
+ PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
+
+#ifdef VBOX_WITH_STATISTICS
+ /*
+ * Only register statistics if we're passed the no-realloc point.
+ */
+ if (pQueue->fCannotGrow)
+ tmR3TimerRegisterStats(pVM, pQueue, pTimer);
+#endif
+
+ *ppTimer = pTimer;
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Creates a device timer.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pDevIns Device instance.
+ * @param enmClock The clock to use on this timer.
+ * @param pfnCallback Callback function.
+ * @param pvUser The user argument to the callback.
+ * @param fFlags Timer creation flags, see grp_tm_timer_flags.
+ * @param pszName Timer name (will be copied). Max 31 chars.
+ * @param phTimer Where to store the timer handle on success.
+ */
+VMM_INT_DECL(int) TMR3TimerCreateDevice(PVM pVM, PPDMDEVINS pDevIns, TMCLOCK enmClock,
+ PFNTMTIMERDEV pfnCallback, void *pvUser,
+ uint32_t fFlags, const char *pszName, PTMTIMERHANDLE phTimer)
+{
+ AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0)),
+ VERR_INVALID_FLAGS);
+
+ /*
+ * Allocate and init stuff.
+ */
+ PTMTIMER pTimer;
+ int rc = tmr3TimerCreate(pVM, enmClock, fFlags, pszName, &pTimer);
+ if (RT_SUCCESS(rc))
+ {
+ pTimer->enmType = TMTIMERTYPE_DEV;
+ pTimer->u.Dev.pfnTimer = pfnCallback;
+ pTimer->u.Dev.pDevIns = pDevIns;
+ pTimer->pvUser = pvUser;
+ if (!(fFlags & TMTIMER_FLAGS_NO_CRIT_SECT))
+ pTimer->pCritSect = PDMR3DevGetCritSect(pVM, pDevIns);
+ *phTimer = pTimer->hSelf;
+ Log(("TM: Created device timer %p clock %d callback %p '%s'\n", phTimer, enmClock, pfnCallback, pszName));
+ }
+
+ return rc;
+}
+
+
+
+
+/**
+ * Creates a USB device timer.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pUsbIns The USB device instance.
+ * @param enmClock The clock to use on this timer.
+ * @param pfnCallback Callback function.
+ * @param pvUser The user argument to the callback.
+ * @param fFlags Timer creation flags, see grp_tm_timer_flags.
+ * @param pszName Timer name (will be copied). Max 31 chars.
+ * @param phTimer Where to store the timer handle on success.
+ */
+VMM_INT_DECL(int) TMR3TimerCreateUsb(PVM pVM, PPDMUSBINS pUsbIns, TMCLOCK enmClock,
+ PFNTMTIMERUSB pfnCallback, void *pvUser,
+ uint32_t fFlags, const char *pszName, PTMTIMERHANDLE phTimer)
+{
+ AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_NO_RING0)), VERR_INVALID_PARAMETER);
+
+ /*
+ * Allocate and init stuff.
+ */
+ PTMTIMER pTimer;
+ int rc = tmr3TimerCreate(pVM, enmClock, fFlags, pszName, &pTimer);
+ if (RT_SUCCESS(rc))
+ {
+ pTimer->enmType = TMTIMERTYPE_USB;
+ pTimer->u.Usb.pfnTimer = pfnCallback;
+ pTimer->u.Usb.pUsbIns = pUsbIns;
+ pTimer->pvUser = pvUser;
+ //if (!(fFlags & TMTIMER_FLAGS_NO_CRIT_SECT))
+ //{
+ // if (pDevIns->pCritSectR3)
+ // pTimer->pCritSect = pUsbIns->pCritSectR3;
+ // else
+ // pTimer->pCritSect = IOMR3GetCritSect(pVM);
+ //}
+ *phTimer = pTimer->hSelf;
+ Log(("TM: Created USB device timer %p clock %d callback %p '%s'\n", *phTimer, enmClock, pfnCallback, pszName));
+ }
+
+ return rc;
+}
+
+
+/**
+ * Creates a driver timer.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pDrvIns Driver instance.
+ * @param enmClock The clock to use on this timer.
+ * @param pfnCallback Callback function.
+ * @param pvUser The user argument to the callback.
+ * @param fFlags Timer creation flags, see grp_tm_timer_flags.
+ * @param pszName Timer name (will be copied). Max 31 chars.
+ * @param phTimer Where to store the timer handle on success.
+ */
+VMM_INT_DECL(int) TMR3TimerCreateDriver(PVM pVM, PPDMDRVINS pDrvIns, TMCLOCK enmClock, PFNTMTIMERDRV pfnCallback, void *pvUser,
+ uint32_t fFlags, const char *pszName, PTMTIMERHANDLE phTimer)
+{
+ AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0)),
+ VERR_INVALID_FLAGS);
+
+ /*
+ * Allocate and init stuff.
+ */
+ PTMTIMER pTimer;
+ int rc = tmr3TimerCreate(pVM, enmClock, fFlags, pszName, &pTimer);
+ if (RT_SUCCESS(rc))
+ {
+ pTimer->enmType = TMTIMERTYPE_DRV;
+ pTimer->u.Drv.pfnTimer = pfnCallback;
+ pTimer->u.Drv.pDrvIns = pDrvIns;
+ pTimer->pvUser = pvUser;
+ *phTimer = pTimer->hSelf;
+ Log(("TM: Created device timer %p clock %d callback %p '%s'\n", *phTimer, enmClock, pfnCallback, pszName));
+ }
+
+ return rc;
+}
+
+
+/**
+ * Creates an internal timer.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param enmClock The clock to use on this timer.
+ * @param pfnCallback Callback function.
+ * @param pvUser User argument to be passed to the callback.
+ * @param fFlags Timer creation flags, see grp_tm_timer_flags.
+ * @param pszName Timer name (will be copied). Max 31 chars.
+ * @param phTimer Where to store the timer handle on success.
+ */
+VMMR3DECL(int) TMR3TimerCreate(PVM pVM, TMCLOCK enmClock, PFNTMTIMERINT pfnCallback, void *pvUser,
+ uint32_t fFlags, const char *pszName, PTMTIMERHANDLE phTimer)
+{
+ AssertReturn(fFlags & (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0), VERR_INVALID_FLAGS);
+ AssertReturn((fFlags & (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0)) != (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0),
+ VERR_INVALID_FLAGS);
+
+ /*
+ * Allocate and init stuff.
+ */
+ PTMTIMER pTimer;
+ int rc = tmr3TimerCreate(pVM, enmClock, fFlags, pszName, &pTimer);
+ if (RT_SUCCESS(rc))
+ {
+ pTimer->enmType = TMTIMERTYPE_INTERNAL;
+ pTimer->u.Internal.pfnTimer = pfnCallback;
+ pTimer->pvUser = pvUser;
+ *phTimer = pTimer->hSelf;
+ Log(("TM: Created internal timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszName));
+ }
+
+ return rc;
+}
+
+
+/**
+ * Destroy a timer
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pQueue The queue the timer is on.
+ * @param pTimer Timer handle as returned by one of the create functions.
+ */
+static int tmR3TimerDestroy(PVMCC pVM, PTMTIMERQUEUE pQueue, PTMTIMER pTimer)
+{
+ bool fActive = false;
+ bool fPending = false;
+
+ AssertMsg( !pTimer->pCritSect
+ || VMR3GetState(pVM) != VMSTATE_RUNNING
+ || PDMCritSectIsOwner(pVM, pTimer->pCritSect), ("%s\n", pTimer->szName));
+
+ /*
+ * The rest of the game happens behind the lock, just
+ * like create does. All the work is done here.
+ */
+ PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED);
+ PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
+
+ for (int cRetries = 1000;; cRetries--)
+ {
+ /*
+ * Change to the DESTROY state.
+ */
+ TMTIMERSTATE const enmState = pTimer->enmState;
+ Log2(("TMTimerDestroy: %p:{.enmState=%s, .szName='%s'} cRetries=%d\n",
+ pTimer, tmTimerState(enmState), pTimer->szName, cRetries));
+ switch (enmState)
+ {
+ case TMTIMERSTATE_STOPPED:
+ case TMTIMERSTATE_EXPIRED_DELIVER:
+ break;
+
+ case TMTIMERSTATE_ACTIVE:
+ fActive = true;
+ break;
+
+ case TMTIMERSTATE_PENDING_STOP:
+ case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
+ case TMTIMERSTATE_PENDING_RESCHEDULE:
+ fActive = true;
+ fPending = true;
+ break;
+
+ case TMTIMERSTATE_PENDING_SCHEDULE:
+ fPending = true;
+ break;
+
+ /*
+ * This shouldn't happen as the caller should make sure there are no races.
+ */
+ case TMTIMERSTATE_EXPIRED_GET_UNLINK:
+ case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
+ case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
+ AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->szName));
+ PDMCritSectLeave(pVM, &pQueue->TimerLock);
+ PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
+
+ AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->szName),
+ VERR_TM_UNSTABLE_STATE);
+ if (!RTThreadYield())
+ RTThreadSleep(1);
+
+ PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED);
+ PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
+ continue;
+
+ /*
+ * Invalid states.
+ */
+ case TMTIMERSTATE_FREE:
+ case TMTIMERSTATE_DESTROY:
+ PDMCritSectLeave(pVM, &pQueue->TimerLock);
+ PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
+ AssertLogRelMsgFailedReturn(("pTimer=%p %s\n", pTimer, tmTimerState(enmState)), VERR_TM_INVALID_STATE);
+
+ default:
+ AssertMsgFailed(("Unknown timer state %d (%s)\n", enmState, pTimer->szName));
+ PDMCritSectLeave(pVM, &pQueue->TimerLock);
+ PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
+ return VERR_TM_UNKNOWN_STATE;
+ }
+
+ /*
+ * Try switch to the destroy state.
+ * This should always succeed as the caller should make sure there are no race.
+ */
+ bool fRc;
+ TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_DESTROY, enmState, fRc);
+ if (fRc)
+ break;
+ AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->szName));
+ PDMCritSectLeave(pVM, &pQueue->TimerLock);
+ PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
+
+ AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->szName),
+ VERR_TM_UNSTABLE_STATE);
+
+ PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED);
+ PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
+ }
+
+ /*
+ * Unlink from the active list.
+ */
+ if (fActive)
+ {
+ const PTMTIMER pPrev = tmTimerGetPrev(pQueue, pTimer);
+ const PTMTIMER pNext = tmTimerGetNext(pQueue, pTimer);
+ if (pPrev)
+ tmTimerSetNext(pQueue, pPrev, pNext);
+ else
+ {
+ tmTimerQueueSetHead(pQueue, pQueue, pNext);
+ pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
+ }
+ if (pNext)
+ tmTimerSetPrev(pQueue, pNext, pPrev);
+ pTimer->idxNext = UINT32_MAX;
+ pTimer->idxPrev = UINT32_MAX;
+ }
+
+ /*
+ * Unlink from the schedule list by running it.
+ */
+ if (fPending)
+ {
+ Log3(("TMR3TimerDestroy: tmTimerQueueSchedule\n"));
+ STAM_PROFILE_START(&pVM->tm.s.CTX_SUFF_Z(StatScheduleOne), a);
+ Assert(pQueue->idxSchedule < pQueue->cTimersAlloc);
+ tmTimerQueueSchedule(pVM, pQueue, pQueue);
+ STAM_PROFILE_STOP(&pVM->tm.s.CTX_SUFF_Z(StatScheduleOne), a);
+ }
+
+#ifdef VBOX_WITH_STATISTICS
+ /*
+ * Deregister statistics.
+ */
+ tmR3TimerDeregisterStats(pVM, pTimer);
+#endif
+
+ /*
+ * Change it to free state and update the queue accordingly.
+ */
+ Assert(pTimer->idxNext == UINT32_MAX); Assert(pTimer->idxPrev == UINT32_MAX); Assert(pTimer->idxScheduleNext == UINT32_MAX);
+
+ TM_SET_STATE(pTimer, TMTIMERSTATE_FREE);
+
+ pQueue->cTimersFree += 1;
+ uint32_t idxTimer = (uint32_t)(pTimer - pQueue->paTimers);
+ if (idxTimer < pQueue->idxFreeHint)
+ pQueue->idxFreeHint = idxTimer;
+
+#ifdef VBOX_STRICT
+ tmTimerQueuesSanityChecks(pVM, "TMR3TimerDestroy");
+#endif
+ PDMCritSectLeave(pVM, &pQueue->TimerLock);
+ PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Destroy a timer
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param hTimer Timer handle as returned by one of the create functions.
+ */
+VMMR3DECL(int) TMR3TimerDestroy(PVM pVM, TMTIMERHANDLE hTimer)
+{
+ /* We ignore NILs here. */
+ if (hTimer == NIL_TMTIMERHANDLE)
+ return VINF_SUCCESS;
+ TMTIMER_HANDLE_TO_VARS_RETURN(pVM, hTimer); /* => pTimer, pQueueCC, pQueue, idxTimer, idxQueue */
+ return tmR3TimerDestroy(pVM, pQueue, pTimer);
+}
+
+
+/**
+ * Destroy all timers owned by a device.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pDevIns Device which timers should be destroyed.
+ */
+VMM_INT_DECL(int) TMR3TimerDestroyDevice(PVM pVM, PPDMDEVINS pDevIns)
+{
+ LogFlow(("TMR3TimerDestroyDevice: pDevIns=%p\n", pDevIns));
+ if (!pDevIns)
+ return VERR_INVALID_PARAMETER;
+
+ for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
+ {
+ PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
+ PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
+ uint32_t idxTimer = pQueue->cTimersAlloc;
+ while (idxTimer-- > 0)
+ {
+ PTMTIMER pTimer = &pQueue->paTimers[idxTimer];
+ if ( pTimer->enmType == TMTIMERTYPE_DEV
+ && pTimer->u.Dev.pDevIns == pDevIns
+ && pTimer->enmState < TMTIMERSTATE_DESTROY)
+ {
+ PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
+
+ int rc = tmR3TimerDestroy(pVM, pQueue, pTimer);
+ AssertRC(rc);
+
+ PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
+ }
+ }
+ PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
+ }
+
+ LogFlow(("TMR3TimerDestroyDevice: returns VINF_SUCCESS\n"));
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Destroy all timers owned by a USB device.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pUsbIns USB device which timers should be destroyed.
+ */
+VMM_INT_DECL(int) TMR3TimerDestroyUsb(PVM pVM, PPDMUSBINS pUsbIns)
+{
+ LogFlow(("TMR3TimerDestroyUsb: pUsbIns=%p\n", pUsbIns));
+ if (!pUsbIns)
+ return VERR_INVALID_PARAMETER;
+
+ for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
+ {
+ PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
+ PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
+ uint32_t idxTimer = pQueue->cTimersAlloc;
+ while (idxTimer-- > 0)
+ {
+ PTMTIMER pTimer = &pQueue->paTimers[idxTimer];
+ if ( pTimer->enmType == TMTIMERTYPE_USB
+ && pTimer->u.Usb.pUsbIns == pUsbIns
+ && pTimer->enmState < TMTIMERSTATE_DESTROY)
+ {
+ PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
+
+ int rc = tmR3TimerDestroy(pVM, pQueue, pTimer);
+ AssertRC(rc);
+
+ PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
+ }
+ }
+ PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
+ }
+
+ LogFlow(("TMR3TimerDestroyUsb: returns VINF_SUCCESS\n"));
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Destroy all timers owned by a driver.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pDrvIns Driver which timers should be destroyed.
+ */
+VMM_INT_DECL(int) TMR3TimerDestroyDriver(PVM pVM, PPDMDRVINS pDrvIns)
+{
+ LogFlow(("TMR3TimerDestroyDriver: pDrvIns=%p\n", pDrvIns));
+ if (!pDrvIns)
+ return VERR_INVALID_PARAMETER;
+
+ for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
+ {
+ PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
+ PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
+ uint32_t idxTimer = pQueue->cTimersAlloc;
+ while (idxTimer-- > 0)
+ {
+ PTMTIMER pTimer = &pQueue->paTimers[idxTimer];
+ if ( pTimer->enmType == TMTIMERTYPE_DRV
+ && pTimer->u.Drv.pDrvIns == pDrvIns
+ && pTimer->enmState < TMTIMERSTATE_DESTROY)
+ {
+ PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
+
+ int rc = tmR3TimerDestroy(pVM, pQueue, pTimer);
+ AssertRC(rc);
+
+ PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
+ }
+ }
+ PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
+ }
+
+ LogFlow(("TMR3TimerDestroyDriver: returns VINF_SUCCESS\n"));
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Internal function for getting the clock time.
+ *
+ * @returns clock time.
+ * @param pVM The cross context VM structure.
+ * @param enmClock The clock.
+ */
+DECLINLINE(uint64_t) tmClock(PVM pVM, TMCLOCK enmClock)
+{
+ switch (enmClock)
+ {
+ case TMCLOCK_VIRTUAL: return TMVirtualGet(pVM);
+ case TMCLOCK_VIRTUAL_SYNC: return TMVirtualSyncGet(pVM);
+ case TMCLOCK_REAL: return TMRealGet(pVM);
+ case TMCLOCK_TSC: return TMCpuTickGet(pVM->apCpusR3[0] /* just take VCPU 0 */);
+ default:
+ AssertMsgFailed(("enmClock=%d\n", enmClock));
+ return ~(uint64_t)0;
+ }
+}
+
+
+/**
+ * Checks if the sync queue has one or more expired timers.
+ *
+ * @returns true / false.
+ *
+ * @param pVM The cross context VM structure.
+ * @param enmClock The queue.
+ */
+DECLINLINE(bool) tmR3HasExpiredTimer(PVM pVM, TMCLOCK enmClock)
+{
+ const uint64_t u64Expire = pVM->tm.s.aTimerQueues[enmClock].u64Expire;
+ return u64Expire != INT64_MAX && u64Expire <= tmClock(pVM, enmClock);
+}
+
+
+/**
+ * Checks for expired timers in all the queues.
+ *
+ * @returns true / false.
+ * @param pVM The cross context VM structure.
+ */
+DECLINLINE(bool) tmR3AnyExpiredTimers(PVM pVM)
+{
+ /*
+ * Combine the time calculation for the first two since we're not on EMT
+ * TMVirtualSyncGet only permits EMT.
+ */
+ uint64_t u64Now = TMVirtualGetNoCheck(pVM);
+ if (pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].u64Expire <= u64Now)
+ return true;
+ u64Now = pVM->tm.s.fVirtualSyncTicking
+ ? u64Now - pVM->tm.s.offVirtualSync
+ : pVM->tm.s.u64VirtualSync;
+ if (pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].u64Expire <= u64Now)
+ return true;
+
+ /*
+ * The remaining timers.
+ */
+ if (tmR3HasExpiredTimer(pVM, TMCLOCK_REAL))
+ return true;
+ if (tmR3HasExpiredTimer(pVM, TMCLOCK_TSC))
+ return true;
+ return false;
+}
+
+
+/**
+ * Schedule timer callback.
+ *
+ * @param pTimer Timer handle.
+ * @param pvUser Pointer to the VM.
+ * @thread Timer thread.
+ *
+ * @remark We cannot do the scheduling and queues running from a timer handler
+ * since it's not executing in EMT, and even if it was it would be async
+ * and we wouldn't know the state of the affairs.
+ * So, we'll just raise the timer FF and force any REM execution to exit.
+ */
+static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t /*iTick*/)
+{
+ PVM pVM = (PVM)pvUser;
+ PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu];
+ NOREF(pTimer);
+
+ AssertCompile(TMCLOCK_MAX == 4);
+ STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallback);
+
+#ifdef DEBUG_Sander /* very annoying, keep it private. */
+ if (VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER))
+ Log(("tmR3TimerCallback: timer event still pending!!\n"));
+#endif
+ if ( !VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)
+ && ( pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].idxSchedule != UINT32_MAX /** @todo FIXME - reconsider offSchedule as a reason for running the timer queues. */
+ || pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].idxSchedule != UINT32_MAX
+ || pVM->tm.s.aTimerQueues[TMCLOCK_REAL].idxSchedule != UINT32_MAX
+ || pVM->tm.s.aTimerQueues[TMCLOCK_TSC].idxSchedule != UINT32_MAX
+ || tmR3AnyExpiredTimers(pVM)
+ )
+ && !VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)
+ && !pVM->tm.s.fRunningQueues
+ )
+ {
+ Log5(("TM(%u): FF: 0 -> 1\n", __LINE__));
+ VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
+ VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM | VMNOTIFYFF_FLAGS_POKE);
+ STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallbackSetFF);
+ }
+}
+
+
+/**
+ * Worker for tmR3TimerQueueDoOne that runs pending timers on the specified
+ * non-empty timer queue.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pQueue The queue to run.
+ * @param pTimer The head timer. Caller already check that this is
+ * not NULL.
+ */
+static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue, PTMTIMER pTimer)
+{
+ VM_ASSERT_EMT(pVM); /** @todo relax this */
+
+ /*
+ * Run timers.
+ *
+ * We check the clock once and run all timers which are ACTIVE
+ * and have an expire time less or equal to the time we read.
+ *
+ * N.B. A generic unlink must be applied since other threads
+ * are allowed to mess with any active timer at any time.
+ *
+ * However, we only allow EMT to handle EXPIRED_PENDING
+ * timers, thus enabling the timer handler function to
+ * arm the timer again.
+ */
+/** @todo the above 'however' is outdated. */
+ const uint64_t u64Now = tmClock(pVM, pQueue->enmClock);
+ while (pTimer->u64Expire <= u64Now)
+ {
+ PTMTIMER const pNext = tmTimerGetNext(pQueue, pTimer);
+ PPDMCRITSECT pCritSect = pTimer->pCritSect;
+ if (pCritSect)
+ {
+ STAM_PROFILE_START(&pTimer->StatCritSectEnter, Locking);
+ PDMCritSectEnter(pVM, pCritSect, VERR_IGNORED);
+ STAM_PROFILE_STOP(&pTimer->StatCritSectEnter, Locking);
+ }
+ Log2(("tmR3TimerQueueRun: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .szName='%s'}\n",
+ pTimer, tmTimerState(pTimer->enmState), pQueue->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->szName));
+ bool fRc;
+ TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_GET_UNLINK, TMTIMERSTATE_ACTIVE, fRc);
+ if (fRc)
+ {
+ Assert(pTimer->idxScheduleNext == UINT32_MAX); /* this can trigger falsely */
+
+ /* unlink */
+ const PTMTIMER pPrev = tmTimerGetPrev(pQueue, pTimer);
+ if (pPrev)
+ tmTimerSetNext(pQueue, pPrev, pNext);
+ else
+ {
+ tmTimerQueueSetHead(pQueue, pQueue, pNext);
+ pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
+ }
+ if (pNext)
+ tmTimerSetPrev(pQueue, pNext, pPrev);
+ pTimer->idxNext = UINT32_MAX;
+ pTimer->idxPrev = UINT32_MAX;
+
+ /* fire */
+ TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
+ STAM_PROFILE_START(&pTimer->StatTimer, PrfTimer);
+ switch (pTimer->enmType)
+ {
+ case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer->hSelf, pTimer->pvUser); break;
+ case TMTIMERTYPE_USB: pTimer->u.Usb.pfnTimer(pTimer->u.Usb.pUsbIns, pTimer->hSelf, pTimer->pvUser); break;
+ case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer->hSelf, pTimer->pvUser); break;
+ case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer->hSelf, pTimer->pvUser); break;
+ default:
+ AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->szName));
+ break;
+ }
+ STAM_PROFILE_STOP(&pTimer->StatTimer, PrfTimer);
+
+ /* change the state if it wasn't changed already in the handler. */
+ TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
+ Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
+ }
+ if (pCritSect)
+ PDMCritSectLeave(pVM, pCritSect);
+
+ /* Advance? */
+ pTimer = pNext;
+ if (!pTimer)
+ break;
+ } /* run loop */
+}
+
+
+/**
+ * Service one regular timer queue.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pQueue The queue.
+ */
+static void tmR3TimerQueueDoOne(PVM pVM, PTMTIMERQUEUE pQueue)
+{
+ Assert(pQueue->enmClock != TMCLOCK_VIRTUAL_SYNC);
+
+ /*
+ * Only one thread should be "doing" the queue.
+ */
+ if (ASMAtomicCmpXchgBool(&pQueue->fBeingProcessed, true, false))
+ {
+ STAM_PROFILE_START(&pQueue->StatDo, s);
+ PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
+
+ if (pQueue->idxSchedule != UINT32_MAX)
+ tmTimerQueueSchedule(pVM, pQueue, pQueue);
+
+ PTMTIMER pHead = tmTimerQueueGetHead(pQueue, pQueue);
+ if (pHead)
+ tmR3TimerQueueRun(pVM, pQueue, pHead);
+
+ PDMCritSectLeave(pVM, &pQueue->TimerLock);
+ STAM_PROFILE_STOP(&pQueue->StatDo, s);
+ ASMAtomicWriteBool(&pQueue->fBeingProcessed, false);
+ }
+}
+
+
+/**
+ * Schedules and runs any pending times in the timer queue for the
+ * synchronous virtual clock.
+ *
+ * This scheduling is a bit different from the other queues as it need
+ * to implement the special requirements of the timer synchronous virtual
+ * clock, thus this 2nd queue run function.
+ *
+ * @param pVM The cross context VM structure.
+ *
+ * @remarks The caller must the Virtual Sync lock. Owning the TM lock is no
+ * longer important.
+ */
+static void tmR3TimerQueueRunVirtualSync(PVM pVM)
+{
+ PTMTIMERQUEUE const pQueue = &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC];
+ VM_ASSERT_EMT(pVM);
+ Assert(PDMCritSectIsOwner(pVM, &pVM->tm.s.VirtualSyncLock));
+
+ /*
+ * Any timers?
+ */
+ PTMTIMER pNext = tmTimerQueueGetHead(pQueue, pQueue);
+ if (RT_UNLIKELY(!pNext))
+ {
+ Assert(pVM->tm.s.fVirtualSyncTicking || !pVM->tm.s.cVirtualTicking);
+ return;
+ }
+ STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRun);
+
+ /*
+ * Calculate the time frame for which we will dispatch timers.
+ *
+ * We use a time frame ranging from the current sync time (which is most likely the
+ * same as the head timer) and some configurable period (100000ns) up towards the
+ * current virtual time. This period might also need to be restricted by the catch-up
+ * rate so frequent calls to this function won't accelerate the time too much, however
+ * this will be implemented at a later point if necessary.
+ *
+ * Without this frame we would 1) having to run timers much more frequently
+ * and 2) lag behind at a steady rate.
+ */
+ const uint64_t u64VirtualNow = TMVirtualGetNoCheck(pVM);
+ uint64_t const offSyncGivenUp = pVM->tm.s.offVirtualSyncGivenUp;
+ uint64_t u64Now;
+ if (!pVM->tm.s.fVirtualSyncTicking)
+ {
+ STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStoppedAlready);
+ u64Now = pVM->tm.s.u64VirtualSync;
+ Assert(u64Now <= pNext->u64Expire);
+ }
+ else
+ {
+ /* Calc 'now'. */
+ bool fStopCatchup = false;
+ bool fUpdateStuff = false;
+ uint64_t off = pVM->tm.s.offVirtualSync;
+ if (pVM->tm.s.fVirtualSyncCatchUp)
+ {
+ uint64_t u64Delta = u64VirtualNow - pVM->tm.s.u64VirtualSyncCatchUpPrev;
+ if (RT_LIKELY(!(u64Delta >> 32)))
+ {
+ uint64_t u64Sub = ASMMultU64ByU32DivByU32(u64Delta, pVM->tm.s.u32VirtualSyncCatchUpPercentage, 100);
+ if (off > u64Sub + offSyncGivenUp)
+ {
+ off -= u64Sub;
+ Log4(("TM: %'RU64/-%'8RU64: sub %'RU64 [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow - off, off - offSyncGivenUp, u64Sub));
+ }
+ else
+ {
+ STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
+ fStopCatchup = true;
+ off = offSyncGivenUp;
+ }
+ fUpdateStuff = true;
+ }
+ }
+ u64Now = u64VirtualNow - off;
+
+ /* Adjust against last returned time. */
+ uint64_t u64Last = ASMAtomicUoReadU64(&pVM->tm.s.u64VirtualSync);
+ if (u64Last > u64Now)
+ {
+ u64Now = u64Last + 1;
+ STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetAdjLast);
+ }
+
+ /* Check if stopped by expired timer. */
+ uint64_t const u64Expire = pNext->u64Expire;
+ if (u64Now >= u64Expire)
+ {
+ STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStop);
+ u64Now = u64Expire;
+ ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
+ ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
+ Log4(("TM: %'RU64/-%'8RU64: exp tmr [tmR3TimerQueueRunVirtualSync]\n", u64Now, u64VirtualNow - u64Now - offSyncGivenUp));
+ }
+ else
+ {
+ ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
+ if (fUpdateStuff)
+ {
+ ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, off);
+ ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev, u64VirtualNow);
+ ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
+ if (fStopCatchup)
+ {
+ ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
+ Log4(("TM: %'RU64/0: caught up [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow));
+ }
+ }
+ }
+ }
+
+ /* calc end of frame. */
+ uint64_t u64Max = u64Now + pVM->tm.s.u32VirtualSyncScheduleSlack;
+ if (u64Max > u64VirtualNow - offSyncGivenUp)
+ u64Max = u64VirtualNow - offSyncGivenUp;
+
+ /* assert sanity */
+ Assert(u64Now <= u64VirtualNow - offSyncGivenUp);
+ Assert(u64Max <= u64VirtualNow - offSyncGivenUp);
+ Assert(u64Now <= u64Max);
+ Assert(offSyncGivenUp == pVM->tm.s.offVirtualSyncGivenUp);
+
+ /*
+ * Process the expired timers moving the clock along as we progress.
+ */
+#ifdef VBOX_STRICT
+ uint64_t u64Prev = u64Now; NOREF(u64Prev);
+#endif
+ while (pNext && pNext->u64Expire <= u64Max)
+ {
+ /* Advance */
+ PTMTIMER pTimer = pNext;
+ pNext = tmTimerGetNext(pQueue, pTimer);
+
+ /* Take the associated lock. */
+ PPDMCRITSECT pCritSect = pTimer->pCritSect;
+ if (pCritSect)
+ {
+ STAM_PROFILE_START(&pTimer->StatCritSectEnter, Locking);
+ PDMCritSectEnter(pVM, pCritSect, VERR_IGNORED);
+ STAM_PROFILE_STOP(&pTimer->StatCritSectEnter, Locking);
+ }
+
+ Log2(("tmR3TimerQueueRunVirtualSync: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .szName='%s'}\n",
+ pTimer, tmTimerState(pTimer->enmState), pQueue->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->szName));
+
+ /* Advance the clock - don't permit timers to be out of order or armed
+ in the 'past'. */
+#ifdef VBOX_STRICT
+ AssertMsg(pTimer->u64Expire >= u64Prev, ("%'RU64 < %'RU64 %s\n", pTimer->u64Expire, u64Prev, pTimer->szName));
+ u64Prev = pTimer->u64Expire;
+#endif
+ ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, pTimer->u64Expire);
+ ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
+
+ /* Unlink it, change the state and do the callout. */
+ tmTimerQueueUnlinkActive(pVM, pQueue, pQueue, pTimer);
+ TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
+ STAM_PROFILE_START(&pTimer->StatTimer, PrfTimer);
+ switch (pTimer->enmType)
+ {
+ case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer->hSelf, pTimer->pvUser); break;
+ case TMTIMERTYPE_USB: pTimer->u.Usb.pfnTimer(pTimer->u.Usb.pUsbIns, pTimer->hSelf, pTimer->pvUser); break;
+ case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer->hSelf, pTimer->pvUser); break;
+ case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer->hSelf, pTimer->pvUser); break;
+ default:
+ AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->szName));
+ break;
+ }
+ STAM_PROFILE_STOP(&pTimer->StatTimer, PrfTimer);
+
+ /* Change the state if it wasn't changed already in the handler.
+ Reset the Hz hint too since this is the same as TMTimerStop. */
+ bool fRc;
+ TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
+ if (fRc && pTimer->uHzHint)
+ {
+ if (pTimer->uHzHint >= pQueue->uMaxHzHint)
+ ASMAtomicOrU64(&pVM->tm.s.HzHint.u64Combined, RT_BIT_32(TMCLOCK_VIRTUAL_SYNC) | RT_BIT_32(TMCLOCK_VIRTUAL_SYNC + 16));
+ pTimer->uHzHint = 0;
+ }
+ Log2(("tmR3TimerQueueRunVirtualSync: new state %s\n", tmTimerState(pTimer->enmState)));
+
+ /* Leave the associated lock. */
+ if (pCritSect)
+ PDMCritSectLeave(pVM, pCritSect);
+ } /* run loop */
+
+
+ /*
+ * Restart the clock if it was stopped to serve any timers,
+ * and start/adjust catch-up if necessary.
+ */
+ if ( !pVM->tm.s.fVirtualSyncTicking
+ && pVM->tm.s.cVirtualTicking)
+ {
+ STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunRestart);
+
+ /* calc the slack we've handed out. */
+ const uint64_t u64VirtualNow2 = TMVirtualGetNoCheck(pVM);
+ Assert(u64VirtualNow2 >= u64VirtualNow);
+ AssertMsg(pVM->tm.s.u64VirtualSync >= u64Now, ("%'RU64 < %'RU64\n", pVM->tm.s.u64VirtualSync, u64Now));
+ const uint64_t offSlack = pVM->tm.s.u64VirtualSync - u64Now;
+ STAM_STATS({
+ if (offSlack)
+ {
+ PSTAMPROFILE p = &pVM->tm.s.StatVirtualSyncRunSlack;
+ p->cPeriods++;
+ p->cTicks += offSlack;
+ if (p->cTicksMax < offSlack) p->cTicksMax = offSlack;
+ if (p->cTicksMin > offSlack) p->cTicksMin = offSlack;
+ }
+ });
+
+ /* Let the time run a little bit while we were busy running timers(?). */
+ uint64_t u64Elapsed;
+#define MAX_ELAPSED 30000U /* ns */
+ if (offSlack > MAX_ELAPSED)
+ u64Elapsed = 0;
+ else
+ {
+ u64Elapsed = u64VirtualNow2 - u64VirtualNow;
+ if (u64Elapsed > MAX_ELAPSED)
+ u64Elapsed = MAX_ELAPSED;
+ u64Elapsed = u64Elapsed > offSlack ? u64Elapsed - offSlack : 0;
+ }
+#undef MAX_ELAPSED
+
+ /* Calc the current offset. */
+ uint64_t offNew = u64VirtualNow2 - pVM->tm.s.u64VirtualSync - u64Elapsed;
+ Assert(!(offNew & RT_BIT_64(63)));
+ uint64_t offLag = offNew - pVM->tm.s.offVirtualSyncGivenUp;
+ Assert(!(offLag & RT_BIT_64(63)));
+
+ /*
+ * Deal with starting, adjusting and stopping catchup.
+ */
+ if (pVM->tm.s.fVirtualSyncCatchUp)
+ {
+ if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpStopThreshold)
+ {
+ /* stop */
+ STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
+ ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
+ Log4(("TM: %'RU64/-%'8RU64: caught up [pt]\n", u64VirtualNow2 - offNew, offLag));
+ }
+ else if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
+ {
+ /* adjust */
+ unsigned i = 0;
+ while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
+ && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
+ i++;
+ if (pVM->tm.s.u32VirtualSyncCatchUpPercentage < pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage)
+ {
+ STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupAdjust[i]);
+ ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
+ Log4(("TM: %'RU64/%'8RU64: adj %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
+ }
+ pVM->tm.s.u64VirtualSyncCatchUpPrev = u64VirtualNow2;
+ }
+ else
+ {
+ /* give up */
+ STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUp);
+ STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
+ ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
+ ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
+ Log4(("TM: %'RU64/%'8RU64: give up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
+ LogRel(("TM: Giving up catch-up attempt at a %'RU64 ns lag; new total: %'RU64 ns\n", offLag, offNew));
+ }
+ }
+ else if (offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[0].u64Start)
+ {
+ if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
+ {
+ /* start */
+ STAM_PROFILE_ADV_START(&pVM->tm.s.StatVirtualSyncCatchup, c);
+ unsigned i = 0;
+ while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
+ && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
+ i++;
+ STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupInitial[i]);
+ ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
+ ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, true);
+ Log4(("TM: %'RU64/%'8RU64: catch-up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
+ }
+ else
+ {
+ /* don't bother */
+ STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting);
+ ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
+ Log4(("TM: %'RU64/%'8RU64: give up\n", u64VirtualNow2 - offNew, offLag));
+ LogRel(("TM: Not bothering to attempt catching up a %'RU64 ns lag; new total: %'RU64\n", offLag, offNew));
+ }
+ }
+
+ /*
+ * Update the offset and restart the clock.
+ */
+ Assert(!(offNew & RT_BIT_64(63)));
+ ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, offNew);
+ ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, true);
+ }
+}
+
+
+/**
+ * Deals with stopped Virtual Sync clock.
+ *
+ * This is called by the forced action flag handling code in EM when it
+ * encounters the VM_FF_TM_VIRTUAL_SYNC flag. It is called by all VCPUs and they
+ * will block on the VirtualSyncLock until the pending timers has been executed
+ * and the clock restarted.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ *
+ * @thread EMTs
+ */
+VMMR3_INT_DECL(void) TMR3VirtualSyncFF(PVM pVM, PVMCPU pVCpu)
+{
+ Log2(("TMR3VirtualSyncFF:\n"));
+
+ /*
+ * The EMT doing the timers is diverted to them.
+ */
+ if (pVCpu->idCpu == pVM->tm.s.idTimerCpu)
+ TMR3TimerQueuesDo(pVM);
+ /*
+ * The other EMTs will block on the virtual sync lock and the first owner
+ * will run the queue and thus restarting the clock.
+ *
+ * Note! This is very suboptimal code wrt to resuming execution when there
+ * are more than two Virtual CPUs, since they will all have to enter
+ * the critical section one by one. But it's a very simple solution
+ * which will have to do the job for now.
+ */
+ else
+ {
+/** @todo Optimize for SMP */
+ STAM_PROFILE_START(&pVM->tm.s.StatVirtualSyncFF, a);
+ PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
+ if (pVM->tm.s.fVirtualSyncTicking)
+ {
+ STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
+ PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
+ Log2(("TMR3VirtualSyncFF: ticking\n"));
+ }
+ else
+ {
+ PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
+
+ /* try run it. */
+ PDMCritSectEnter(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].TimerLock, VERR_IGNORED);
+ PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
+ if (pVM->tm.s.fVirtualSyncTicking)
+ Log2(("TMR3VirtualSyncFF: ticking (2)\n"));
+ else
+ {
+ ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
+ Log2(("TMR3VirtualSyncFF: running queue\n"));
+
+ Assert(pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].idxSchedule == UINT32_MAX);
+ tmR3TimerQueueRunVirtualSync(pVM);
+ if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
+ VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
+
+ ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
+ }
+ PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
+ STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
+ PDMCritSectLeave(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].TimerLock);
+ }
+ }
+}
+
+
+/**
+ * Service the special virtual sync timer queue.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pVCpuDst The destination VCpu.
+ */
+static void tmR3TimerQueueDoVirtualSync(PVM pVM, PVMCPU pVCpuDst)
+{
+ PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC];
+ if (ASMAtomicCmpXchgBool(&pQueue->fBeingProcessed, true, false))
+ {
+ STAM_PROFILE_START(&pQueue->StatDo, s1);
+ PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
+ PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
+ ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
+ VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /* Clear the FF once we started working for real. */
+
+ Assert(pQueue->idxSchedule == UINT32_MAX);
+ tmR3TimerQueueRunVirtualSync(pVM);
+ if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
+ VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
+
+ ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
+ PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
+ PDMCritSectLeave(pVM, &pQueue->TimerLock);
+ STAM_PROFILE_STOP(&pQueue->StatDo, s1);
+ ASMAtomicWriteBool(&pQueue->fBeingProcessed, false);
+ }
+}
+
+
+/**
+ * Schedules and runs any pending timers.
+ *
+ * This is normally called from a forced action handler in EMT.
+ *
+ * @param pVM The cross context VM structure.
+ *
+ * @thread EMT (actually EMT0, but we fend off the others)
+ */
+VMMR3DECL(void) TMR3TimerQueuesDo(PVM pVM)
+{
+ /*
+ * Only the dedicated timer EMT should do stuff here.
+ * (fRunningQueues is only used as an indicator.)
+ */
+ Assert(pVM->tm.s.idTimerCpu < pVM->cCpus);
+ PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu];
+ if (VMMGetCpu(pVM) != pVCpuDst)
+ {
+ Assert(pVM->cCpus > 1);
+ return;
+ }
+ STAM_PROFILE_START(&pVM->tm.s.StatDoQueues, a);
+ Log2(("TMR3TimerQueuesDo:\n"));
+ Assert(!pVM->tm.s.fRunningQueues);
+ ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, true);
+
+ /*
+ * Process the queues.
+ */
+ AssertCompile(TMCLOCK_MAX == 4);
+
+ /*
+ * TMCLOCK_VIRTUAL_SYNC (see also TMR3VirtualSyncFF)
+ */
+ tmR3TimerQueueDoVirtualSync(pVM, pVCpuDst);
+
+ /*
+ * TMCLOCK_VIRTUAL
+ */
+ tmR3TimerQueueDoOne(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL]);
+
+ /*
+ * TMCLOCK_TSC
+ */
+ Assert(pVM->tm.s.aTimerQueues[TMCLOCK_TSC].idxActive == UINT32_MAX); /* not used */
+
+ /*
+ * TMCLOCK_REAL
+ */
+ tmR3TimerQueueDoOne(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_REAL]);
+
+#ifdef VBOX_STRICT
+ /* check that we didn't screw up. */
+ tmTimerQueuesSanityChecks(pVM, "TMR3TimerQueuesDo");
+#endif
+
+ /* done */
+ Log2(("TMR3TimerQueuesDo: returns void\n"));
+ ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, false);
+ STAM_PROFILE_STOP(&pVM->tm.s.StatDoQueues, a);
+}
+
+
+
+/** @name Saved state values
+ * @{ */
+#define TMTIMERSTATE_SAVED_PENDING_STOP 4
+#define TMTIMERSTATE_SAVED_PENDING_SCHEDULE 7
+/** @} */
+
+
+/**
+ * Saves the state of a timer to a saved state.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param hTimer Timer to save.
+ * @param pSSM Save State Manager handle.
+ */
+VMMR3DECL(int) TMR3TimerSave(PVM pVM, TMTIMERHANDLE hTimer, PSSMHANDLE pSSM)
+{
+ VM_ASSERT_EMT(pVM);
+ TMTIMER_HANDLE_TO_VARS_RETURN(pVM, hTimer); /* => pTimer, pQueueCC, pQueue, idxTimer, idxQueue */
+ LogFlow(("TMR3TimerSave: %p:{enmState=%s, .szName='%s'} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->szName, pSSM));
+
+ switch (pTimer->enmState)
+ {
+ case TMTIMERSTATE_STOPPED:
+ case TMTIMERSTATE_PENDING_STOP:
+ case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
+ return SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_STOP);
+
+ case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
+ case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
+ AssertMsgFailed(("u64Expire is being updated! (%s)\n", pTimer->szName));
+ if (!RTThreadYield())
+ RTThreadSleep(1);
+ RT_FALL_THRU();
+ case TMTIMERSTATE_ACTIVE:
+ case TMTIMERSTATE_PENDING_SCHEDULE:
+ case TMTIMERSTATE_PENDING_RESCHEDULE:
+ SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_SCHEDULE);
+ return SSMR3PutU64(pSSM, pTimer->u64Expire);
+
+ case TMTIMERSTATE_EXPIRED_GET_UNLINK:
+ case TMTIMERSTATE_EXPIRED_DELIVER:
+ case TMTIMERSTATE_DESTROY:
+ case TMTIMERSTATE_FREE:
+ case TMTIMERSTATE_INVALID:
+ AssertMsgFailed(("Invalid timer state %d %s (%s)\n", pTimer->enmState, tmTimerState(pTimer->enmState), pTimer->szName));
+ return SSMR3HandleSetStatus(pSSM, VERR_TM_INVALID_STATE);
+ }
+
+ AssertMsgFailed(("Unknown timer state %d (%s)\n", pTimer->enmState, pTimer->szName));
+ return SSMR3HandleSetStatus(pSSM, VERR_TM_UNKNOWN_STATE);
+}
+
+
+/**
+ * Loads the state of a timer from a saved state.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param hTimer Handle of Timer to restore.
+ * @param pSSM Save State Manager handle.
+ */
+VMMR3DECL(int) TMR3TimerLoad(PVM pVM, TMTIMERHANDLE hTimer, PSSMHANDLE pSSM)
+{
+ VM_ASSERT_EMT(pVM);
+ TMTIMER_HANDLE_TO_VARS_RETURN(pVM, hTimer); /* => pTimer, pQueueCC, pQueue, idxTimer, idxQueue */
+ Assert(pSSM);
+ LogFlow(("TMR3TimerLoad: %p:{enmState=%s, .szName='%s'} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->szName, pSSM));
+
+ /*
+ * Load the state and validate it.
+ */
+ uint8_t u8State;
+ int rc = SSMR3GetU8(pSSM, &u8State);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ /* TMTIMERSTATE_SAVED_XXX: Workaround for accidental state shift in r47786 (2009-05-26 19:12:12). */
+ if ( u8State == TMTIMERSTATE_SAVED_PENDING_STOP + 1
+ || u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE + 1)
+ u8State--;
+
+ if ( u8State != TMTIMERSTATE_SAVED_PENDING_STOP
+ && u8State != TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
+ {
+ AssertLogRelMsgFailed(("u8State=%d\n", u8State));
+ return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE);
+ }
+
+ /* Enter the critical sections to make TMTimerSet/Stop happy. */
+ if (pQueue->enmClock == TMCLOCK_VIRTUAL_SYNC)
+ PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
+ PPDMCRITSECT pCritSect = pTimer->pCritSect;
+ if (pCritSect)
+ PDMCritSectEnter(pVM, pCritSect, VERR_IGNORED);
+
+ if (u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
+ {
+ /*
+ * Load the expire time.
+ */
+ uint64_t u64Expire;
+ rc = SSMR3GetU64(pSSM, &u64Expire);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ /*
+ * Set it.
+ */
+ Log(("u8State=%d u64Expire=%llu\n", u8State, u64Expire));
+ rc = TMTimerSet(pVM, hTimer, u64Expire);
+ }
+ else
+ {
+ /*
+ * Stop it.
+ */
+ Log(("u8State=%d\n", u8State));
+ rc = TMTimerStop(pVM, hTimer);
+ }
+
+ if (pCritSect)
+ PDMCritSectLeave(pVM, pCritSect);
+ if (pQueue->enmClock == TMCLOCK_VIRTUAL_SYNC)
+ PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
+
+ /*
+ * On failure set SSM status.
+ */
+ if (RT_FAILURE(rc))
+ rc = SSMR3HandleSetStatus(pSSM, rc);
+ return rc;
+}
+
+
+/**
+ * Skips the state of a timer in a given saved state.
+ *
+ * @returns VBox status.
+ * @param pSSM Save State Manager handle.
+ * @param pfActive Where to store whether the timer was active
+ * when the state was saved.
+ */
+VMMR3DECL(int) TMR3TimerSkip(PSSMHANDLE pSSM, bool *pfActive)
+{
+ Assert(pSSM); AssertPtr(pfActive);
+ LogFlow(("TMR3TimerSkip: pSSM=%p pfActive=%p\n", pSSM, pfActive));
+
+ /*
+ * Load the state and validate it.
+ */
+ uint8_t u8State;
+ int rc = SSMR3GetU8(pSSM, &u8State);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ /* TMTIMERSTATE_SAVED_XXX: Workaround for accidental state shift in r47786 (2009-05-26 19:12:12). */
+ if ( u8State == TMTIMERSTATE_SAVED_PENDING_STOP + 1
+ || u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE + 1)
+ u8State--;
+
+ if ( u8State != TMTIMERSTATE_SAVED_PENDING_STOP
+ && u8State != TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
+ {
+ AssertLogRelMsgFailed(("u8State=%d\n", u8State));
+ return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE);
+ }
+
+ *pfActive = (u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE);
+ if (*pfActive)
+ {
+ /*
+ * Load the expire time.
+ */
+ uint64_t u64Expire;
+ rc = SSMR3GetU64(pSSM, &u64Expire);
+ }
+
+ return rc;
+}
+
+
+/**
+ * Associates a critical section with a timer.
+ *
+ * The critical section will be entered prior to doing the timer call back, thus
+ * avoiding potential races between the timer thread and other threads trying to
+ * stop or adjust the timer expiration while it's being delivered. The timer
+ * thread will leave the critical section when the timer callback returns.
+ *
+ * In strict builds, ownership of the critical section will be asserted by
+ * TMTimerSet, TMTimerStop, TMTimerGetExpire and TMTimerDestroy (when called at
+ * runtime).
+ *
+ * @retval VINF_SUCCESS on success.
+ * @retval VERR_INVALID_HANDLE if the timer handle is NULL or invalid
+ * (asserted).
+ * @retval VERR_INVALID_PARAMETER if pCritSect is NULL or has an invalid magic
+ * (asserted).
+ * @retval VERR_ALREADY_EXISTS if a critical section was already associated
+ * with the timer (asserted).
+ * @retval VERR_INVALID_STATE if the timer isn't stopped.
+ *
+ * @param pVM The cross context VM structure.
+ * @param hTimer The timer handle.
+ * @param pCritSect The critical section. The caller must make sure this
+ * is around for the life time of the timer.
+ *
+ * @thread Any, but the caller is responsible for making sure the timer is not
+ * active.
+ */
+VMMR3DECL(int) TMR3TimerSetCritSect(PVM pVM, TMTIMERHANDLE hTimer, PPDMCRITSECT pCritSect)
+{
+ TMTIMER_HANDLE_TO_VARS_RETURN(pVM, hTimer); /* => pTimer, pQueueCC, pQueue, idxTimer, idxQueue */
+ AssertPtrReturn(pCritSect, VERR_INVALID_PARAMETER);
+ const char *pszName = PDMR3CritSectName(pCritSect); /* exploited for validation */
+ AssertReturn(pszName, VERR_INVALID_PARAMETER);
+ AssertReturn(!pTimer->pCritSect, VERR_ALREADY_EXISTS);
+ AssertReturn(pTimer->enmState == TMTIMERSTATE_STOPPED, VERR_INVALID_STATE);
+ AssertReturn( pTimer->enmType == TMTIMERTYPE_DEV
+ || pTimer->enmType == TMTIMERTYPE_DRV
+ || pTimer->enmType == TMTIMERTYPE_USB,
+ VERR_NOT_SUPPORTED); /* Not supported on internal timers, see tmRZTimerGetCritSect. */
+ LogFlow(("pTimer=%p (%s) pCritSect=%p (%s)\n", pTimer, pTimer->szName, pCritSect, pszName));
+
+ pTimer->pCritSect = pCritSect;
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Get the real world UTC time adjusted for VM lag.
+ *
+ * @returns pTime.
+ * @param pVM The cross context VM structure.
+ * @param pTime Where to store the time.
+ */
+VMMR3_INT_DECL(PRTTIMESPEC) TMR3UtcNow(PVM pVM, PRTTIMESPEC pTime)
+{
+ /*
+ * Get a stable set of VirtualSync parameters and calc the lag.
+ */
+ uint64_t offVirtualSync;
+ uint64_t offVirtualSyncGivenUp;
+ do
+ {
+ offVirtualSync = ASMAtomicReadU64(&pVM->tm.s.offVirtualSync);
+ offVirtualSyncGivenUp = ASMAtomicReadU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp);
+ } while (ASMAtomicReadU64(&pVM->tm.s.offVirtualSync) != offVirtualSync);
+
+ Assert(offVirtualSync >= offVirtualSyncGivenUp);
+ uint64_t const offLag = offVirtualSync - offVirtualSyncGivenUp;
+
+ /*
+ * Get current time and adjust for virtual sync lag and do time displacement.
+ */
+ RTTimeNow(pTime);
+ RTTimeSpecSubNano(pTime, offLag);
+ RTTimeSpecAddNano(pTime, pVM->tm.s.offUTC);
+
+ /*
+ * Log details if the time changed radically (also triggers on first call).
+ */
+ int64_t nsPrev = ASMAtomicXchgS64(&pVM->tm.s.nsLastUtcNow, RTTimeSpecGetNano(pTime));
+ int64_t cNsDelta = RTTimeSpecGetNano(pTime) - nsPrev;
+ if ((uint64_t)RT_ABS(cNsDelta) > RT_NS_1HOUR / 2)
+ {
+ RTTIMESPEC NowAgain;
+ RTTimeNow(&NowAgain);
+ LogRel(("TMR3UtcNow: nsNow=%'RI64 nsPrev=%'RI64 -> cNsDelta=%'RI64 (offLag=%'RI64 offVirtualSync=%'RU64 offVirtualSyncGivenUp=%'RU64, NowAgain=%'RI64)\n",
+ RTTimeSpecGetNano(pTime), nsPrev, cNsDelta, offLag, offVirtualSync, offVirtualSyncGivenUp, RTTimeSpecGetNano(&NowAgain)));
+ if (pVM->tm.s.pszUtcTouchFileOnJump && nsPrev != 0)
+ {
+ RTFILE hFile;
+ int rc = RTFileOpen(&hFile, pVM->tm.s.pszUtcTouchFileOnJump,
+ RTFILE_O_WRITE | RTFILE_O_APPEND | RTFILE_O_OPEN_CREATE | RTFILE_O_DENY_NONE);
+ if (RT_SUCCESS(rc))
+ {
+ char szMsg[256];
+ size_t cch;
+ cch = RTStrPrintf(szMsg, sizeof(szMsg),
+ "TMR3UtcNow: nsNow=%'RI64 nsPrev=%'RI64 -> cNsDelta=%'RI64 (offLag=%'RI64 offVirtualSync=%'RU64 offVirtualSyncGivenUp=%'RU64, NowAgain=%'RI64)\n",
+ RTTimeSpecGetNano(pTime), nsPrev, cNsDelta, offLag, offVirtualSync, offVirtualSyncGivenUp, RTTimeSpecGetNano(&NowAgain));
+ RTFileWrite(hFile, szMsg, cch, NULL);
+ RTFileClose(hFile);
+ }
+ }
+ }
+
+ return pTime;
+}
+
+
+/**
+ * Pauses all clocks except TMCLOCK_REAL.
+ *
+ * @returns VBox status code, all errors are asserted.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @thread EMT corresponding to Pointer to the VMCPU.
+ */
+VMMR3DECL(int) TMR3NotifySuspend(PVM pVM, PVMCPU pVCpu)
+{
+ VMCPU_ASSERT_EMT(pVCpu);
+ PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED); /* Paranoia: Exploiting the virtual sync lock here. */
+
+ /*
+ * The shared virtual clock (includes virtual sync which is tied to it).
+ */
+ int rc = tmVirtualPauseLocked(pVM);
+ AssertRCReturnStmt(rc, PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock), rc);
+
+ /*
+ * Pause the TSC last since it is normally linked to the virtual
+ * sync clock, so the above code may actually stop both clocks.
+ */
+ if (!pVM->tm.s.fTSCTiedToExecution)
+ {
+ rc = tmCpuTickPauseLocked(pVM, pVCpu);
+ AssertRCReturnStmt(rc, PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock), rc);
+ }
+
+#ifndef VBOX_WITHOUT_NS_ACCOUNTING
+ /*
+ * Update cNsTotal and stats.
+ */
+ Assert(!pVCpu->tm.s.fSuspended);
+ uint64_t const cNsTotalNew = RTTimeNanoTS() - pVCpu->tm.s.nsStartTotal;
+ uint64_t const cNsOtherNew = cNsTotalNew - pVCpu->tm.s.cNsExecuting - pVCpu->tm.s.cNsHalted;
+
+# if defined(VBOX_WITH_STATISTICS) || defined(VBOX_WITH_NS_ACCOUNTING_STATS)
+ STAM_REL_COUNTER_ADD(&pVCpu->tm.s.StatNsTotal, cNsTotalNew - pVCpu->tm.s.cNsTotalStat);
+ int64_t const cNsOtherNewDelta = cNsOtherNew - pVCpu->tm.s.cNsOtherStat;
+ if (cNsOtherNewDelta > 0)
+ STAM_REL_COUNTER_ADD(&pVCpu->tm.s.StatNsOther, (uint64_t)cNsOtherNewDelta);
+# endif
+
+ uint32_t uGen = ASMAtomicIncU32(&pVCpu->tm.s.uTimesGen); Assert(uGen & 1);
+ pVCpu->tm.s.nsStartTotal = cNsTotalNew;
+ pVCpu->tm.s.fSuspended = true;
+ pVCpu->tm.s.cNsTotalStat = cNsTotalNew;
+ pVCpu->tm.s.cNsOtherStat = cNsOtherNew;
+ ASMAtomicWriteU32(&pVCpu->tm.s.uTimesGen, (uGen | 1) + 1);
+#endif
+
+ PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Resumes all clocks except TMCLOCK_REAL.
+ *
+ * @returns VBox status code, all errors are asserted.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @thread EMT corresponding to Pointer to the VMCPU.
+ */
+VMMR3DECL(int) TMR3NotifyResume(PVM pVM, PVMCPU pVCpu)
+{
+ VMCPU_ASSERT_EMT(pVCpu);
+ PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED); /* Paranoia: Exploiting the virtual sync lock here. */
+
+#ifndef VBOX_WITHOUT_NS_ACCOUNTING
+ /*
+ * Set u64NsTsStartTotal. There is no need to back this out if either of
+ * the two calls below fail.
+ */
+ uint32_t uGen = ASMAtomicIncU32(&pVCpu->tm.s.uTimesGen); Assert(uGen & 1);
+ pVCpu->tm.s.nsStartTotal = RTTimeNanoTS() - pVCpu->tm.s.nsStartTotal;
+ pVCpu->tm.s.fSuspended = false;
+ ASMAtomicWriteU32(&pVCpu->tm.s.uTimesGen, (uGen | 1) + 1);
+#endif
+
+ /*
+ * Resume the TSC first since it is normally linked to the virtual sync
+ * clock, so it may actually not be resumed until we've executed the code
+ * below.
+ */
+ if (!pVM->tm.s.fTSCTiedToExecution)
+ {
+ int rc = tmCpuTickResumeLocked(pVM, pVCpu);
+ AssertRCReturnStmt(rc, PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock), rc);
+ }
+
+ /*
+ * The shared virtual clock (includes virtual sync which is tied to it).
+ */
+ int rc = tmVirtualResumeLocked(pVM);
+
+ PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
+ return rc;
+}
+
+
+/**
+ * Sets the warp drive percent of the virtual time.
+ *
+ * @returns VBox status code.
+ * @param pUVM The user mode VM structure.
+ * @param u32Percent The new percentage. 100 means normal operation.
+ */
+VMMDECL(int) TMR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent)
+{
+ return VMR3ReqPriorityCallWaitU(pUVM, VMCPUID_ANY, (PFNRT)tmR3SetWarpDrive, 2, pUVM, u32Percent);
+}
+
+
+/**
+ * EMT worker for TMR3SetWarpDrive.
+ *
+ * @returns VBox status code.
+ * @param pUVM The user mode VM handle.
+ * @param u32Percent See TMR3SetWarpDrive().
+ * @internal
+ */
+static DECLCALLBACK(int) tmR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent)
+{
+ PVM pVM = pUVM->pVM;
+ VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
+ PVMCPU pVCpu = VMMGetCpu(pVM);
+
+ /*
+ * Validate it.
+ */
+ AssertMsgReturn(u32Percent >= 2 && u32Percent <= 20000,
+ ("%RX32 is not between 2 and 20000 (inclusive).\n", u32Percent),
+ VERR_INVALID_PARAMETER);
+
+/** @todo This isn't a feature specific to virtual time, move the variables to
+ * TM level and make it affect TMR3UTCNow as well! */
+
+ PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED); /* Paranoia: Exploiting the virtual sync lock here. */
+
+ /*
+ * If the time is running we'll have to pause it before we can change
+ * the warp drive settings.
+ */
+ bool fPaused = !!pVM->tm.s.cVirtualTicking;
+ if (fPaused) /** @todo this isn't really working, but wtf. */
+ TMR3NotifySuspend(pVM, pVCpu);
+
+ /** @todo Should switch TM mode to virt-tsc-emulated if it isn't already! */
+ pVM->tm.s.u32VirtualWarpDrivePercentage = u32Percent;
+ pVM->tm.s.fVirtualWarpDrive = u32Percent != 100;
+ LogRel(("TM: u32VirtualWarpDrivePercentage=%RI32 fVirtualWarpDrive=%RTbool\n",
+ pVM->tm.s.u32VirtualWarpDrivePercentage, pVM->tm.s.fVirtualWarpDrive));
+
+ if (fPaused)
+ TMR3NotifyResume(pVM, pVCpu);
+
+ PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Gets the current TMCLOCK_VIRTUAL time without checking
+ * timers or anything.
+ *
+ * @returns The timestamp.
+ * @param pUVM The user mode VM structure.
+ *
+ * @remarks See TMVirtualGetNoCheck.
+ */
+VMMR3DECL(uint64_t) TMR3TimeVirtGet(PUVM pUVM)
+{
+ UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX);
+ PVM pVM = pUVM->pVM;
+ VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
+ return TMVirtualGetNoCheck(pVM);
+}
+
+
+/**
+ * Gets the current TMCLOCK_VIRTUAL time in milliseconds without checking
+ * timers or anything.
+ *
+ * @returns The timestamp in milliseconds.
+ * @param pUVM The user mode VM structure.
+ *
+ * @remarks See TMVirtualGetNoCheck.
+ */
+VMMR3DECL(uint64_t) TMR3TimeVirtGetMilli(PUVM pUVM)
+{
+ UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX);
+ PVM pVM = pUVM->pVM;
+ VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
+ return TMVirtualToMilli(pVM, TMVirtualGetNoCheck(pVM));
+}
+
+
+/**
+ * Gets the current TMCLOCK_VIRTUAL time in microseconds without checking
+ * timers or anything.
+ *
+ * @returns The timestamp in microseconds.
+ * @param pUVM The user mode VM structure.
+ *
+ * @remarks See TMVirtualGetNoCheck.
+ */
+VMMR3DECL(uint64_t) TMR3TimeVirtGetMicro(PUVM pUVM)
+{
+ UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX);
+ PVM pVM = pUVM->pVM;
+ VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
+ return TMVirtualToMicro(pVM, TMVirtualGetNoCheck(pVM));
+}
+
+
+/**
+ * Gets the current TMCLOCK_VIRTUAL time in nanoseconds without checking
+ * timers or anything.
+ *
+ * @returns The timestamp in nanoseconds.
+ * @param pUVM The user mode VM structure.
+ *
+ * @remarks See TMVirtualGetNoCheck.
+ */
+VMMR3DECL(uint64_t) TMR3TimeVirtGetNano(PUVM pUVM)
+{
+ UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX);
+ PVM pVM = pUVM->pVM;
+ VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
+ return TMVirtualToNano(pVM, TMVirtualGetNoCheck(pVM));
+}
+
+
+/**
+ * Gets the current warp drive percent.
+ *
+ * @returns The warp drive percent.
+ * @param pUVM The user mode VM structure.
+ */
+VMMR3DECL(uint32_t) TMR3GetWarpDrive(PUVM pUVM)
+{
+ UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT32_MAX);
+ PVM pVM = pUVM->pVM;
+ VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
+ return pVM->tm.s.u32VirtualWarpDrivePercentage;
+}
+
+
+#if 0 /* unused - needs a little updating after @bugref{9941}*/
+/**
+ * Gets the performance information for one virtual CPU as seen by the VMM.
+ *
+ * The returned times covers the period where the VM is running and will be
+ * reset when restoring a previous VM state (at least for the time being).
+ *
+ * @retval VINF_SUCCESS on success.
+ * @retval VERR_NOT_IMPLEMENTED if not compiled in.
+ * @retval VERR_INVALID_STATE if the VM handle is bad.
+ * @retval VERR_INVALID_CPU_ID if idCpu is out of range.
+ *
+ * @param pVM The cross context VM structure.
+ * @param idCpu The ID of the virtual CPU which times to get.
+ * @param pcNsTotal Where to store the total run time (nano seconds) of
+ * the CPU, i.e. the sum of the three other returns.
+ * Optional.
+ * @param pcNsExecuting Where to store the time (nano seconds) spent
+ * executing guest code. Optional.
+ * @param pcNsHalted Where to store the time (nano seconds) spent
+ * halted. Optional
+ * @param pcNsOther Where to store the time (nano seconds) spent
+ * preempted by the host scheduler, on virtualization
+ * overhead and on other tasks.
+ */
+VMMR3DECL(int) TMR3GetCpuLoadTimes(PVM pVM, VMCPUID idCpu, uint64_t *pcNsTotal, uint64_t *pcNsExecuting,
+ uint64_t *pcNsHalted, uint64_t *pcNsOther)
+{
+ VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_STATE);
+ AssertReturn(idCpu < pVM->cCpus, VERR_INVALID_CPU_ID);
+
+#ifndef VBOX_WITHOUT_NS_ACCOUNTING
+ /*
+ * Get a stable result set.
+ * This should be way quicker than an EMT request.
+ */
+ PVMCPU pVCpu = pVM->apCpusR3[idCpu];
+ uint32_t uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
+ uint64_t cNsTotal = pVCpu->tm.s.cNsTotal;
+ uint64_t cNsExecuting = pVCpu->tm.s.cNsExecuting;
+ uint64_t cNsHalted = pVCpu->tm.s.cNsHalted;
+ uint64_t cNsOther = pVCpu->tm.s.cNsOther;
+ while ( (uTimesGen & 1) /* update in progress */
+ || uTimesGen != ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen))
+ {
+ RTThreadYield();
+ uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
+ cNsTotal = pVCpu->tm.s.cNsTotal;
+ cNsExecuting = pVCpu->tm.s.cNsExecuting;
+ cNsHalted = pVCpu->tm.s.cNsHalted;
+ cNsOther = pVCpu->tm.s.cNsOther;
+ }
+
+ /*
+ * Fill in the return values.
+ */
+ if (pcNsTotal)
+ *pcNsTotal = cNsTotal;
+ if (pcNsExecuting)
+ *pcNsExecuting = cNsExecuting;
+ if (pcNsHalted)
+ *pcNsHalted = cNsHalted;
+ if (pcNsOther)
+ *pcNsOther = cNsOther;
+
+ return VINF_SUCCESS;
+
+#else
+ return VERR_NOT_IMPLEMENTED;
+#endif
+}
+#endif /* unused */
+
+
+/**
+ * Gets the performance information for one virtual CPU as seen by the VMM in
+ * percents.
+ *
+ * The returned times covers the period where the VM is running and will be
+ * reset when restoring a previous VM state (at least for the time being).
+ *
+ * @retval VINF_SUCCESS on success.
+ * @retval VERR_NOT_IMPLEMENTED if not compiled in.
+ * @retval VERR_INVALID_VM_HANDLE if the VM handle is bad.
+ * @retval VERR_INVALID_CPU_ID if idCpu is out of range.
+ *
+ * @param pUVM The usermode VM structure.
+ * @param idCpu The ID of the virtual CPU which times to get.
+ * @param pcMsInterval Where to store the interval of the percentages in
+ * milliseconds. Optional.
+ * @param pcPctExecuting Where to return the percentage of time spent
+ * executing guest code. Optional.
+ * @param pcPctHalted Where to return the percentage of time spent halted.
+ * Optional
+ * @param pcPctOther Where to return the percentage of time spent
+ * preempted by the host scheduler, on virtualization
+ * overhead and on other tasks.
+ */
+VMMR3DECL(int) TMR3GetCpuLoadPercents(PUVM pUVM, VMCPUID idCpu, uint64_t *pcMsInterval, uint8_t *pcPctExecuting,
+ uint8_t *pcPctHalted, uint8_t *pcPctOther)
+{
+ UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
+ PVM pVM = pUVM->pVM;
+ VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
+ AssertReturn(idCpu == VMCPUID_ALL || idCpu < pVM->cCpus, VERR_INVALID_CPU_ID);
+
+#ifndef VBOX_WITHOUT_NS_ACCOUNTING
+ TMCPULOADSTATE volatile *pState;
+ if (idCpu == VMCPUID_ALL)
+ pState = &pVM->tm.s.CpuLoad;
+ else
+ pState = &pVM->apCpusR3[idCpu]->tm.s.CpuLoad;
+
+ if (pcMsInterval)
+ *pcMsInterval = RT_MS_1SEC;
+ if (pcPctExecuting)
+ *pcPctExecuting = pState->cPctExecuting;
+ if (pcPctHalted)
+ *pcPctHalted = pState->cPctHalted;
+ if (pcPctOther)
+ *pcPctOther = pState->cPctOther;
+
+ return VINF_SUCCESS;
+
+#else
+ RT_NOREF(pcMsInterval, pcPctExecuting, pcPctHalted, pcPctOther);
+ return VERR_NOT_IMPLEMENTED;
+#endif
+}
+
+#ifndef VBOX_WITHOUT_NS_ACCOUNTING
+
+/**
+ * Helper for tmR3CpuLoadTimer.
+ * @returns
+ * @param pState The state to update.
+ * @param cNsTotal Total time.
+ * @param cNsExecuting Time executing.
+ * @param cNsHalted Time halted.
+ */
+DECLINLINE(void) tmR3CpuLoadTimerMakeUpdate(PTMCPULOADSTATE pState, uint64_t cNsTotal, uint64_t cNsExecuting, uint64_t cNsHalted)
+{
+ /* Calc & update deltas */
+ uint64_t cNsTotalDelta = cNsTotal - pState->cNsPrevTotal;
+ uint64_t cNsExecutingDelta = cNsExecuting - pState->cNsPrevExecuting;
+ uint64_t cNsHaltedDelta = cNsHalted - pState->cNsPrevHalted;
+
+ if (cNsExecutingDelta + cNsHaltedDelta <= cNsTotalDelta)
+ { /* likely */ }
+ else
+ {
+ /* Just adjust the executing and halted values down to match the total delta. */
+ uint64_t const cNsExecAndHalted = cNsExecutingDelta + cNsHaltedDelta;
+ uint64_t const cNsAdjust = cNsExecAndHalted - cNsTotalDelta + cNsTotalDelta / 64;
+ cNsExecutingDelta -= (cNsAdjust * cNsExecutingDelta + cNsExecAndHalted - 1) / cNsExecAndHalted;
+ cNsHaltedDelta -= (cNsAdjust * cNsHaltedDelta + cNsExecAndHalted - 1) / cNsExecAndHalted;
+ /*Assert(cNsExecutingDelta + cNsHaltedDelta <= cNsTotalDelta); - annoying when debugging */
+ }
+
+ pState->cNsPrevExecuting = cNsExecuting;
+ pState->cNsPrevHalted = cNsHalted;
+ pState->cNsPrevTotal = cNsTotal;
+
+ /* Calc pcts. */
+ uint8_t cPctExecuting, cPctHalted, cPctOther;
+ if (!cNsTotalDelta)
+ {
+ cPctExecuting = 0;
+ cPctHalted = 100;
+ cPctOther = 0;
+ }
+ else if (cNsTotalDelta < UINT64_MAX / 4)
+ {
+ cPctExecuting = (uint8_t)(cNsExecutingDelta * 100 / cNsTotalDelta);
+ cPctHalted = (uint8_t)(cNsHaltedDelta * 100 / cNsTotalDelta);
+ cPctOther = (uint8_t)((cNsTotalDelta - cNsExecutingDelta - cNsHaltedDelta) * 100 / cNsTotalDelta);
+ }
+ else
+ {
+ cPctExecuting = 0;
+ cPctHalted = 100;
+ cPctOther = 0;
+ }
+
+ /* Update percentages: */
+ size_t idxHistory = pState->idxHistory + 1;
+ if (idxHistory >= RT_ELEMENTS(pState->aHistory))
+ idxHistory = 0;
+
+ pState->cPctExecuting = cPctExecuting;
+ pState->cPctHalted = cPctHalted;
+ pState->cPctOther = cPctOther;
+
+ pState->aHistory[idxHistory].cPctExecuting = cPctExecuting;
+ pState->aHistory[idxHistory].cPctHalted = cPctHalted;
+ pState->aHistory[idxHistory].cPctOther = cPctOther;
+
+ pState->idxHistory = (uint16_t)idxHistory;
+ if (pState->cHistoryEntries < RT_ELEMENTS(pState->aHistory))
+ pState->cHistoryEntries++;
+}
+
+
+/**
+ * @callback_method_impl{FNTMTIMERINT,
+ * Timer callback that calculates the CPU load since the last
+ * time it was called.}
+ */
+static DECLCALLBACK(void) tmR3CpuLoadTimer(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser)
+{
+ /*
+ * Re-arm the timer first.
+ */
+ int rc = TMTimerSetMillies(pVM, hTimer, 1000);
+ AssertLogRelRC(rc);
+ NOREF(pvUser);
+
+ /*
+ * Update the values for each CPU.
+ */
+ uint64_t cNsTotalAll = 0;
+ uint64_t cNsExecutingAll = 0;
+ uint64_t cNsHaltedAll = 0;
+ for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
+ {
+ PVMCPU pVCpu = pVM->apCpusR3[iCpu];
+
+ /* Try get a stable data set. */
+ uint32_t cTries = 3;
+ uint64_t nsNow = RTTimeNanoTS();
+ uint32_t uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
+ bool fSuspended = pVCpu->tm.s.fSuspended;
+ uint64_t nsStartTotal = pVCpu->tm.s.nsStartTotal;
+ uint64_t cNsExecuting = pVCpu->tm.s.cNsExecuting;
+ uint64_t cNsHalted = pVCpu->tm.s.cNsHalted;
+ while (RT_UNLIKELY( (uTimesGen & 1) /* update in progress */
+ || uTimesGen != ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen)))
+ {
+ if (!--cTries)
+ break;
+ ASMNopPause();
+ nsNow = RTTimeNanoTS();
+ uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
+ fSuspended = pVCpu->tm.s.fSuspended;
+ nsStartTotal = pVCpu->tm.s.nsStartTotal;
+ cNsExecuting = pVCpu->tm.s.cNsExecuting;
+ cNsHalted = pVCpu->tm.s.cNsHalted;
+ }
+
+ /* Totals */
+ uint64_t cNsTotal = fSuspended ? nsStartTotal : nsNow - nsStartTotal;
+ cNsTotalAll += cNsTotal;
+ cNsExecutingAll += cNsExecuting;
+ cNsHaltedAll += cNsHalted;
+
+ /* Calc the PCTs and update the state. */
+ tmR3CpuLoadTimerMakeUpdate(&pVCpu->tm.s.CpuLoad, cNsTotal, cNsExecuting, cNsHalted);
+
+ /* Tell the VCpu to update the other and total stat members. */
+ ASMAtomicWriteBool(&pVCpu->tm.s.fUpdateStats, true);
+ }
+
+ /*
+ * Update the value for all the CPUs.
+ */
+ tmR3CpuLoadTimerMakeUpdate(&pVM->tm.s.CpuLoad, cNsTotalAll, cNsExecutingAll, cNsHaltedAll);
+
+}
+
+#endif /* !VBOX_WITHOUT_NS_ACCOUNTING */
+
+
+/**
+ * @callback_method_impl{PFNVMMEMTRENDEZVOUS,
+ * Worker for TMR3CpuTickParavirtEnable}
+ */
+static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtEnable(PVM pVM, PVMCPU pVCpuEmt, void *pvData)
+{
+ AssertPtr(pVM); Assert(pVM->tm.s.fTSCModeSwitchAllowed); NOREF(pVCpuEmt); NOREF(pvData);
+ Assert(pVM->tm.s.enmTSCMode != TMTSCMODE_NATIVE_API); /** @todo figure out NEM/win and paravirt */
+ Assert(tmR3HasFixedTSC(pVM));
+
+ if (pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET)
+ {
+ /*
+ * The return value of TMCpuTickGet() and the guest's TSC value for each
+ * CPU must remain constant across the TM TSC mode-switch. Thus we have
+ * the following equation (new/old signifies the new/old tsc modes):
+ * uNewTsc = uOldTsc
+ *
+ * Where (see tmCpuTickGetInternal):
+ * uOldTsc = uRawOldTsc - offTscRawSrcOld
+ * uNewTsc = uRawNewTsc - offTscRawSrcNew
+ *
+ * Solve it for offTscRawSrcNew without replacing uOldTsc:
+ * uRawNewTsc - offTscRawSrcNew = uOldTsc
+ * => -offTscRawSrcNew = uOldTsc - uRawNewTsc
+ * => offTscRawSrcNew = uRawNewTsc - uOldTsc
+ */
+ uint64_t uRawOldTsc = tmR3CpuTickGetRawVirtualNoCheck(pVM);
+ uint64_t uRawNewTsc = SUPReadTsc();
+ uint32_t cCpus = pVM->cCpus;
+ for (uint32_t i = 0; i < cCpus; i++)
+ {
+ PVMCPU pVCpu = pVM->apCpusR3[i];
+ uint64_t uOldTsc = uRawOldTsc - pVCpu->tm.s.offTSCRawSrc;
+ pVCpu->tm.s.offTSCRawSrc = uRawNewTsc - uOldTsc;
+ Assert(uRawNewTsc - pVCpu->tm.s.offTSCRawSrc >= uOldTsc); /* paranoia^256 */
+ }
+
+ LogRel(("TM: Switching TSC mode from '%s' to '%s'\n", tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode),
+ tmR3GetTSCModeNameEx(TMTSCMODE_REAL_TSC_OFFSET)));
+ pVM->tm.s.enmTSCMode = TMTSCMODE_REAL_TSC_OFFSET;
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Notify TM that the guest has enabled usage of a paravirtualized TSC.
+ *
+ * This may perform a EMT rendezvous and change the TSC virtualization mode.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ */
+VMMR3_INT_DECL(int) TMR3CpuTickParavirtEnable(PVM pVM)
+{
+ int rc = VINF_SUCCESS;
+ if (pVM->tm.s.fTSCModeSwitchAllowed)
+ rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, tmR3CpuTickParavirtEnable, NULL);
+ else
+ LogRel(("TM: Host/VM is not suitable for using TSC mode '%s', request to change TSC mode ignored\n",
+ tmR3GetTSCModeNameEx(TMTSCMODE_REAL_TSC_OFFSET)));
+ pVM->tm.s.fParavirtTscEnabled = true;
+ return rc;
+}
+
+
+/**
+ * @callback_method_impl{PFNVMMEMTRENDEZVOUS,
+ * Worker for TMR3CpuTickParavirtDisable}
+ */
+static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtDisable(PVM pVM, PVMCPU pVCpuEmt, void *pvData)
+{
+ AssertPtr(pVM); Assert(pVM->tm.s.fTSCModeSwitchAllowed); NOREF(pVCpuEmt);
+ RT_NOREF1(pvData);
+
+ if ( pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET
+ && pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode)
+ {
+ /*
+ * See tmR3CpuTickParavirtEnable for an explanation of the conversion math.
+ */
+ uint64_t uRawOldTsc = SUPReadTsc();
+ uint64_t uRawNewTsc = tmR3CpuTickGetRawVirtualNoCheck(pVM);
+ uint32_t cCpus = pVM->cCpus;
+ for (uint32_t i = 0; i < cCpus; i++)
+ {
+ PVMCPU pVCpu = pVM->apCpusR3[i];
+ uint64_t uOldTsc = uRawOldTsc - pVCpu->tm.s.offTSCRawSrc;
+ pVCpu->tm.s.offTSCRawSrc = uRawNewTsc - uOldTsc;
+ Assert(uRawNewTsc - pVCpu->tm.s.offTSCRawSrc >= uOldTsc); /* paranoia^256 */
+
+ /* Update the last-seen tick here as we havent't been updating it (as we don't
+ need it) while in pure TSC-offsetting mode. */
+ pVCpu->tm.s.u64TSCLastSeen = uOldTsc;
+ }
+
+ LogRel(("TM: Switching TSC mode from '%s' to '%s'\n", tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode),
+ tmR3GetTSCModeNameEx(pVM->tm.s.enmOriginalTSCMode)));
+ pVM->tm.s.enmTSCMode = pVM->tm.s.enmOriginalTSCMode;
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Notify TM that the guest has disabled usage of a paravirtualized TSC.
+ *
+ * If TMR3CpuTickParavirtEnable() changed the TSC virtualization mode, this will
+ * perform an EMT rendezvous to revert those changes.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ */
+VMMR3_INT_DECL(int) TMR3CpuTickParavirtDisable(PVM pVM)
+{
+ int rc = VINF_SUCCESS;
+ if (pVM->tm.s.fTSCModeSwitchAllowed)
+ rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, tmR3CpuTickParavirtDisable, NULL);
+ pVM->tm.s.fParavirtTscEnabled = false;
+ return rc;
+}
+
+
+/**
+ * Check whether the guest can be presented a fixed rate & monotonic TSC.
+ *
+ * @returns true if TSC is stable, false otherwise.
+ * @param pVM The cross context VM structure.
+ * @param fWithParavirtEnabled Whether it's fixed & monotonic when
+ * paravirt. TSC is enabled or not.
+ *
+ * @remarks Must be called only after TMR3InitFinalize().
+ */
+VMMR3_INT_DECL(bool) TMR3CpuTickIsFixedRateMonotonic(PVM pVM, bool fWithParavirtEnabled)
+{
+ /** @todo figure out what exactly we want here later. */
+ NOREF(fWithParavirtEnabled);
+ PSUPGLOBALINFOPAGE pGip;
+ return tmR3HasFixedTSC(pVM) /* Host has fixed-rate TSC. */
+ && ( (pGip = g_pSUPGlobalInfoPage) == NULL /* Can be NULL in driverless mode. */
+ || (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)); /* GIP thinks it's monotonic. */
+}
+
+
+/**
+ * Gets the 5 char clock name for the info tables.
+ *
+ * @returns The name.
+ * @param enmClock The clock.
+ */
+DECLINLINE(const char *) tmR3Get5CharClockName(TMCLOCK enmClock)
+{
+ switch (enmClock)
+ {
+ case TMCLOCK_REAL: return "Real ";
+ case TMCLOCK_VIRTUAL: return "Virt ";
+ case TMCLOCK_VIRTUAL_SYNC: return "VrSy ";
+ case TMCLOCK_TSC: return "TSC ";
+ default: return "Bad ";
+ }
+}
+
+
+/**
+ * Display all timers.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pHlp The info helpers.
+ * @param pszArgs Arguments, ignored.
+ */
+static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
+{
+ NOREF(pszArgs);
+ pHlp->pfnPrintf(pHlp,
+ "Timers (pVM=%p)\n"
+ "%.*s %.*s %.*s %.*s Clock %18s %18s %6s %-25s Description\n",
+ pVM,
+ sizeof(RTR3PTR) * 2, "pTimerR3 ",
+ sizeof(int32_t) * 2, "offNext ",
+ sizeof(int32_t) * 2, "offPrev ",
+ sizeof(int32_t) * 2, "offSched ",
+ "Time",
+ "Expire",
+ "HzHint",
+ "State");
+ for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
+ {
+ PTMTIMERQUEUE const pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
+ const char * const pszClock = tmR3Get5CharClockName(pQueue->enmClock);
+ PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
+ for (uint32_t idxTimer = 0; idxTimer < pQueue->cTimersAlloc; idxTimer++)
+ {
+ PTMTIMER pTimer = &pQueue->paTimers[idxTimer];
+ TMTIMERSTATE enmState = pTimer->enmState;
+ if (enmState < TMTIMERSTATE_DESTROY && enmState > TMTIMERSTATE_INVALID)
+ pHlp->pfnPrintf(pHlp,
+ "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %6RU32 %-25s %s\n",
+ pTimer,
+ pTimer->idxNext,
+ pTimer->idxPrev,
+ pTimer->idxScheduleNext,
+ pszClock,
+ TMTimerGet(pVM, pTimer->hSelf),
+ pTimer->u64Expire,
+ pTimer->uHzHint,
+ tmTimerState(enmState),
+ pTimer->szName);
+ }
+ PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
+ }
+}
+
+
+/**
+ * Display all active timers.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pHlp The info helpers.
+ * @param pszArgs Arguments, ignored.
+ */
+static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
+{
+ NOREF(pszArgs);
+ pHlp->pfnPrintf(pHlp,
+ "Active Timers (pVM=%p)\n"
+ "%.*s %.*s %.*s %.*s Clock %18s %18s %6s %-25s Description\n",
+ pVM,
+ sizeof(RTR3PTR) * 2, "pTimerR3 ",
+ sizeof(int32_t) * 2, "offNext ",
+ sizeof(int32_t) * 2, "offPrev ",
+ sizeof(int32_t) * 2, "offSched ",
+ "Time",
+ "Expire",
+ "HzHint",
+ "State");
+ for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
+ {
+ PTMTIMERQUEUE const pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
+ const char * const pszClock = tmR3Get5CharClockName(pQueue->enmClock);
+ PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
+ PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
+
+ for (PTMTIMERR3 pTimer = tmTimerQueueGetHead(pQueue, pQueue);
+ pTimer;
+ pTimer = tmTimerGetNext(pQueue, pTimer))
+ {
+ pHlp->pfnPrintf(pHlp,
+ "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %6RU32 %-25s %s\n",
+ pTimer,
+ pTimer->idxNext,
+ pTimer->idxPrev,
+ pTimer->idxScheduleNext,
+ pszClock,
+ TMTimerGet(pVM, pTimer->hSelf),
+ pTimer->u64Expire,
+ pTimer->uHzHint,
+ tmTimerState(pTimer->enmState),
+ pTimer->szName);
+ }
+
+ PDMCritSectLeave(pVM, &pQueue->TimerLock);
+ PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
+ }
+}
+
+
+/**
+ * Display all clocks.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pHlp The info helpers.
+ * @param pszArgs Arguments, ignored.
+ */
+static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
+{
+ NOREF(pszArgs);
+
+ /*
+ * Read the times first to avoid more than necessary time variation.
+ */
+ const uint64_t u64Virtual = TMVirtualGet(pVM);
+ const uint64_t u64VirtualSync = TMVirtualSyncGet(pVM);
+ const uint64_t u64Real = TMRealGet(pVM);
+
+ for (VMCPUID i = 0; i < pVM->cCpus; i++)
+ {
+ PVMCPU pVCpu = pVM->apCpusR3[i];
+ uint64_t u64TSC = TMCpuTickGet(pVCpu);
+
+ /*
+ * TSC
+ */
+ pHlp->pfnPrintf(pHlp,
+ "Cpu Tick: %18RU64 (%#016RX64) %RU64Hz %s - virtualized",
+ u64TSC, u64TSC, TMCpuTicksPerSecond(pVM),
+ pVCpu->tm.s.fTSCTicking ? "ticking" : "paused");
+ if (pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET)
+ {
+ pHlp->pfnPrintf(pHlp, " - real tsc offset");
+ if (pVCpu->tm.s.offTSCRawSrc)
+ pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVCpu->tm.s.offTSCRawSrc);
+ }
+ else if (pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API)
+ pHlp->pfnPrintf(pHlp, " - native api");
+ else
+ pHlp->pfnPrintf(pHlp, " - virtual clock");
+ pHlp->pfnPrintf(pHlp, "\n");
+ }
+
+ /*
+ * virtual
+ */
+ pHlp->pfnPrintf(pHlp,
+ " Virtual: %18RU64 (%#016RX64) %RU64Hz %s",
+ u64Virtual, u64Virtual, TMVirtualGetFreq(pVM),
+ pVM->tm.s.cVirtualTicking ? "ticking" : "paused");
+ if (pVM->tm.s.fVirtualWarpDrive)
+ pHlp->pfnPrintf(pHlp, " WarpDrive %RU32 %%", pVM->tm.s.u32VirtualWarpDrivePercentage);
+ pHlp->pfnPrintf(pHlp, "\n");
+
+ /*
+ * virtual sync
+ */
+ pHlp->pfnPrintf(pHlp,
+ "VirtSync: %18RU64 (%#016RX64) %s%s",
+ u64VirtualSync, u64VirtualSync,
+ pVM->tm.s.fVirtualSyncTicking ? "ticking" : "paused",
+ pVM->tm.s.fVirtualSyncCatchUp ? " - catchup" : "");
+ if (pVM->tm.s.offVirtualSync)
+ {
+ pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVM->tm.s.offVirtualSync);
+ if (pVM->tm.s.u32VirtualSyncCatchUpPercentage)
+ pHlp->pfnPrintf(pHlp, " catch-up rate %u %%", pVM->tm.s.u32VirtualSyncCatchUpPercentage);
+ }
+ pHlp->pfnPrintf(pHlp, "\n");
+
+ /*
+ * real
+ */
+ pHlp->pfnPrintf(pHlp,
+ " Real: %18RU64 (%#016RX64) %RU64Hz\n",
+ u64Real, u64Real, TMRealGetFreq(pVM));
+}
+
+
+/**
+ * Helper for tmR3InfoCpuLoad that adjust @a uPct to the given graph width.
+ */
+DECLINLINE(size_t) tmR3InfoCpuLoadAdjustWidth(size_t uPct, size_t cchWidth)
+{
+ if (cchWidth != 100)
+ uPct = (size_t)(((double)uPct + 0.5) * ((double)cchWidth / 100.0));
+ return uPct;
+}
+
+
+/**
+ * @callback_method_impl{FNDBGFINFOARGVINT}
+ */
+static DECLCALLBACK(void) tmR3InfoCpuLoad(PVM pVM, PCDBGFINFOHLP pHlp, int cArgs, char **papszArgs)
+{
+ char szTmp[1024];
+
+ /*
+ * Parse arguments.
+ */
+ PTMCPULOADSTATE pState = &pVM->tm.s.CpuLoad;
+ VMCPUID idCpu = 0;
+ bool fAllCpus = true;
+ bool fExpGraph = true;
+ uint32_t cchWidth = 80;
+ uint32_t cPeriods = RT_ELEMENTS(pState->aHistory);
+ uint32_t cRows = 60;
+
+ static const RTGETOPTDEF s_aOptions[] =
+ {
+ { "all", 'a', RTGETOPT_REQ_NOTHING },
+ { "cpu", 'c', RTGETOPT_REQ_UINT32 },
+ { "periods", 'p', RTGETOPT_REQ_UINT32 },
+ { "rows", 'r', RTGETOPT_REQ_UINT32 },
+ { "uni", 'u', RTGETOPT_REQ_NOTHING },
+ { "uniform", 'u', RTGETOPT_REQ_NOTHING },
+ { "width", 'w', RTGETOPT_REQ_UINT32 },
+ { "exp", 'x', RTGETOPT_REQ_NOTHING },
+ { "exponential", 'x', RTGETOPT_REQ_NOTHING },
+ };
+
+ RTGETOPTSTATE State;
+ int rc = RTGetOptInit(&State, cArgs, papszArgs, s_aOptions, RT_ELEMENTS(s_aOptions), 0, 0 /*fFlags*/);
+ AssertRC(rc);
+
+ RTGETOPTUNION ValueUnion;
+ while ((rc = RTGetOpt(&State, &ValueUnion)) != 0)
+ {
+ switch (rc)
+ {
+ case 'a':
+ pState = &pVM->apCpusR3[0]->tm.s.CpuLoad;
+ idCpu = 0;
+ fAllCpus = true;
+ break;
+ case 'c':
+ if (ValueUnion.u32 < pVM->cCpus)
+ {
+ pState = &pVM->apCpusR3[ValueUnion.u32]->tm.s.CpuLoad;
+ idCpu = ValueUnion.u32;
+ }
+ else
+ {
+ pState = &pVM->tm.s.CpuLoad;
+ idCpu = VMCPUID_ALL;
+ }
+ fAllCpus = false;
+ break;
+ case 'p':
+ cPeriods = RT_MIN(RT_MAX(ValueUnion.u32, 1), RT_ELEMENTS(pState->aHistory));
+ break;
+ case 'r':
+ cRows = RT_MIN(RT_MAX(ValueUnion.u32, 5), RT_ELEMENTS(pState->aHistory));
+ break;
+ case 'w':
+ cchWidth = RT_MIN(RT_MAX(ValueUnion.u32, 10), sizeof(szTmp) - 32);
+ break;
+ case 'x':
+ fExpGraph = true;
+ break;
+ case 'u':
+ fExpGraph = false;
+ break;
+ case 'h':
+ pHlp->pfnPrintf(pHlp,
+ "Usage: cpuload [parameters]\n"
+ " all, -a\n"
+ " Show statistics for all CPUs. (default)\n"
+ " cpu=id, -c id\n"
+ " Show statistics for the specified CPU ID. Show combined stats if out of range.\n"
+ " periods=count, -p count\n"
+ " Number of periods to show. Default: all\n"
+ " rows=count, -r count\n"
+ " Number of rows in the graphs. Default: 60\n"
+ " width=count, -w count\n"
+ " Core graph width in characters. Default: 80\n"
+ " exp, exponential, -e\n"
+ " Do 1:1 for more recent half / 30 seconds of the graph, combine the\n"
+ " rest into increasinly larger chunks. Default.\n"
+ " uniform, uni, -u\n"
+ " Combine periods into rows in a uniform manner for the whole graph.\n");
+ return;
+ default:
+ pHlp->pfnGetOptError(pHlp, rc, &ValueUnion, &State);
+ return;
+ }
+ }
+
+ /*
+ * Do the job.
+ */
+ for (;;)
+ {
+ uint32_t const cMaxPeriods = pState->cHistoryEntries;
+ if (cPeriods > cMaxPeriods)
+ cPeriods = cMaxPeriods;
+ if (cPeriods > 0)
+ {
+ if (fAllCpus)
+ {
+ if (idCpu > 0)
+ pHlp->pfnPrintf(pHlp, "\n");
+ pHlp->pfnPrintf(pHlp, " CPU load for virtual CPU %#04x\n"
+ " -------------------------------\n", idCpu);
+ }
+
+ /*
+ * Figure number of periods per chunk. We can either do this in a linear
+ * fashion or a exponential fashion that compresses old history more.
+ */
+ size_t cPerRowDecrement = 0;
+ size_t cPeriodsPerRow = 1;
+ if (cRows < cPeriods)
+ {
+ if (!fExpGraph)
+ cPeriodsPerRow = (cPeriods + cRows / 2) / cRows;
+ else
+ {
+ /* The last 30 seconds or half of the rows are 1:1, the other part
+ is in increasing period counts. Code is a little simple but seems
+ to do the job most of the time, which is all I have time now. */
+ size_t cPeriodsOneToOne = RT_MIN(30, cRows / 2);
+ size_t cRestRows = cRows - cPeriodsOneToOne;
+ size_t cRestPeriods = cPeriods - cPeriodsOneToOne;
+
+ size_t cPeriodsInWindow = 0;
+ for (cPeriodsPerRow = 0; cPeriodsPerRow <= cRestRows && cPeriodsInWindow < cRestPeriods; cPeriodsPerRow++)
+ cPeriodsInWindow += cPeriodsPerRow + 1;
+
+ size_t iLower = 1;
+ while (cPeriodsInWindow < cRestPeriods)
+ {
+ cPeriodsPerRow++;
+ cPeriodsInWindow += cPeriodsPerRow;
+ cPeriodsInWindow -= iLower;
+ iLower++;
+ }
+
+ cPerRowDecrement = 1;
+ }
+ }
+
+ /*
+ * Do the work.
+ */
+ size_t cPctExecuting = 0;
+ size_t cPctOther = 0;
+ size_t cPeriodsAccumulated = 0;
+
+ size_t cRowsLeft = cRows;
+ size_t iHistory = (pState->idxHistory - cPeriods) % RT_ELEMENTS(pState->aHistory);
+ while (cPeriods-- > 0)
+ {
+ iHistory++;
+ if (iHistory >= RT_ELEMENTS(pState->aHistory))
+ iHistory = 0;
+
+ cPctExecuting += pState->aHistory[iHistory].cPctExecuting;
+ cPctOther += pState->aHistory[iHistory].cPctOther;
+ cPeriodsAccumulated += 1;
+ if ( cPeriodsAccumulated >= cPeriodsPerRow
+ || cPeriods < cRowsLeft)
+ {
+ /*
+ * Format and output the line.
+ */
+ size_t offTmp = 0;
+ size_t i = tmR3InfoCpuLoadAdjustWidth(cPctExecuting / cPeriodsAccumulated, cchWidth);
+ while (i-- > 0)
+ szTmp[offTmp++] = '#';
+ i = tmR3InfoCpuLoadAdjustWidth(cPctOther / cPeriodsAccumulated, cchWidth);
+ while (i-- > 0)
+ szTmp[offTmp++] = 'O';
+ szTmp[offTmp] = '\0';
+
+ cRowsLeft--;
+ pHlp->pfnPrintf(pHlp, "%3zus: %s\n", cPeriods + cPeriodsAccumulated / 2, szTmp);
+
+ /* Reset the state: */
+ cPctExecuting = 0;
+ cPctOther = 0;
+ cPeriodsAccumulated = 0;
+ if (cPeriodsPerRow > cPerRowDecrement)
+ cPeriodsPerRow -= cPerRowDecrement;
+ }
+ }
+ pHlp->pfnPrintf(pHlp, " (#=guest, O=VMM overhead) idCpu=%#x\n", idCpu);
+
+ }
+ else
+ pHlp->pfnPrintf(pHlp, "No load data.\n");
+
+ /*
+ * Next CPU if we're display all.
+ */
+ if (!fAllCpus)
+ break;
+ idCpu++;
+ if (idCpu >= pVM->cCpus)
+ break;
+ pState = &pVM->apCpusR3[idCpu]->tm.s.CpuLoad;
+ }
+
+}
+
+
+/**
+ * Gets the descriptive TM TSC mode name given the enum value.
+ *
+ * @returns The name.
+ * @param enmMode The mode to name.
+ */
+static const char *tmR3GetTSCModeNameEx(TMTSCMODE enmMode)
+{
+ switch (enmMode)
+ {
+ case TMTSCMODE_REAL_TSC_OFFSET: return "RealTSCOffset";
+ case TMTSCMODE_VIRT_TSC_EMULATED: return "VirtTSCEmulated";
+ case TMTSCMODE_DYNAMIC: return "Dynamic";
+ case TMTSCMODE_NATIVE_API: return "NativeApi";
+ default: return "???";
+ }
+}
+
+
+/**
+ * Gets the descriptive TM TSC mode name.
+ *
+ * @returns The name.
+ * @param pVM The cross context VM structure.
+ */
+static const char *tmR3GetTSCModeName(PVM pVM)
+{
+ Assert(pVM);
+ return tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode);
+}
+