1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
|
/* $Id: TM.cpp $ */
/** @file
* TM - Time Manager.
*/
/*
* Copyright (C) 2006-2022 Oracle and/or its affiliates.
*
* This file is part of VirtualBox base platform packages, as
* available from https://www.virtualbox.org.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, in version 3 of the
* License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses>.
*
* SPDX-License-Identifier: GPL-3.0-only
*/
/** @page pg_tm TM - The Time Manager
*
* The Time Manager abstracts the CPU clocks and manages timers used by the VMM,
* device and drivers.
*
* @see grp_tm
*
*
* @section sec_tm_clocks Clocks
*
* There are currently 4 clocks:
* - Virtual (guest).
* - Synchronous virtual (guest).
* - CPU Tick (TSC) (guest). Only current use is rdtsc emulation. Usually a
* function of the virtual clock.
* - Real (host). This is only used for display updates atm.
*
* The most important clocks are the three first ones and of these the second is
* the most interesting.
*
*
* The synchronous virtual clock is tied to the virtual clock except that it
* will take into account timer delivery lag caused by host scheduling. It will
* normally never advance beyond the head timer, and when lagging too far behind
* it will gradually speed up to catch up with the virtual clock. All devices
* implementing time sources accessible to and used by the guest is using this
* clock (for timers and other things). This ensures consistency between the
* time sources.
*
* The virtual clock is implemented as an offset to a monotonic, high
* resolution, wall clock. The current time source is using the RTTimeNanoTS()
* machinery based upon the Global Info Pages (GIP), that is, we're using TSC
* deltas (usually 10 ms) to fill the gaps between GIP updates. The result is
* a fairly high res clock that works in all contexts and on all hosts. The
* virtual clock is paused when the VM isn't in the running state.
*
* The CPU tick (TSC) is normally virtualized as a function of the synchronous
* virtual clock, where the frequency defaults to the host cpu frequency (as we
* measure it). In this mode it is possible to configure the frequency. Another
* (non-default) option is to use the raw unmodified host TSC values. And yet
* another, to tie it to time spent executing guest code. All these things are
* configurable should non-default behavior be desirable.
*
* The real clock is a monotonic clock (when available) with relatively low
* resolution, though this a bit host specific. Note that we're currently not
* servicing timers using the real clock when the VM is not running, this is
* simply because it has not been needed yet therefore not implemented.
*
*
* @subsection subsec_tm_timesync Guest Time Sync / UTC time
*
* Guest time syncing is primarily taken care of by the VMM device. The
* principle is very simple, the guest additions periodically asks the VMM
* device what the current UTC time is and makes adjustments accordingly.
*
* A complicating factor is that the synchronous virtual clock might be doing
* catchups and the guest perception is currently a little bit behind the world
* but it will (hopefully) be catching up soon as we're feeding timer interrupts
* at a slightly higher rate. Adjusting the guest clock to the current wall
* time in the real world would be a bad idea then because the guest will be
* advancing too fast and run ahead of world time (if the catchup works out).
* To solve this problem TM provides the VMM device with an UTC time source that
* gets adjusted with the current lag, so that when the guest eventually catches
* up the lag it will be showing correct real world time.
*
*
* @section sec_tm_timers Timers
*
* The timers can use any of the TM clocks described in the previous section.
* Each clock has its own scheduling facility, or timer queue if you like.
* There are a few factors which makes it a bit complex. First, there is the
* usual R0 vs R3 vs. RC thing. Then there are multiple threads, and then there
* is the timer thread that periodically checks whether any timers has expired
* without EMT noticing. On the API level, all but the create and save APIs
* must be multithreaded. EMT will always run the timers.
*
* The design is using a doubly linked list of active timers which is ordered
* by expire date. This list is only modified by the EMT thread. Updates to
* the list are batched in a singly linked list, which is then processed by the
* EMT thread at the first opportunity (immediately, next time EMT modifies a
* timer on that clock, or next timer timeout). Both lists are offset based and
* all the elements are therefore allocated from the hyper heap.
*
* For figuring out when there is need to schedule and run timers TM will:
* - Poll whenever somebody queries the virtual clock.
* - Poll the virtual clocks from the EM and REM loops.
* - Poll the virtual clocks from trap exit path.
* - Poll the virtual clocks and calculate first timeout from the halt loop.
* - Employ a thread which periodically (100Hz) polls all the timer queues.
*
*
* @image html TMTIMER-Statechart-Diagram.gif
*
* @section sec_tm_timer Logging
*
* Level 2: Logs a most of the timer state transitions and queue servicing.
* Level 3: Logs a few oddments.
* Level 4: Logs TMCLOCK_VIRTUAL_SYNC catch-up events.
*
*/
/*********************************************************************************************************************************
* Header Files *
*********************************************************************************************************************************/
#define LOG_GROUP LOG_GROUP_TM
#ifdef DEBUG_bird
# define DBGFTRACE_DISABLED /* annoying */
#endif
#include <VBox/vmm/tm.h>
#include <VBox/vmm/vmm.h>
#include <VBox/vmm/mm.h>
#include <VBox/vmm/hm.h>
#include <VBox/vmm/nem.h>
#include <VBox/vmm/gim.h>
#include <VBox/vmm/ssm.h>
#include <VBox/vmm/dbgf.h>
#include <VBox/vmm/dbgftrace.h>
#include <VBox/vmm/pdmapi.h>
#include <VBox/vmm/iom.h>
#include "TMInternal.h"
#include <VBox/vmm/vm.h>
#include <VBox/vmm/uvm.h>
#include <VBox/vmm/pdmdev.h>
#include <VBox/log.h>
#include <VBox/param.h>
#include <VBox/err.h>
#include <iprt/asm.h>
#include <iprt/asm-math.h>
#include <iprt/assert.h>
#include <iprt/env.h>
#include <iprt/file.h>
#include <iprt/getopt.h>
#include <iprt/mem.h>
#include <iprt/rand.h>
#include <iprt/semaphore.h>
#include <iprt/string.h>
#include <iprt/thread.h>
#include <iprt/time.h>
#include <iprt/timer.h>
#include "TMInline.h"
/*********************************************************************************************************************************
* Defined Constants And Macros *
*********************************************************************************************************************************/
/** The current saved state version.*/
#define TM_SAVED_STATE_VERSION 3
/*********************************************************************************************************************************
* Internal Functions *
*********************************************************************************************************************************/
static bool tmR3HasFixedTSC(PVM pVM);
static uint64_t tmR3CalibrateTSC(void);
static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM);
static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
#ifdef VBOX_WITH_STATISTICS
static void tmR3TimerQueueRegisterStats(PVM pVM, PTMTIMERQUEUE pQueue, uint32_t cTimers);
#endif
static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
static DECLCALLBACK(int) tmR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent);
#ifndef VBOX_WITHOUT_NS_ACCOUNTING
static DECLCALLBACK(void) tmR3CpuLoadTimer(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser);
#endif
static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
static DECLCALLBACK(void) tmR3InfoCpuLoad(PVM pVM, PCDBGFINFOHLP pHlp, int cArgs, char **papszArgs);
static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtDisable(PVM pVM, PVMCPU pVCpu, void *pvData);
static const char *tmR3GetTSCModeName(PVM pVM);
static const char *tmR3GetTSCModeNameEx(TMTSCMODE enmMode);
static int tmR3TimerQueueGrow(PVM pVM, PTMTIMERQUEUE pQueue, uint32_t cNewTimers);
/**
* Initializes the TM.
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
*/
VMM_INT_DECL(int) TMR3Init(PVM pVM)
{
LogFlow(("TMR3Init:\n"));
/*
* Assert alignment and sizes.
*/
AssertCompileMemberAlignment(VM, tm.s, 32);
AssertCompile(sizeof(pVM->tm.s) <= sizeof(pVM->tm.padding));
AssertCompileMemberAlignment(TM, VirtualSyncLock, 8);
/*
* Init the structure.
*/
pVM->tm.s.idTimerCpu = pVM->cCpus - 1; /* The last CPU. */
int rc = PDMR3CritSectInit(pVM, &pVM->tm.s.VirtualSyncLock, RT_SRC_POS, "TM VirtualSync Lock");
AssertLogRelRCReturn(rc, rc);
strcpy(pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].szName, "virtual");
strcpy(pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].szName, "virtual_sync"); /* Underscore is for STAM ordering issue. */
strcpy(pVM->tm.s.aTimerQueues[TMCLOCK_REAL].szName, "real");
strcpy(pVM->tm.s.aTimerQueues[TMCLOCK_TSC].szName, "tsc");
for (uint32_t i = 0; i < RT_ELEMENTS(pVM->tm.s.aTimerQueues); i++)
{
Assert(pVM->tm.s.aTimerQueues[i].szName[0] != '\0');
pVM->tm.s.aTimerQueues[i].enmClock = (TMCLOCK)i;
pVM->tm.s.aTimerQueues[i].u64Expire = INT64_MAX;
pVM->tm.s.aTimerQueues[i].idxActive = UINT32_MAX;
pVM->tm.s.aTimerQueues[i].idxSchedule = UINT32_MAX;
pVM->tm.s.aTimerQueues[i].idxFreeHint = 1;
pVM->tm.s.aTimerQueues[i].fBeingProcessed = false;
pVM->tm.s.aTimerQueues[i].fCannotGrow = false;
pVM->tm.s.aTimerQueues[i].hThread = NIL_RTTHREAD;
pVM->tm.s.aTimerQueues[i].hWorkerEvt = NIL_SUPSEMEVENT;
rc = PDMR3CritSectInit(pVM, &pVM->tm.s.aTimerQueues[i].TimerLock, RT_SRC_POS,
"TM %s queue timer lock", pVM->tm.s.aTimerQueues[i].szName);
AssertLogRelRCReturn(rc, rc);
rc = PDMR3CritSectRwInit(pVM, &pVM->tm.s.aTimerQueues[i].AllocLock, RT_SRC_POS,
"TM %s queue alloc lock", pVM->tm.s.aTimerQueues[i].szName);
AssertLogRelRCReturn(rc, rc);
}
/*
* We directly use the GIP to calculate the virtual time. We map the
* the GIP into the guest context so we can do this calculation there
* as well and save costly world switches.
*/
PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
if (pGip || !SUPR3IsDriverless())
{
pVM->tm.s.pvGIPR3 = (void *)pGip;
AssertMsgReturn(pVM->tm.s.pvGIPR3, ("GIP support is now required!\n"), VERR_TM_GIP_REQUIRED);
AssertMsgReturn((pGip->u32Version >> 16) == (SUPGLOBALINFOPAGE_VERSION >> 16),
("Unsupported GIP version %#x! (expected=%#x)\n", pGip->u32Version, SUPGLOBALINFOPAGE_VERSION),
VERR_TM_GIP_VERSION);
/* Check assumptions made in TMAllVirtual.cpp about the GIP update interval. */
if ( pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC
&& pGip->u32UpdateIntervalNS >= 250000000 /* 0.25s */)
return VMSetError(pVM, VERR_TM_GIP_UPDATE_INTERVAL_TOO_BIG, RT_SRC_POS,
N_("The GIP update interval is too big. u32UpdateIntervalNS=%RU32 (u32UpdateHz=%RU32)"),
pGip->u32UpdateIntervalNS, pGip->u32UpdateHz);
/* Log GIP info that may come in handy. */
LogRel(("TM: GIP - u32Mode=%d (%s) u32UpdateHz=%u u32UpdateIntervalNS=%u enmUseTscDelta=%d (%s) fGetGipCpu=%#x cCpus=%d\n",
pGip->u32Mode, SUPGetGIPModeName(pGip), pGip->u32UpdateHz, pGip->u32UpdateIntervalNS,
pGip->enmUseTscDelta, SUPGetGIPTscDeltaModeName(pGip), pGip->fGetGipCpu, pGip->cCpus));
LogRel(("TM: GIP - u64CpuHz=%'RU64 (%#RX64) SUPGetCpuHzFromGip => %'RU64\n",
pGip->u64CpuHz, pGip->u64CpuHz, SUPGetCpuHzFromGip(pGip)));
for (uint32_t iCpuSet = 0; iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx); iCpuSet++)
{
uint16_t iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet];
if (iGipCpu != UINT16_MAX)
LogRel(("TM: GIP - CPU: iCpuSet=%#x idCpu=%#x idApic=%#x iGipCpu=%#x i64TSCDelta=%RI64 enmState=%d u64CpuHz=%RU64(*) cErrors=%u\n",
iCpuSet, pGip->aCPUs[iGipCpu].idCpu, pGip->aCPUs[iGipCpu].idApic, iGipCpu, pGip->aCPUs[iGipCpu].i64TSCDelta,
pGip->aCPUs[iGipCpu].enmState, pGip->aCPUs[iGipCpu].u64CpuHz, pGip->aCPUs[iGipCpu].cErrors));
}
}
/*
* Setup the VirtualGetRaw backend.
*/
pVM->tm.s.pfnVirtualGetRaw = tmVirtualNanoTSRediscover;
pVM->tm.s.VirtualGetRawData.pfnRediscover = tmVirtualNanoTSRediscover;
pVM->tm.s.VirtualGetRawData.pfnBad = tmVirtualNanoTSBad;
pVM->tm.s.VirtualGetRawData.pfnBadCpuIndex = tmVirtualNanoTSBadCpuIndex;
pVM->tm.s.VirtualGetRawData.pu64Prev = &pVM->tm.s.u64VirtualRawPrev;
/*
* Get our CFGM node, create it if necessary.
*/
PCFGMNODE pCfgHandle = CFGMR3GetChild(CFGMR3GetRoot(pVM), "TM");
if (!pCfgHandle)
{
rc = CFGMR3InsertNode(CFGMR3GetRoot(pVM), "TM", &pCfgHandle);
AssertRCReturn(rc, rc);
}
/*
* Specific errors about some obsolete TM settings (remove after 2015-12-03).
*/
if (CFGMR3Exists(pCfgHandle, "TSCVirtualized"))
return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
N_("Configuration error: TM setting \"TSCVirtualized\" is no longer supported. Use the \"TSCMode\" setting instead."));
if (CFGMR3Exists(pCfgHandle, "UseRealTSC"))
return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
N_("Configuration error: TM setting \"UseRealTSC\" is no longer supported. Use the \"TSCMode\" setting instead."));
if (CFGMR3Exists(pCfgHandle, "MaybeUseOffsettedHostTSC"))
return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
N_("Configuration error: TM setting \"MaybeUseOffsettedHostTSC\" is no longer supported. Use the \"TSCMode\" setting instead."));
/*
* Validate the rest of the TM settings.
*/
rc = CFGMR3ValidateConfig(pCfgHandle, "/TM/",
"TSCMode|"
"TSCModeSwitchAllowed|"
"TSCTicksPerSecond|"
"TSCTiedToExecution|"
"TSCNotTiedToHalt|"
"ScheduleSlack|"
"CatchUpStopThreshold|"
"CatchUpGiveUpThreshold|"
"CatchUpStartThreshold0|CatchUpStartThreshold1|CatchUpStartThreshold2|CatchUpStartThreshold3|"
"CatchUpStartThreshold4|CatchUpStartThreshold5|CatchUpStartThreshold6|CatchUpStartThreshold7|"
"CatchUpStartThreshold8|CatchUpStartThreshold9|"
"CatchUpPrecentage0|CatchUpPrecentage1|CatchUpPrecentage2|CatchUpPrecentage3|"
"CatchUpPrecentage4|CatchUpPrecentage5|CatchUpPrecentage6|CatchUpPrecentage7|"
"CatchUpPrecentage8|CatchUpPrecentage9|"
"UTCOffset|"
"UTCTouchFileOnJump|"
"WarpDrivePercentage|"
"HostHzMax|"
"HostHzFudgeFactorTimerCpu|"
"HostHzFudgeFactorOtherCpu|"
"HostHzFudgeFactorCatchUp100|"
"HostHzFudgeFactorCatchUp200|"
"HostHzFudgeFactorCatchUp400|"
"TimerMillies"
,
"",
"TM", 0);
if (RT_FAILURE(rc))
return rc;
/*
* Determine the TSC configuration and frequency.
*/
/** @cfgm{/TM/TSCMode, string, Depends on the CPU and VM config}
* The name of the TSC mode to use: VirtTSCEmulated, RealTSCOffset or Dynamic.
* The default depends on the VM configuration and the capabilities of the
* host CPU. Other config options or runtime changes may override the TSC
* mode specified here.
*/
char szTSCMode[32];
rc = CFGMR3QueryString(pCfgHandle, "TSCMode", szTSCMode, sizeof(szTSCMode));
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
{
/** @todo Rainy-day/never: Dynamic mode isn't currently suitable for SMP VMs, so
* fall back on the more expensive emulated mode. With the current TSC handling
* (frequent switching between offsetted mode and taking VM exits, on all VCPUs
* without any kind of coordination) will lead to inconsistent TSC behavior with
* guest SMP, including TSC going backwards. */
pVM->tm.s.enmTSCMode = NEMR3NeedSpecialTscMode(pVM) ? TMTSCMODE_NATIVE_API
: pVM->cCpus == 1 && tmR3HasFixedTSC(pVM) ? TMTSCMODE_DYNAMIC : TMTSCMODE_VIRT_TSC_EMULATED;
}
else if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying string value \"TSCMode\""));
else
{
if (!RTStrCmp(szTSCMode, "VirtTSCEmulated"))
pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
else if (!RTStrCmp(szTSCMode, "RealTSCOffset"))
pVM->tm.s.enmTSCMode = TMTSCMODE_REAL_TSC_OFFSET;
else if (!RTStrCmp(szTSCMode, "Dynamic"))
pVM->tm.s.enmTSCMode = TMTSCMODE_DYNAMIC;
else
return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Unrecognized TM TSC mode value \"%s\""), szTSCMode);
if (NEMR3NeedSpecialTscMode(pVM))
{
LogRel(("TM: NEM overrides the /TM/TSCMode=%s settings.\n", szTSCMode));
pVM->tm.s.enmTSCMode = TMTSCMODE_NATIVE_API;
}
}
/**
* @cfgm{/TM/TSCModeSwitchAllowed, bool, Whether TM TSC mode switch is allowed
* at runtime}
* When using paravirtualized guests, we dynamically switch TSC modes to a more
* optimal one for performance. This setting allows overriding this behaviour.
*/
rc = CFGMR3QueryBool(pCfgHandle, "TSCModeSwitchAllowed", &pVM->tm.s.fTSCModeSwitchAllowed);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
{
/* This is finally determined in TMR3InitFinalize() as GIM isn't initialized yet. */
pVM->tm.s.fTSCModeSwitchAllowed = true;
}
else if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying bool value \"TSCModeSwitchAllowed\""));
if (pVM->tm.s.fTSCModeSwitchAllowed && pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API)
{
LogRel(("TM: NEM overrides the /TM/TSCModeSwitchAllowed setting.\n"));
pVM->tm.s.fTSCModeSwitchAllowed = false;
}
/** @cfgm{/TM/TSCTicksPerSecond, uint32_t, Current TSC frequency from GIP}
* The number of TSC ticks per second (i.e. the TSC frequency). This will
* override enmTSCMode.
*/
pVM->tm.s.cTSCTicksPerSecondHost = tmR3CalibrateTSC();
rc = CFGMR3QueryU64(pCfgHandle, "TSCTicksPerSecond", &pVM->tm.s.cTSCTicksPerSecond);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
{
pVM->tm.s.cTSCTicksPerSecond = pVM->tm.s.cTSCTicksPerSecondHost;
if ( ( pVM->tm.s.enmTSCMode == TMTSCMODE_DYNAMIC
|| pVM->tm.s.enmTSCMode == TMTSCMODE_VIRT_TSC_EMULATED)
&& pVM->tm.s.cTSCTicksPerSecond >= _4G)
{
pVM->tm.s.cTSCTicksPerSecond = _4G - 1; /* (A limitation of our math code) */
pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
}
}
else if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying uint64_t value \"TSCTicksPerSecond\""));
else if ( pVM->tm.s.cTSCTicksPerSecond < _1M
|| pVM->tm.s.cTSCTicksPerSecond >= _4G)
return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
N_("Configuration error: \"TSCTicksPerSecond\" = %RI64 is not in the range 1MHz..4GHz-1"),
pVM->tm.s.cTSCTicksPerSecond);
else if (pVM->tm.s.enmTSCMode != TMTSCMODE_NATIVE_API)
pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
else
{
LogRel(("TM: NEM overrides the /TM/TSCTicksPerSecond=%RU64 setting.\n", pVM->tm.s.cTSCTicksPerSecond));
pVM->tm.s.cTSCTicksPerSecond = pVM->tm.s.cTSCTicksPerSecondHost;
}
/** @cfgm{/TM/TSCTiedToExecution, bool, false}
* Whether the TSC should be tied to execution. This will exclude most of the
* virtualization overhead, but will by default include the time spent in the
* halt state (see TM/TSCNotTiedToHalt). This setting will override all other
* TSC settings except for TSCTicksPerSecond and TSCNotTiedToHalt, which should
* be used avoided or used with great care. Note that this will only work right
* together with VT-x or AMD-V, and with a single virtual CPU. */
rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCTiedToExecution", &pVM->tm.s.fTSCTiedToExecution, false);
if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying bool value \"TSCTiedToExecution\""));
if (pVM->tm.s.fTSCTiedToExecution && pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API)
return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("/TM/TSCTiedToExecution is not supported in NEM mode!"));
if (pVM->tm.s.fTSCTiedToExecution)
pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
/** @cfgm{/TM/TSCNotTiedToHalt, bool, false}
* This is used with /TM/TSCTiedToExecution to control how TSC operates
* accross HLT instructions. When true HLT is considered execution time and
* TSC continues to run, while when false (default) TSC stops during halt. */
rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCNotTiedToHalt", &pVM->tm.s.fTSCNotTiedToHalt, false);
if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying bool value \"TSCNotTiedToHalt\""));
/*
* Configure the timer synchronous virtual time.
*/
/** @cfgm{/TM/ScheduleSlack, uint32_t, ns, 0, UINT32_MAX, 100000}
* Scheduling slack when processing timers. */
rc = CFGMR3QueryU32(pCfgHandle, "ScheduleSlack", &pVM->tm.s.u32VirtualSyncScheduleSlack);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
pVM->tm.s.u32VirtualSyncScheduleSlack = 100000; /* 0.100ms (ASSUMES virtual time is nanoseconds) */
else if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying 32-bit integer value \"ScheduleSlack\""));
/** @cfgm{/TM/CatchUpStopThreshold, uint64_t, ns, 0, UINT64_MAX, 500000}
* When to stop a catch-up, considering it successful. */
rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStopThreshold", &pVM->tm.s.u64VirtualSyncCatchUpStopThreshold);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
pVM->tm.s.u64VirtualSyncCatchUpStopThreshold = 500000; /* 0.5ms */
else if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpStopThreshold\""));
/** @cfgm{/TM/CatchUpGiveUpThreshold, uint64_t, ns, 0, UINT64_MAX, 60000000000}
* When to give up a catch-up attempt. */
rc = CFGMR3QueryU64(pCfgHandle, "CatchUpGiveUpThreshold", &pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold = UINT64_C(60000000000); /* 60 sec */
else if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpGiveUpThreshold\""));
/** @cfgm{/TM/CatchUpPrecentage[0..9], uint32_t, %, 1, 2000, various}
* The catch-up percent for a given period. */
/** @cfgm{/TM/CatchUpStartThreshold[0..9], uint64_t, ns, 0, UINT64_MAX}
* The catch-up period threshold, or if you like, when a period starts. */
#define TM_CFG_PERIOD(iPeriod, DefStart, DefPct) \
do \
{ \
uint64_t u64; \
rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStartThreshold" #iPeriod, &u64); \
if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
u64 = UINT64_C(DefStart); \
else if (RT_FAILURE(rc)) \
return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpThreshold" #iPeriod "\"")); \
if ( (iPeriod > 0 && u64 <= pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod - 1].u64Start) \
|| u64 >= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold) \
return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("Configuration error: Invalid start of period #" #iPeriod ": %'RU64"), u64); \
pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u64Start = u64; \
rc = CFGMR3QueryU32(pCfgHandle, "CatchUpPrecentage" #iPeriod, &pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage); \
if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage = (DefPct); \
else if (RT_FAILURE(rc)) \
return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 32-bit integer value \"CatchUpPrecentage" #iPeriod "\"")); \
} while (0)
/* This needs more tuning. Not sure if we really need so many period and be so gentle. */
TM_CFG_PERIOD(0, 750000, 5); /* 0.75ms at 1.05x */
TM_CFG_PERIOD(1, 1500000, 10); /* 1.50ms at 1.10x */
TM_CFG_PERIOD(2, 8000000, 25); /* 8ms at 1.25x */
TM_CFG_PERIOD(3, 30000000, 50); /* 30ms at 1.50x */
TM_CFG_PERIOD(4, 75000000, 75); /* 75ms at 1.75x */
TM_CFG_PERIOD(5, 175000000, 100); /* 175ms at 2x */
TM_CFG_PERIOD(6, 500000000, 200); /* 500ms at 3x */
TM_CFG_PERIOD(7, 3000000000, 300); /* 3s at 4x */
TM_CFG_PERIOD(8,30000000000, 400); /* 30s at 5x */
TM_CFG_PERIOD(9,55000000000, 500); /* 55s at 6x */
AssertCompile(RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods) == 10);
#undef TM_CFG_PERIOD
/*
* Configure real world time (UTC).
*/
/** @cfgm{/TM/UTCOffset, int64_t, ns, INT64_MIN, INT64_MAX, 0}
* The UTC offset. This is used to put the guest back or forwards in time. */
rc = CFGMR3QueryS64(pCfgHandle, "UTCOffset", &pVM->tm.s.offUTC);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
pVM->tm.s.offUTC = 0; /* ns */
else if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying 64-bit integer value \"UTCOffset\""));
/** @cfgm{/TM/UTCTouchFileOnJump, string, none}
* File to be written to everytime the host time jumps. */
rc = CFGMR3QueryStringAlloc(pCfgHandle, "UTCTouchFileOnJump", &pVM->tm.s.pszUtcTouchFileOnJump);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
pVM->tm.s.pszUtcTouchFileOnJump = NULL;
else if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying string value \"UTCTouchFileOnJump\""));
/*
* Setup the warp drive.
*/
/** @cfgm{/TM/WarpDrivePercentage, uint32_t, %, 0, 20000, 100}
* The warp drive percentage, 100% is normal speed. This is used to speed up
* or slow down the virtual clock, which can be useful for fast forwarding
* borring periods during tests. */
rc = CFGMR3QueryU32(pCfgHandle, "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage); /* legacy */
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
pVM->tm.s.u32VirtualWarpDrivePercentage = 100;
else if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying uint32_t value \"WarpDrivePercent\""));
else if ( pVM->tm.s.u32VirtualWarpDrivePercentage < 2
|| pVM->tm.s.u32VirtualWarpDrivePercentage > 20000)
return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
N_("Configuration error: \"WarpDrivePercent\" = %RI32 is not in the range 2..20000"),
pVM->tm.s.u32VirtualWarpDrivePercentage);
pVM->tm.s.fVirtualWarpDrive = pVM->tm.s.u32VirtualWarpDrivePercentage != 100;
if (pVM->tm.s.fVirtualWarpDrive)
{
if (pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API)
LogRel(("TM: Warp-drive active, escept for TSC which is in NEM mode. u32VirtualWarpDrivePercentage=%RI32\n",
pVM->tm.s.u32VirtualWarpDrivePercentage));
else
{
pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
LogRel(("TM: Warp-drive active. u32VirtualWarpDrivePercentage=%RI32\n", pVM->tm.s.u32VirtualWarpDrivePercentage));
}
}
/*
* Gather the Host Hz configuration values.
*/
rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzMax", &pVM->tm.s.cHostHzMax, 20000);
if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying uint32_t value \"HostHzMax\""));
rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorTimerCpu", &pVM->tm.s.cPctHostHzFudgeFactorTimerCpu, 111);
if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorTimerCpu\""));
rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorOtherCpu", &pVM->tm.s.cPctHostHzFudgeFactorOtherCpu, 110);
if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorOtherCpu\""));
rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp100", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp100, 300);
if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp100\""));
rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp200", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp200, 250);
if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp200\""));
rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp400", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp400, 200);
if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp400\""));
/*
* Finally, setup and report.
*/
pVM->tm.s.enmOriginalTSCMode = pVM->tm.s.enmTSCMode;
CPUMR3SetCR4Feature(pVM, X86_CR4_TSD, ~X86_CR4_TSD);
LogRel(("TM: cTSCTicksPerSecond=%'RU64 (%#RX64) enmTSCMode=%d (%s)\n"
"TM: cTSCTicksPerSecondHost=%'RU64 (%#RX64)\n"
"TM: TSCTiedToExecution=%RTbool TSCNotTiedToHalt=%RTbool\n",
pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM),
pVM->tm.s.cTSCTicksPerSecondHost, pVM->tm.s.cTSCTicksPerSecondHost,
pVM->tm.s.fTSCTiedToExecution, pVM->tm.s.fTSCNotTiedToHalt));
/*
* Start the timer (guard against REM not yielding).
*/
/** @cfgm{/TM/TimerMillies, uint32_t, ms, 1, 1000, 10}
* The watchdog timer interval. */
uint32_t u32Millies;
rc = CFGMR3QueryU32(pCfgHandle, "TimerMillies", &u32Millies);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
u32Millies = VM_IS_HM_ENABLED(pVM) ? 1000 : 10;
else if (RT_FAILURE(rc))
return VMSetError(pVM, rc, RT_SRC_POS,
N_("Configuration error: Failed to query uint32_t value \"TimerMillies\""));
rc = RTTimerCreate(&pVM->tm.s.pTimer, u32Millies, tmR3TimerCallback, pVM);
if (RT_FAILURE(rc))
{
AssertMsgFailed(("Failed to create timer, u32Millies=%d rc=%Rrc.\n", u32Millies, rc));
return rc;
}
Log(("TM: Created timer %p firing every %d milliseconds\n", pVM->tm.s.pTimer, u32Millies));
pVM->tm.s.u32TimerMillies = u32Millies;
/*
* Register saved state.
*/
rc = SSMR3RegisterInternal(pVM, "tm", 1, TM_SAVED_STATE_VERSION, sizeof(uint64_t) * 8,
NULL, NULL, NULL,
NULL, tmR3Save, NULL,
NULL, tmR3Load, NULL);
if (RT_FAILURE(rc))
return rc;
/*
* Register statistics.
*/
STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawData.c1nsSteps,STAMTYPE_U32, "/TM/R3/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawData.cBadPrev, STAMTYPE_U32, "/TM/R3/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
#if 0 /** @todo retreive from ring-0 */
STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.c1nsSteps,STAMTYPE_U32, "/TM/R0/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.cBadPrev, STAMTYPE_U32, "/TM/R0/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
#endif
STAM_REL_REG( pVM,(void*)&pVM->tm.s.offVirtualSync, STAMTYPE_U64, "/TM/VirtualSync/CurrentOffset", STAMUNIT_NS, "The current offset. (subtract GivenUp to get the lag)");
STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.offVirtualSyncGivenUp, STAMTYPE_U64, "/TM/VirtualSync/GivenUp", STAMUNIT_NS, "Nanoseconds of the 'CurrentOffset' that's been given up and won't ever be attempted caught up with.");
STAM_REL_REG( pVM,(void*)&pVM->tm.s.HzHint.s.uMax, STAMTYPE_U32, "/TM/MaxHzHint", STAMUNIT_HZ, "Max guest timer frequency hint.");
for (uint32_t i = 0; i < RT_ELEMENTS(pVM->tm.s.aTimerQueues); i++)
{
rc = STAMR3RegisterF(pVM, (void *)&pVM->tm.s.aTimerQueues[i].uMaxHzHint, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_HZ,
"", "/TM/MaxHzHint/%s", pVM->tm.s.aTimerQueues[i].szName);
AssertRC(rc);
}
#ifdef VBOX_WITH_STATISTICS
STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawData.cExpired, STAMTYPE_U32, "/TM/R3/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawData.cUpdateRaces,STAMTYPE_U32, "/TM/R3/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
# if 0 /** @todo retreive from ring-0 */
STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cExpired, STAMTYPE_U32, "/TM/R0/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cUpdateRaces,STAMTYPE_U32, "/TM/R0/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
# endif
STAM_REG(pVM, &pVM->tm.s.StatDoQueues, STAMTYPE_PROFILE, "/TM/DoQueues", STAMUNIT_TICKS_PER_CALL, "Profiling timer TMR3TimerQueuesDo.");
STAM_REG(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].StatDo, STAMTYPE_PROFILE, "/TM/DoQueues/Virtual", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual clock queue.");
STAM_REG(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].StatDo,STAMTYPE_PROFILE,"/TM/DoQueues/VirtualSync", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual sync clock queue.");
STAM_REG(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_REAL].StatDo, STAMTYPE_PROFILE, "/TM/DoQueues/Real", STAMUNIT_TICKS_PER_CALL, "Time spent on the real clock queue.");
STAM_REG(pVM, &pVM->tm.s.StatPoll, STAMTYPE_COUNTER, "/TM/Poll", STAMUNIT_OCCURENCES, "TMTimerPoll calls.");
STAM_REG(pVM, &pVM->tm.s.StatPollAlreadySet, STAMTYPE_COUNTER, "/TM/Poll/AlreadySet", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the FF was already set.");
STAM_REG(pVM, &pVM->tm.s.StatPollELoop, STAMTYPE_COUNTER, "/TM/Poll/ELoop", STAMUNIT_OCCURENCES, "Times TMTimerPoll has given up getting a consistent virtual sync data set.");
STAM_REG(pVM, &pVM->tm.s.StatPollMiss, STAMTYPE_COUNTER, "/TM/Poll/Miss", STAMUNIT_OCCURENCES, "TMTimerPoll calls where nothing had expired.");
STAM_REG(pVM, &pVM->tm.s.StatPollRunning, STAMTYPE_COUNTER, "/TM/Poll/Running", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the queues were being run.");
STAM_REG(pVM, &pVM->tm.s.StatPollSimple, STAMTYPE_COUNTER, "/TM/Poll/Simple", STAMUNIT_OCCURENCES, "TMTimerPoll calls where we could take the simple path.");
STAM_REG(pVM, &pVM->tm.s.StatPollVirtual, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtual", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL queue.");
STAM_REG(pVM, &pVM->tm.s.StatPollVirtualSync, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtualSync", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL_SYNC queue.");
STAM_REG(pVM, &pVM->tm.s.StatPostponedR3, STAMTYPE_COUNTER, "/TM/PostponedR3", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-3.");
STAM_REG(pVM, &pVM->tm.s.StatPostponedRZ, STAMTYPE_COUNTER, "/TM/PostponedRZ", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-0 / RC.");
STAM_REG(pVM, &pVM->tm.s.StatScheduleOneR3, STAMTYPE_PROFILE, "/TM/ScheduleOneR3", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
STAM_REG(pVM, &pVM->tm.s.StatScheduleOneRZ, STAMTYPE_PROFILE, "/TM/ScheduleOneRZ", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
STAM_REG(pVM, &pVM->tm.s.StatScheduleSetFF, STAMTYPE_COUNTER, "/TM/ScheduleSetFF", STAMUNIT_OCCURENCES, "The number of times the timer FF was set instead of doing scheduling.");
STAM_REG(pVM, &pVM->tm.s.StatTimerSet, STAMTYPE_COUNTER, "/TM/TimerSet", STAMUNIT_OCCURENCES, "Calls, except virtual sync timers");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetOpt, STAMTYPE_COUNTER, "/TM/TimerSet/Opt", STAMUNIT_OCCURENCES, "Optimized path taken.");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetR3, STAMTYPE_PROFILE, "/TM/TimerSet/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3.");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRZ, STAMTYPE_PROFILE, "/TM/TimerSet/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC.");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetStActive, STAMTYPE_COUNTER, "/TM/TimerSet/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSet/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetStOther, STAMTYPE_COUNTER, "/TM/TimerSet/StOther", STAMUNIT_OCCURENCES, "Other states");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStop, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStopSched", STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendResched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetStStopped, STAMTYPE_COUNTER, "/TM/TimerSet/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetVs, STAMTYPE_COUNTER, "/TM/TimerSetVs", STAMUNIT_OCCURENCES, "TMTimerSet calls on virtual sync timers");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsR3, STAMTYPE_PROFILE, "/TM/TimerSetVs/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3 on virtual sync timers.");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsRZ, STAMTYPE_PROFILE, "/TM/TimerSetVs/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC on virtual sync timers.");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStActive, STAMTYPE_COUNTER, "/TM/TimerSetVs/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetVs/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStStopped, STAMTYPE_COUNTER, "/TM/TimerSetVs/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelative, STAMTYPE_COUNTER, "/TM/TimerSetRelative", STAMUNIT_OCCURENCES, "Calls, except virtual sync timers");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeOpt, STAMTYPE_COUNTER, "/TM/TimerSetRelative/Opt", STAMUNIT_OCCURENCES, "Optimized path taken.");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeR3, STAMTYPE_PROFILE, "/TM/TimerSetRelative/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetRelative calls made in ring-3 (sans virtual sync).");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeRZ, STAMTYPE_PROFILE, "/TM/TimerSetRelative/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetReltaive calls made in ring-0 / RC (sans virtual sync).");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStActive, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStOther, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StOther", STAMUNIT_OCCURENCES, "Other states");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStop, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStopSched",STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendResched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStStopped, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVs, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs", STAMUNIT_OCCURENCES, "TMTimerSetRelative calls on virtual sync timers");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsR3, STAMTYPE_PROFILE, "/TM/TimerSetRelativeVs/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetRelative calls made in ring-3 on virtual sync timers.");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsRZ, STAMTYPE_PROFILE, "/TM/TimerSetRelativeVs/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetReltaive calls made in ring-0 / RC on virtual sync timers.");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStActive, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStStopped, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
STAM_REG(pVM, &pVM->tm.s.StatTimerStopR3, STAMTYPE_PROFILE, "/TM/TimerStopR3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-3.");
STAM_REG(pVM, &pVM->tm.s.StatTimerStopRZ, STAMTYPE_PROFILE, "/TM/TimerStopRZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-0 / RC.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualGet, STAMTYPE_COUNTER, "/TM/VirtualGet", STAMUNIT_OCCURENCES, "The number of times TMTimerGet was called when the clock was running.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualGetSetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling TMTimerGet.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGet, STAMTYPE_COUNTER, "/TM/VirtualSyncGet", STAMUNIT_OCCURENCES, "The number of times tmVirtualSyncGetEx was called.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetAdjLast, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/AdjLast", STAMUNIT_OCCURENCES, "Times we've adjusted against the last returned time stamp .");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetELoop, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/ELoop", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx has given up getting a consistent virtual sync data set.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetExpired, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Expired", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx encountered an expired timer stopping the clock.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLocked, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Locked", STAMUNIT_OCCURENCES, "Times we successfully acquired the lock in tmVirtualSyncGetEx.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLockless, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Lockless", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx returned without needing to take the lock.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/SetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling tmVirtualSyncGetEx.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/VirtualPause", STAMUNIT_OCCURENCES, "The number of times TMR3TimerPause was called.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/VirtualResume", STAMUNIT_OCCURENCES, "The number of times TMR3TimerResume was called.");
STAM_REG(pVM, &pVM->tm.s.StatTimerCallbackSetFF, STAMTYPE_COUNTER, "/TM/CallbackSetFF", STAMUNIT_OCCURENCES, "The number of times the timer callback set FF.");
STAM_REG(pVM, &pVM->tm.s.StatTimerCallback, STAMTYPE_COUNTER, "/TM/Callback", STAMUNIT_OCCURENCES, "The number of times the timer callback is invoked.");
STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE010, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE010", STAMUNIT_OCCURENCES, "In catch-up mode, 10% or lower.");
STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE025, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE025", STAMUNIT_OCCURENCES, "In catch-up mode, 25%-11%.");
STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE100, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE100", STAMUNIT_OCCURENCES, "In catch-up mode, 100%-26%.");
STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupOther, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupOther", STAMUNIT_OCCURENCES, "In catch-up mode, > 100%.");
STAM_REG(pVM, &pVM->tm.s.StatTSCNotFixed, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotFixed", STAMUNIT_OCCURENCES, "TSC is not fixed, it may run at variable speed.");
STAM_REG(pVM, &pVM->tm.s.StatTSCNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotTicking", STAMUNIT_OCCURENCES, "TSC is not ticking.");
STAM_REG(pVM, &pVM->tm.s.StatTSCSyncNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/SyncNotTicking", STAMUNIT_OCCURENCES, "VirtualSync isn't ticking.");
STAM_REG(pVM, &pVM->tm.s.StatTSCWarp, STAMTYPE_COUNTER, "/TM/TSC/Intercept/Warp", STAMUNIT_OCCURENCES, "Warpdrive is active.");
STAM_REG(pVM, &pVM->tm.s.StatTSCSet, STAMTYPE_COUNTER, "/TM/TSC/Sets", STAMUNIT_OCCURENCES, "Calls to TMCpuTickSet.");
STAM_REG(pVM, &pVM->tm.s.StatTSCUnderflow, STAMTYPE_COUNTER, "/TM/TSC/Underflow", STAMUNIT_OCCURENCES, "TSC underflow; corrected with last seen value .");
STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/TSC/Pause", STAMUNIT_OCCURENCES, "The number of times the TSC was paused.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/TSC/Resume", STAMUNIT_OCCURENCES, "The number of times the TSC was resumed.");
#endif /* VBOX_WITH_STATISTICS */
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = pVM->apCpusR3[i];
STAMR3RegisterF(pVM, &pVCpu->tm.s.offTSCRawSrc, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS, "TSC offset relative the raw source", "/TM/TSC/offCPU%u", i);
#ifndef VBOX_WITHOUT_NS_ACCOUNTING
# if defined(VBOX_WITH_STATISTICS) || defined(VBOX_WITH_NS_ACCOUNTING_STATS)
STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsTotal, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Resettable: Total CPU run time.", "/TM/CPU/%02u", i);
STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecuting, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code.", "/TM/CPU/%02u/PrfExecuting", i);
STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecLong, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - long hauls.", "/TM/CPU/%02u/PrfExecLong", i);
STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecShort, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - short stretches.", "/TM/CPU/%02u/PrfExecShort", i);
STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecTiny, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - tiny bits.", "/TM/CPU/%02u/PrfExecTiny", i);
STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsHalted, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent halted.", "/TM/CPU/%02u/PrfHalted", i);
STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsOther, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent in the VMM or preempted.", "/TM/CPU/%02u/PrfOther", i);
# endif
STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsTotalStat, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Total CPU run time.", "/TM/CPU/%02u/cNsTotal", i);
STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsExecuting, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent executing guest code.", "/TM/CPU/%02u/cNsExecuting", i);
STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsHalted, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent halted.", "/TM/CPU/%02u/cNsHalted", i);
STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsOtherStat, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent in the VMM or preempted.", "/TM/CPU/%02u/cNsOther", i);
STAMR3RegisterF(pVM, &pVCpu->tm.s.cPeriodsExecuting, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Times executed guest code.", "/TM/CPU/%02u/cPeriodsExecuting", i);
STAMR3RegisterF(pVM, &pVCpu->tm.s.cPeriodsHalted, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Times halted.", "/TM/CPU/%02u/cPeriodsHalted", i);
STAMR3RegisterF(pVM, &pVCpu->tm.s.CpuLoad.cPctExecuting, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent executing guest code recently.", "/TM/CPU/%02u/pctExecuting", i);
STAMR3RegisterF(pVM, &pVCpu->tm.s.CpuLoad.cPctHalted, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent halted recently.", "/TM/CPU/%02u/pctHalted", i);
STAMR3RegisterF(pVM, &pVCpu->tm.s.CpuLoad.cPctOther, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent in the VMM or preempted recently.", "/TM/CPU/%02u/pctOther", i);
#endif
}
#ifndef VBOX_WITHOUT_NS_ACCOUNTING
STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctExecuting, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent executing guest code recently.", "/TM/CPU/pctExecuting");
STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctHalted, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent halted recently.", "/TM/CPU/pctHalted");
STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctOther, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent in the VMM or preempted recently.", "/TM/CPU/pctOther");
#endif
#ifdef VBOX_WITH_STATISTICS
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncCatchup, STAMTYPE_PROFILE_ADV, "/TM/VirtualSync/CatchUp", STAMUNIT_TICKS_PER_OCCURENCE, "Counting and measuring the times spent catching up.");
STAM_REG(pVM, (void *)&pVM->tm.s.fVirtualSyncCatchUp, STAMTYPE_U8, "/TM/VirtualSync/CatchUpActive", STAMUNIT_NONE, "Catch-Up active indicator.");
STAM_REG(pVM, (void *)&pVM->tm.s.u32VirtualSyncCatchUpPercentage, STAMTYPE_U32, "/TM/VirtualSync/CatchUpPercentage", STAMUNIT_PCT, "The catch-up percentage. (+100/100 to get clock multiplier)");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncFF, STAMTYPE_PROFILE, "/TM/VirtualSync/FF", STAMUNIT_TICKS_PER_OCCURENCE, "Time spent in TMR3VirtualSyncFF by all but the dedicate timer EMT.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUp, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUp", STAMUNIT_OCCURENCES, "Times the catch-up was abandoned.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUpBeforeStarting",STAMUNIT_OCCURENCES, "Times the catch-up was abandoned before even starting. (Typically debugging++.)");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRun, STAMTYPE_COUNTER, "/TM/VirtualSync/Run", STAMUNIT_OCCURENCES, "Times the virtual sync timer queue was considered.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunRestart, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Restarts", STAMUNIT_OCCURENCES, "Times the clock was restarted after a run.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStop, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Stop", STAMUNIT_OCCURENCES, "Times the clock was stopped when calculating the current time before examining the timers.");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStoppedAlready, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/StoppedAlready", STAMUNIT_OCCURENCES, "Times the clock was already stopped elsewhere (TMVirtualSyncGet).");
STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunSlack, STAMTYPE_PROFILE, "/TM/VirtualSync/Run/Slack", STAMUNIT_NS_PER_OCCURENCE, "The scheduling slack. (Catch-up handed out when running timers.)");
for (unsigned i = 0; i < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods); i++)
{
STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "The catch-up percentage.", "/TM/VirtualSync/Periods/%u", i);
STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupAdjust[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times adjusted to this period.", "/TM/VirtualSync/Periods/%u/Adjust", i);
STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupInitial[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times started in this period.", "/TM/VirtualSync/Periods/%u/Initial", i);
STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u64Start, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Start of this period (lag).", "/TM/VirtualSync/Periods/%u/Start", i);
}
#endif /* VBOX_WITH_STATISTICS */
/*
* Register info handlers.
*/
DBGFR3InfoRegisterInternalEx(pVM, "timers", "Dumps all timers. No arguments.", tmR3TimerInfo, DBGFINFO_FLAGS_RUN_ON_EMT);
DBGFR3InfoRegisterInternalEx(pVM, "activetimers", "Dumps active all timers. No arguments.", tmR3TimerInfoActive, DBGFINFO_FLAGS_RUN_ON_EMT);
DBGFR3InfoRegisterInternalEx(pVM, "clocks", "Display the time of the various clocks.", tmR3InfoClocks, DBGFINFO_FLAGS_RUN_ON_EMT);
DBGFR3InfoRegisterInternalArgv(pVM, "cpuload", "Display the CPU load stats (--help for details).", tmR3InfoCpuLoad, 0);
return VINF_SUCCESS;
}
/**
* Checks if the host CPU has a fixed TSC frequency.
*
* @returns true if it has, false if it hasn't.
*
* @remarks This test doesn't bother with very old CPUs that don't do power
* management or any other stuff that might influence the TSC rate.
* This isn't currently relevant.
*/
static bool tmR3HasFixedTSC(PVM pVM)
{
/*
* ASSUME that if the GIP is in invariant TSC mode, it's because the CPU
* actually has invariant TSC.
*
* In driverless mode we just assume sync TSC for now regardless of what
* the case actually is.
*/
PSUPGLOBALINFOPAGE const pGip = g_pSUPGlobalInfoPage;
SUPGIPMODE const enmGipMode = pGip ? (SUPGIPMODE)pGip->u32Mode : SUPGIPMODE_INVARIANT_TSC;
if (enmGipMode == SUPGIPMODE_INVARIANT_TSC)
return true;
#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
/*
* Go by features and model info from the CPUID instruction.
*/
if (ASMHasCpuId())
{
uint32_t uEAX, uEBX, uECX, uEDX;
/*
* By feature. (Used to be AMD specific, intel seems to have picked it up.)
*/
ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
if (uEAX >= 0x80000007 && RTX86IsValidExtRange(uEAX))
{
ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */
&& enmGipMode != SUPGIPMODE_ASYNC_TSC) /* No fixed tsc if the gip timer is in async mode. */
return true;
}
/*
* By model.
*/
if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_AMD)
{
/*
* AuthenticAMD - Check for APM support and that TscInvariant is set.
*
* This test isn't correct with respect to fixed/non-fixed TSC and
* older models, but this isn't relevant since the result is currently
* only used for making a decision on AMD-V models.
*/
# if 0 /* Promoted to generic */
ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
if (uEAX >= 0x80000007)
{
ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */
&& ( enmGipMode == SUPGIPMODE_SYNC_TSC /* No fixed tsc if the gip timer is in async mode. */
|| enmGipMode == SUPGIPMODE_INVARIANT_TSC))
return true;
}
# endif
}
else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_INTEL)
{
/*
* GenuineIntel - Check the model number.
*
* This test is lacking in the same way and for the same reasons
* as the AMD test above.
*/
/** @todo use RTX86GetCpuFamily() and RTX86GetCpuModel() here. */
ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
unsigned uModel = (uEAX >> 4) & 0x0f;
unsigned uFamily = (uEAX >> 8) & 0x0f;
if (uFamily == 0x0f)
uFamily += (uEAX >> 20) & 0xff;
if (uFamily >= 0x06)
uModel += ((uEAX >> 16) & 0x0f) << 4;
if ( (uFamily == 0x0f /*P4*/ && uModel >= 0x03)
|| (uFamily == 0x06 /*P2/P3*/ && uModel >= 0x0e))
return true;
}
else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_VIA)
{
/*
* CentaurHauls - Check the model, family and stepping.
*
* This only checks for VIA CPU models Nano X2, Nano X3,
* Eden X2 and QuadCore.
*/
/** @todo use RTX86GetCpuFamily() and RTX86GetCpuModel() here. */
ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
unsigned uStepping = (uEAX & 0x0f);
unsigned uModel = (uEAX >> 4) & 0x0f;
unsigned uFamily = (uEAX >> 8) & 0x0f;
if ( uFamily == 0x06
&& uModel == 0x0f
&& uStepping >= 0x0c
&& uStepping <= 0x0f)
return true;
}
else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_SHANGHAI)
{
/*
* Shanghai - Check the model, family and stepping.
*/
/** @todo use RTX86GetCpuFamily() and RTX86GetCpuModel() here. */
ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
unsigned uFamily = (uEAX >> 8) & 0x0f;
if ( uFamily == 0x06
|| uFamily == 0x07)
{
return true;
}
}
}
# else /* !X86 && !AMD64 */
RT_NOREF_PV(pVM);
# endif /* !X86 && !AMD64 */
return false;
}
/**
* Calibrate the CPU tick.
*
* @returns Number of ticks per second.
*/
static uint64_t tmR3CalibrateTSC(void)
{
uint64_t u64Hz;
/*
* Use GIP when available. Prefere the nominal one, no need to wait for it.
*/
PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
if (pGip)
{
u64Hz = pGip->u64CpuHz;
if (u64Hz < _1T && u64Hz > _1M)
return u64Hz;
AssertFailed(); /* This shouldn't happen. */
u64Hz = SUPGetCpuHzFromGip(pGip);
if (u64Hz < _1T && u64Hz > _1M)
return u64Hz;
AssertFailed(); /* This shouldn't happen. */
}
else
Assert(SUPR3IsDriverless());
/* Call this once first to make sure it's initialized. */
RTTimeNanoTS();
/*
* Yield the CPU to increase our chances of getting a correct value.
*/
RTThreadYield(); /* Try avoid interruptions between TSC and NanoTS samplings. */
static const unsigned s_auSleep[5] = { 50, 30, 30, 40, 40 };
uint64_t au64Samples[5];
unsigned i;
for (i = 0; i < RT_ELEMENTS(au64Samples); i++)
{
RTMSINTERVAL cMillies;
int cTries = 5;
uint64_t u64Start = ASMReadTSC();
uint64_t u64End;
uint64_t StartTS = RTTimeNanoTS();
uint64_t EndTS;
do
{
RTThreadSleep(s_auSleep[i]);
u64End = ASMReadTSC();
EndTS = RTTimeNanoTS();
cMillies = (RTMSINTERVAL)((EndTS - StartTS + 500000) / 1000000);
} while ( cMillies == 0 /* the sleep may be interrupted... */
|| (cMillies < 20 && --cTries > 0));
uint64_t u64Diff = u64End - u64Start;
au64Samples[i] = (u64Diff * 1000) / cMillies;
AssertMsg(cTries > 0, ("cMillies=%d i=%d\n", cMillies, i));
}
/*
* Discard the highest and lowest results and calculate the average.
*/
unsigned iHigh = 0;
unsigned iLow = 0;
for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
{
if (au64Samples[i] < au64Samples[iLow])
iLow = i;
if (au64Samples[i] > au64Samples[iHigh])
iHigh = i;
}
au64Samples[iLow] = 0;
au64Samples[iHigh] = 0;
u64Hz = au64Samples[0];
for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
u64Hz += au64Samples[i];
u64Hz /= RT_ELEMENTS(au64Samples) - 2;
return u64Hz;
}
/**
* Finalizes the TM initialization.
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
*/
VMM_INT_DECL(int) TMR3InitFinalize(PVM pVM)
{
int rc;
#ifndef VBOX_WITHOUT_NS_ACCOUNTING
/*
* Create a timer for refreshing the CPU load stats.
*/
TMTIMERHANDLE hTimer;
rc = TMR3TimerCreate(pVM, TMCLOCK_REAL, tmR3CpuLoadTimer, NULL, TMTIMER_FLAGS_NO_RING0, "CPU Load Timer", &hTimer);
if (RT_SUCCESS(rc))
rc = TMTimerSetMillies(pVM, hTimer, 1000);
#endif
/*
* GIM is now initialized. Determine if TSC mode switching is allowed (respecting CFGM override).
*/
pVM->tm.s.fTSCModeSwitchAllowed &= tmR3HasFixedTSC(pVM) && GIMIsEnabled(pVM);
LogRel(("TM: TMR3InitFinalize: fTSCModeSwitchAllowed=%RTbool\n", pVM->tm.s.fTSCModeSwitchAllowed));
/*
* Grow the virtual & real timer tables so we've got sufficient
* space for dynamically created timers. We cannot allocate more
* after ring-0 init completes.
*/
static struct { uint32_t idxQueue, cExtra; } s_aExtra[] = { {TMCLOCK_VIRTUAL, 128}, {TMCLOCK_REAL, 32} };
for (uint32_t i = 0; i < RT_ELEMENTS(s_aExtra); i++)
{
PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[s_aExtra[i].idxQueue];
PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED);
if (s_aExtra[i].cExtra > pQueue->cTimersFree)
{
uint32_t cTimersAlloc = pQueue->cTimersAlloc + s_aExtra[i].cExtra - pQueue->cTimersFree;
rc = tmR3TimerQueueGrow(pVM, pQueue, cTimersAlloc);
AssertLogRelMsgReturn(RT_SUCCESS(rc), ("rc=%Rrc cTimersAlloc=%u %s\n", rc, cTimersAlloc, pQueue->szName), rc);
}
PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
}
#ifdef VBOX_WITH_STATISTICS
/*
* Register timer statistics now that we've fixed the timer table sizes.
*/
for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
{
pVM->tm.s.aTimerQueues[idxQueue].fCannotGrow = true;
tmR3TimerQueueRegisterStats(pVM, &pVM->tm.s.aTimerQueues[idxQueue], UINT32_MAX);
}
#endif
return rc;
}
/**
* Applies relocations to data and code managed by this
* component. This function will be called at init and
* whenever the VMM need to relocate it self inside the GC.
*
* @param pVM The cross context VM structure.
* @param offDelta Relocation delta relative to old location.
*/
VMM_INT_DECL(void) TMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
{
LogFlow(("TMR3Relocate\n"));
RT_NOREF(pVM, offDelta);
}
/**
* Terminates the TM.
*
* Termination means cleaning up and freeing all resources,
* the VM it self is at this point powered off or suspended.
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
*/
VMM_INT_DECL(int) TMR3Term(PVM pVM)
{
if (pVM->tm.s.pTimer)
{
int rc = RTTimerDestroy(pVM->tm.s.pTimer);
AssertRC(rc);
pVM->tm.s.pTimer = NULL;
}
return VINF_SUCCESS;
}
/**
* The VM is being reset.
*
* For the TM component this means that a rescheduling is preformed,
* the FF is cleared and but without running the queues. We'll have to
* check if this makes sense or not, but it seems like a good idea now....
*
* @param pVM The cross context VM structure.
*/
VMM_INT_DECL(void) TMR3Reset(PVM pVM)
{
LogFlow(("TMR3Reset:\n"));
VM_ASSERT_EMT(pVM);
/*
* Abort any pending catch up.
* This isn't perfect...
*/
if (pVM->tm.s.fVirtualSyncCatchUp)
{
const uint64_t offVirtualNow = TMVirtualGetNoCheck(pVM);
const uint64_t offVirtualSyncNow = TMVirtualSyncGetNoCheck(pVM);
if (pVM->tm.s.fVirtualSyncCatchUp)
{
STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
const uint64_t offOld = pVM->tm.s.offVirtualSyncGivenUp;
const uint64_t offNew = offVirtualNow - offVirtualSyncNow;
Assert(offOld <= offNew);
ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSync, offNew);
ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
LogRel(("TM: Aborting catch-up attempt on reset with a %'RU64 ns lag on reset; new total: %'RU64 ns\n", offNew - offOld, offNew));
}
}
/*
* Process the queues.
*/
for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
{
PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
tmTimerQueueSchedule(pVM, pQueue, pQueue);
PDMCritSectLeave(pVM, &pQueue->TimerLock);
}
#ifdef VBOX_STRICT
tmTimerQueuesSanityChecks(pVM, "TMR3Reset");
#endif
PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu];
VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /** @todo FIXME: this isn't right. */
/*
* Switch TM TSC mode back to the original mode after a reset for
* paravirtualized guests that alter the TM TSC mode during operation.
* We're already in an EMT rendezvous at this point.
*/
if ( pVM->tm.s.fTSCModeSwitchAllowed
&& pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode)
{
VM_ASSERT_EMT0(pVM);
tmR3CpuTickParavirtDisable(pVM, pVM->apCpusR3[0], NULL /* pvData */);
}
Assert(!GIMIsParavirtTscEnabled(pVM));
pVM->tm.s.fParavirtTscEnabled = false;
/*
* Reset TSC to avoid a Windows 8+ bug (see @bugref{8926}). If Windows
* sees TSC value beyond 0x40000000000 at startup, it will reset the
* TSC on boot-up CPU only, causing confusion and mayhem with SMP.
*/
VM_ASSERT_EMT0(pVM);
uint64_t offTscRawSrc;
switch (pVM->tm.s.enmTSCMode)
{
case TMTSCMODE_REAL_TSC_OFFSET:
offTscRawSrc = SUPReadTsc();
break;
case TMTSCMODE_DYNAMIC:
case TMTSCMODE_VIRT_TSC_EMULATED:
offTscRawSrc = TMVirtualSyncGetNoCheck(pVM);
offTscRawSrc = ASMMultU64ByU32DivByU32(offTscRawSrc, pVM->tm.s.cTSCTicksPerSecond, TMCLOCK_FREQ_VIRTUAL);
break;
case TMTSCMODE_NATIVE_API:
/** @todo NEM TSC reset on reset for Windows8+ bug workaround. */
offTscRawSrc = 0;
break;
default:
AssertFailedBreakStmt(offTscRawSrc = 0);
}
for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
{
PVMCPU pVCpu = pVM->apCpusR3[idCpu];
pVCpu->tm.s.offTSCRawSrc = offTscRawSrc;
pVCpu->tm.s.u64TSC = 0;
pVCpu->tm.s.u64TSCLastSeen = 0;
}
}
/**
* Execute state save operation.
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
* @param pSSM SSM operation handle.
*/
static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM)
{
LogFlow(("tmR3Save:\n"));
#ifdef VBOX_STRICT
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = pVM->apCpusR3[i];
Assert(!pVCpu->tm.s.fTSCTicking);
}
Assert(!pVM->tm.s.cVirtualTicking);
Assert(!pVM->tm.s.fVirtualSyncTicking);
Assert(!pVM->tm.s.cTSCsTicking);
#endif
/*
* Save the virtual clocks.
*/
/* the virtual clock. */
SSMR3PutU64(pSSM, TMCLOCK_FREQ_VIRTUAL);
SSMR3PutU64(pSSM, pVM->tm.s.u64Virtual);
/* the virtual timer synchronous clock. */
SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSync);
SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSync);
SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSyncGivenUp);
SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSyncCatchUpPrev);
SSMR3PutBool(pSSM, pVM->tm.s.fVirtualSyncCatchUp);
/* real time clock */
SSMR3PutU64(pSSM, TMCLOCK_FREQ_REAL);
/* the cpu tick clock. */
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = pVM->apCpusR3[i];
SSMR3PutU64(pSSM, TMCpuTickGet(pVCpu));
}
return SSMR3PutU64(pSSM, pVM->tm.s.cTSCTicksPerSecond);
}
/**
* Execute state load operation.
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
* @param pSSM SSM operation handle.
* @param uVersion Data layout version.
* @param uPass The data pass.
*/
static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
{
LogFlow(("tmR3Load:\n"));
Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
#ifdef VBOX_STRICT
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = pVM->apCpusR3[i];
Assert(!pVCpu->tm.s.fTSCTicking);
}
Assert(!pVM->tm.s.cVirtualTicking);
Assert(!pVM->tm.s.fVirtualSyncTicking);
Assert(!pVM->tm.s.cTSCsTicking);
#endif
/*
* Validate version.
*/
if (uVersion != TM_SAVED_STATE_VERSION)
{
AssertMsgFailed(("tmR3Load: Invalid version uVersion=%d!\n", uVersion));
return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
}
/*
* Load the virtual clock.
*/
pVM->tm.s.cVirtualTicking = 0;
/* the virtual clock. */
uint64_t u64Hz;
int rc = SSMR3GetU64(pSSM, &u64Hz);
if (RT_FAILURE(rc))
return rc;
if (u64Hz != TMCLOCK_FREQ_VIRTUAL)
{
AssertMsgFailed(("The virtual clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
u64Hz, TMCLOCK_FREQ_VIRTUAL));
return VERR_SSM_VIRTUAL_CLOCK_HZ;
}
SSMR3GetU64(pSSM, &pVM->tm.s.u64Virtual);
pVM->tm.s.u64VirtualOffset = 0;
/* the virtual timer synchronous clock. */
pVM->tm.s.fVirtualSyncTicking = false;
uint64_t u64;
SSMR3GetU64(pSSM, &u64);
pVM->tm.s.u64VirtualSync = u64;
SSMR3GetU64(pSSM, &u64);
pVM->tm.s.offVirtualSync = u64;
SSMR3GetU64(pSSM, &u64);
pVM->tm.s.offVirtualSyncGivenUp = u64;
SSMR3GetU64(pSSM, &u64);
pVM->tm.s.u64VirtualSyncCatchUpPrev = u64;
bool f;
SSMR3GetBool(pSSM, &f);
pVM->tm.s.fVirtualSyncCatchUp = f;
/* the real clock */
rc = SSMR3GetU64(pSSM, &u64Hz);
if (RT_FAILURE(rc))
return rc;
if (u64Hz != TMCLOCK_FREQ_REAL)
{
AssertMsgFailed(("The real clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
u64Hz, TMCLOCK_FREQ_REAL));
return VERR_SSM_VIRTUAL_CLOCK_HZ; /* misleading... */
}
/* the cpu tick clock. */
pVM->tm.s.cTSCsTicking = 0;
pVM->tm.s.offTSCPause = 0;
pVM->tm.s.u64LastPausedTSC = 0;
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = pVM->apCpusR3[i];
pVCpu->tm.s.fTSCTicking = false;
SSMR3GetU64(pSSM, &pVCpu->tm.s.u64TSC);
if (pVM->tm.s.u64LastPausedTSC < pVCpu->tm.s.u64TSC)
pVM->tm.s.u64LastPausedTSC = pVCpu->tm.s.u64TSC;
if (pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET)
pVCpu->tm.s.offTSCRawSrc = 0; /** @todo TSC restore stuff and HWACC. */
}
rc = SSMR3GetU64(pSSM, &u64Hz);
if (RT_FAILURE(rc))
return rc;
if (pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET)
pVM->tm.s.cTSCTicksPerSecond = u64Hz;
LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%'RU64) enmTSCMode=%d (%s) (state load)\n",
pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM)));
/* Disabled as this isn't tested, also should this apply only if GIM is enabled etc. */
#if 0
/*
* If the current host TSC frequency is incompatible with what is in the
* saved state of the VM, fall back to emulating TSC and disallow TSC mode
* switches during VM runtime (e.g. by GIM).
*/
if ( GIMIsEnabled(pVM)
|| pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET)
{
uint64_t uGipCpuHz;
bool fRelax = RTSystemIsInsideVM();
bool fCompat = SUPIsTscFreqCompatible(pVM->tm.s.cTSCTicksPerSecond, &uGipCpuHz, fRelax);
if (!fCompat)
{
pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
pVM->tm.s.fTSCModeSwitchAllowed = false;
if (g_pSUPGlobalInfoPage->u32Mode != SUPGIPMODE_ASYNC_TSC)
{
LogRel(("TM: TSC frequency incompatible! uGipCpuHz=%#RX64 (%'RU64) enmTSCMode=%d (%s) fTSCModeSwitchAllowed=%RTbool (state load)\n",
uGipCpuHz, uGipCpuHz, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM), pVM->tm.s.fTSCModeSwitchAllowed));
}
else
{
LogRel(("TM: GIP is async, enmTSCMode=%d (%s) fTSCModeSwitchAllowed=%RTbool (state load)\n",
uGipCpuHz, uGipCpuHz, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM), pVM->tm.s.fTSCModeSwitchAllowed));
}
}
}
#endif
/*
* Make sure timers get rescheduled immediately.
*/
PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu];
VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
return VINF_SUCCESS;
}
#ifdef VBOX_WITH_STATISTICS
/**
* Register statistics for a timer.
*
* @param pVM The cross context VM structure.
* @param pQueue The queue the timer belongs to.
* @param pTimer The timer to register statistics for.
*/
static void tmR3TimerRegisterStats(PVM pVM, PTMTIMERQUEUE pQueue, PTMTIMER pTimer)
{
STAMR3RegisterF(pVM, &pTimer->StatTimer, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL,
pQueue->szName, "/TM/Timers/%s", pTimer->szName);
STAMR3RegisterF(pVM, &pTimer->StatCritSectEnter, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL,
"", "/TM/Timers/%s/CritSectEnter", pTimer->szName);
STAMR3RegisterF(pVM, &pTimer->StatGet, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS,
"", "/TM/Timers/%s/Get", pTimer->szName);
STAMR3RegisterF(pVM, &pTimer->StatSetAbsolute, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS,
"", "/TM/Timers/%s/SetAbsolute", pTimer->szName);
STAMR3RegisterF(pVM, &pTimer->StatSetRelative, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS,
"", "/TM/Timers/%s/SetRelative", pTimer->szName);
STAMR3RegisterF(pVM, &pTimer->StatStop, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS,
"", "/TM/Timers/%s/Stop", pTimer->szName);
}
/**
* Deregister the statistics for a timer.
*/
static void tmR3TimerDeregisterStats(PVM pVM, PTMTIMER pTimer)
{
char szPrefix[128];
size_t cchPrefix = RTStrPrintf(szPrefix, sizeof(szPrefix), "/TM/Timers/%s/", pTimer->szName);
STAMR3DeregisterByPrefix(pVM->pUVM, szPrefix);
szPrefix[cchPrefix - 1] = '\0';
STAMR3Deregister(pVM->pUVM, szPrefix);
}
/**
* Register statistics for all allocated timers in a queue.
*
* @param pVM The cross context VM structure.
* @param pQueue The queue to register statistics for.
* @param cTimers Number of timers to consider (in growth scenario).
*/
static void tmR3TimerQueueRegisterStats(PVM pVM, PTMTIMERQUEUE pQueue, uint32_t cTimers)
{
uint32_t idxTimer = RT_MIN(cTimers, pQueue->cTimersAlloc);
while (idxTimer-- > 0)
{
PTMTIMER pTimer = &pQueue->paTimers[idxTimer];
TMTIMERSTATE enmState = pTimer->enmState;
if (enmState > TMTIMERSTATE_INVALID && enmState < TMTIMERSTATE_DESTROY)
tmR3TimerRegisterStats(pVM, pQueue, pTimer);
}
}
#endif /* VBOX_WITH_STATISTICS */
/**
* Grows a timer queue.
*
* @returns VBox status code (errors are LogRel'ed already).
* @param pVM The cross context VM structure.
* @param pQueue The timer queue to grow.
* @param cNewTimers The minimum number of timers after growing.
* @note Caller owns the queue's allocation lock.
*/
static int tmR3TimerQueueGrow(PVM pVM, PTMTIMERQUEUE pQueue, uint32_t cNewTimers)
{
/*
* Validate input and state.
*/
VM_ASSERT_EMT0_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE); /** @todo must do better than this! */
AssertReturn(!pQueue->fCannotGrow, VERR_TM_TIMER_QUEUE_CANNOT_GROW);
uint32_t const cOldEntries = pQueue->cTimersAlloc;
AssertReturn(cNewTimers > cOldEntries, VERR_TM_IPE_1);
AssertReturn(cNewTimers < _32K, VERR_TM_IPE_1);
/*
* Do the growing.
*/
int rc;
if (!SUPR3IsDriverless())
{
rc = VMMR3CallR0Emt(pVM, VMMGetCpu(pVM), VMMR0_DO_TM_GROW_TIMER_QUEUE,
RT_MAKE_U64(cNewTimers, (uint64_t)(pQueue - &pVM->tm.s.aTimerQueues[0])), NULL);
AssertLogRelRCReturn(rc, rc);
AssertReturn(pQueue->cTimersAlloc >= cNewTimers, VERR_TM_IPE_3);
}
else
{
AssertReturn(cNewTimers <= _32K && cOldEntries <= _32K, VERR_TM_TOO_MANY_TIMERS);
ASMCompilerBarrier();
/*
* Round up the request to the nearest page and do the allocation.
*/
size_t cbNew = sizeof(TMTIMER) * cNewTimers;
cbNew = RT_ALIGN_Z(cbNew, HOST_PAGE_SIZE);
cNewTimers = (uint32_t)(cbNew / sizeof(TMTIMER));
PTMTIMER paTimers = (PTMTIMER)RTMemPageAllocZ(cbNew);
if (paTimers)
{
/*
* Copy over the old timer, init the new free ones, then switch over
* and free the old ones.
*/
PTMTIMER const paOldTimers = pQueue->paTimers;
tmHCTimerQueueGrowInit(paTimers, paOldTimers, cNewTimers, cOldEntries);
pQueue->paTimers = paTimers;
pQueue->cTimersAlloc = cNewTimers;
pQueue->cTimersFree += cNewTimers - (cOldEntries ? cOldEntries : 1);
RTMemPageFree(paOldTimers, RT_ALIGN_Z(sizeof(TMTIMER) * cOldEntries, HOST_PAGE_SIZE));
rc = VINF_SUCCESS;
}
else
rc = VERR_NO_PAGE_MEMORY;
}
return rc;
}
/**
* Internal TMR3TimerCreate worker.
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
* @param enmClock The timer clock.
* @param fFlags TMTIMER_FLAGS_XXX.
* @param pszName The timer name.
* @param ppTimer Where to store the timer pointer on success.
*/
static int tmr3TimerCreate(PVM pVM, TMCLOCK enmClock, uint32_t fFlags, const char *pszName, PPTMTIMERR3 ppTimer)
{
PTMTIMER pTimer;
/*
* Validate input.
*/
VM_ASSERT_EMT(pVM);
AssertReturn((fFlags & (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0)) != (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0),
VERR_INVALID_FLAGS);
AssertPtrReturn(pszName, VERR_INVALID_POINTER);
size_t const cchName = strlen(pszName);
AssertMsgReturn(cchName < sizeof(pTimer->szName), ("timer name too long: %s\n", pszName), VERR_INVALID_NAME);
AssertMsgReturn(cchName > 2, ("Too short timer name: %s\n", pszName), VERR_INVALID_NAME);
AssertMsgReturn(enmClock >= TMCLOCK_REAL && enmClock < TMCLOCK_MAX,
("%d\n", enmClock), VERR_INVALID_PARAMETER);
AssertReturn(enmClock != TMCLOCK_TSC, VERR_NOT_SUPPORTED);
if (enmClock == TMCLOCK_VIRTUAL_SYNC)
VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_WRONG_ORDER);
/*
* Exclusively lock the queue.
*
* Note! This means that it is not possible to allocate timers from a timer callback.
*/
PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[enmClock];
int rc = PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED);
AssertRCReturn(rc, rc);
/*
* Allocate the timer.
*/
if (!pQueue->cTimersFree)
{
rc = tmR3TimerQueueGrow(pVM, pQueue, pQueue->cTimersAlloc + 64);
AssertRCReturnStmt(rc, PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock), rc);
}
/* Scan the array for free timers. */
pTimer = NULL;
PTMTIMER const paTimers = pQueue->paTimers;
uint32_t const cTimersAlloc = pQueue->cTimersAlloc;
uint32_t idxTimer = pQueue->idxFreeHint;
for (uint32_t iScan = 0; iScan < 2; iScan++)
{
while (idxTimer < cTimersAlloc)
{
if (paTimers[idxTimer].enmState == TMTIMERSTATE_FREE)
{
pTimer = &paTimers[idxTimer];
pQueue->idxFreeHint = idxTimer + 1;
break;
}
idxTimer++;
}
if (pTimer != NULL)
break;
idxTimer = 1;
}
AssertLogRelMsgReturnStmt(pTimer != NULL, ("cTimersFree=%u cTimersAlloc=%u enmClock=%s\n", pQueue->cTimersFree,
pQueue->cTimersAlloc, pQueue->szName),
PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock), VERR_INTERNAL_ERROR_3);
pQueue->cTimersFree -= 1;
/*
* Initialize it.
*/
Assert(idxTimer != 0);
Assert(idxTimer <= TMTIMERHANDLE_TIMER_IDX_MASK);
pTimer->hSelf = idxTimer
| ((uintptr_t)(pQueue - &pVM->tm.s.aTimerQueues[0]) << TMTIMERHANDLE_QUEUE_IDX_SHIFT);
Assert(!(pTimer->hSelf & TMTIMERHANDLE_RANDOM_MASK));
pTimer->hSelf |= (RTRandU64() & TMTIMERHANDLE_RANDOM_MASK);
pTimer->u64Expire = 0;
pTimer->enmState = TMTIMERSTATE_STOPPED;
pTimer->idxScheduleNext = UINT32_MAX;
pTimer->idxNext = UINT32_MAX;
pTimer->idxPrev = UINT32_MAX;
pTimer->fFlags = fFlags;
pTimer->uHzHint = 0;
pTimer->pvUser = NULL;
pTimer->pCritSect = NULL;
memcpy(pTimer->szName, pszName, cchName);
pTimer->szName[cchName] = '\0';
#ifdef VBOX_STRICT
tmTimerQueuesSanityChecks(pVM, "tmR3TimerCreate");
#endif
PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
#ifdef VBOX_WITH_STATISTICS
/*
* Only register statistics if we're passed the no-realloc point.
*/
if (pQueue->fCannotGrow)
tmR3TimerRegisterStats(pVM, pQueue, pTimer);
#endif
*ppTimer = pTimer;
return VINF_SUCCESS;
}
/**
* Creates a device timer.
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
* @param pDevIns Device instance.
* @param enmClock The clock to use on this timer.
* @param pfnCallback Callback function.
* @param pvUser The user argument to the callback.
* @param fFlags Timer creation flags, see grp_tm_timer_flags.
* @param pszName Timer name (will be copied). Max 31 chars.
* @param phTimer Where to store the timer handle on success.
*/
VMM_INT_DECL(int) TMR3TimerCreateDevice(PVM pVM, PPDMDEVINS pDevIns, TMCLOCK enmClock,
PFNTMTIMERDEV pfnCallback, void *pvUser,
uint32_t fFlags, const char *pszName, PTMTIMERHANDLE phTimer)
{
AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0)),
VERR_INVALID_FLAGS);
/*
* Allocate and init stuff.
*/
PTMTIMER pTimer;
int rc = tmr3TimerCreate(pVM, enmClock, fFlags, pszName, &pTimer);
if (RT_SUCCESS(rc))
{
pTimer->enmType = TMTIMERTYPE_DEV;
pTimer->u.Dev.pfnTimer = pfnCallback;
pTimer->u.Dev.pDevIns = pDevIns;
pTimer->pvUser = pvUser;
if (!(fFlags & TMTIMER_FLAGS_NO_CRIT_SECT))
pTimer->pCritSect = PDMR3DevGetCritSect(pVM, pDevIns);
*phTimer = pTimer->hSelf;
Log(("TM: Created device timer %p clock %d callback %p '%s'\n", phTimer, enmClock, pfnCallback, pszName));
}
return rc;
}
/**
* Creates a USB device timer.
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
* @param pUsbIns The USB device instance.
* @param enmClock The clock to use on this timer.
* @param pfnCallback Callback function.
* @param pvUser The user argument to the callback.
* @param fFlags Timer creation flags, see grp_tm_timer_flags.
* @param pszName Timer name (will be copied). Max 31 chars.
* @param phTimer Where to store the timer handle on success.
*/
VMM_INT_DECL(int) TMR3TimerCreateUsb(PVM pVM, PPDMUSBINS pUsbIns, TMCLOCK enmClock,
PFNTMTIMERUSB pfnCallback, void *pvUser,
uint32_t fFlags, const char *pszName, PTMTIMERHANDLE phTimer)
{
AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_NO_RING0)), VERR_INVALID_PARAMETER);
/*
* Allocate and init stuff.
*/
PTMTIMER pTimer;
int rc = tmr3TimerCreate(pVM, enmClock, fFlags, pszName, &pTimer);
if (RT_SUCCESS(rc))
{
pTimer->enmType = TMTIMERTYPE_USB;
pTimer->u.Usb.pfnTimer = pfnCallback;
pTimer->u.Usb.pUsbIns = pUsbIns;
pTimer->pvUser = pvUser;
//if (!(fFlags & TMTIMER_FLAGS_NO_CRIT_SECT))
//{
// if (pDevIns->pCritSectR3)
// pTimer->pCritSect = pUsbIns->pCritSectR3;
// else
// pTimer->pCritSect = IOMR3GetCritSect(pVM);
//}
*phTimer = pTimer->hSelf;
Log(("TM: Created USB device timer %p clock %d callback %p '%s'\n", *phTimer, enmClock, pfnCallback, pszName));
}
return rc;
}
/**
* Creates a driver timer.
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
* @param pDrvIns Driver instance.
* @param enmClock The clock to use on this timer.
* @param pfnCallback Callback function.
* @param pvUser The user argument to the callback.
* @param fFlags Timer creation flags, see grp_tm_timer_flags.
* @param pszName Timer name (will be copied). Max 31 chars.
* @param phTimer Where to store the timer handle on success.
*/
VMM_INT_DECL(int) TMR3TimerCreateDriver(PVM pVM, PPDMDRVINS pDrvIns, TMCLOCK enmClock, PFNTMTIMERDRV pfnCallback, void *pvUser,
uint32_t fFlags, const char *pszName, PTMTIMERHANDLE phTimer)
{
AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0)),
VERR_INVALID_FLAGS);
/*
* Allocate and init stuff.
*/
PTMTIMER pTimer;
int rc = tmr3TimerCreate(pVM, enmClock, fFlags, pszName, &pTimer);
if (RT_SUCCESS(rc))
{
pTimer->enmType = TMTIMERTYPE_DRV;
pTimer->u.Drv.pfnTimer = pfnCallback;
pTimer->u.Drv.pDrvIns = pDrvIns;
pTimer->pvUser = pvUser;
*phTimer = pTimer->hSelf;
Log(("TM: Created device timer %p clock %d callback %p '%s'\n", *phTimer, enmClock, pfnCallback, pszName));
}
return rc;
}
/**
* Creates an internal timer.
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
* @param enmClock The clock to use on this timer.
* @param pfnCallback Callback function.
* @param pvUser User argument to be passed to the callback.
* @param fFlags Timer creation flags, see grp_tm_timer_flags.
* @param pszName Timer name (will be copied). Max 31 chars.
* @param phTimer Where to store the timer handle on success.
*/
VMMR3DECL(int) TMR3TimerCreate(PVM pVM, TMCLOCK enmClock, PFNTMTIMERINT pfnCallback, void *pvUser,
uint32_t fFlags, const char *pszName, PTMTIMERHANDLE phTimer)
{
AssertReturn(fFlags & (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0), VERR_INVALID_FLAGS);
AssertReturn((fFlags & (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0)) != (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0),
VERR_INVALID_FLAGS);
/*
* Allocate and init stuff.
*/
PTMTIMER pTimer;
int rc = tmr3TimerCreate(pVM, enmClock, fFlags, pszName, &pTimer);
if (RT_SUCCESS(rc))
{
pTimer->enmType = TMTIMERTYPE_INTERNAL;
pTimer->u.Internal.pfnTimer = pfnCallback;
pTimer->pvUser = pvUser;
*phTimer = pTimer->hSelf;
Log(("TM: Created internal timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszName));
}
return rc;
}
/**
* Destroy a timer
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
* @param pQueue The queue the timer is on.
* @param pTimer Timer handle as returned by one of the create functions.
*/
static int tmR3TimerDestroy(PVMCC pVM, PTMTIMERQUEUE pQueue, PTMTIMER pTimer)
{
bool fActive = false;
bool fPending = false;
AssertMsg( !pTimer->pCritSect
|| VMR3GetState(pVM) != VMSTATE_RUNNING
|| PDMCritSectIsOwner(pVM, pTimer->pCritSect), ("%s\n", pTimer->szName));
/*
* The rest of the game happens behind the lock, just
* like create does. All the work is done here.
*/
PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED);
PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
for (int cRetries = 1000;; cRetries--)
{
/*
* Change to the DESTROY state.
*/
TMTIMERSTATE const enmState = pTimer->enmState;
Log2(("TMTimerDestroy: %p:{.enmState=%s, .szName='%s'} cRetries=%d\n",
pTimer, tmTimerState(enmState), pTimer->szName, cRetries));
switch (enmState)
{
case TMTIMERSTATE_STOPPED:
case TMTIMERSTATE_EXPIRED_DELIVER:
break;
case TMTIMERSTATE_ACTIVE:
fActive = true;
break;
case TMTIMERSTATE_PENDING_STOP:
case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
case TMTIMERSTATE_PENDING_RESCHEDULE:
fActive = true;
fPending = true;
break;
case TMTIMERSTATE_PENDING_SCHEDULE:
fPending = true;
break;
/*
* This shouldn't happen as the caller should make sure there are no races.
*/
case TMTIMERSTATE_EXPIRED_GET_UNLINK:
case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->szName));
PDMCritSectLeave(pVM, &pQueue->TimerLock);
PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->szName),
VERR_TM_UNSTABLE_STATE);
if (!RTThreadYield())
RTThreadSleep(1);
PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED);
PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
continue;
/*
* Invalid states.
*/
case TMTIMERSTATE_FREE:
case TMTIMERSTATE_DESTROY:
PDMCritSectLeave(pVM, &pQueue->TimerLock);
PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
AssertLogRelMsgFailedReturn(("pTimer=%p %s\n", pTimer, tmTimerState(enmState)), VERR_TM_INVALID_STATE);
default:
AssertMsgFailed(("Unknown timer state %d (%s)\n", enmState, pTimer->szName));
PDMCritSectLeave(pVM, &pQueue->TimerLock);
PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
return VERR_TM_UNKNOWN_STATE;
}
/*
* Try switch to the destroy state.
* This should always succeed as the caller should make sure there are no race.
*/
bool fRc;
TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_DESTROY, enmState, fRc);
if (fRc)
break;
AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->szName));
PDMCritSectLeave(pVM, &pQueue->TimerLock);
PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->szName),
VERR_TM_UNSTABLE_STATE);
PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED);
PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
}
/*
* Unlink from the active list.
*/
if (fActive)
{
const PTMTIMER pPrev = tmTimerGetPrev(pQueue, pTimer);
const PTMTIMER pNext = tmTimerGetNext(pQueue, pTimer);
if (pPrev)
tmTimerSetNext(pQueue, pPrev, pNext);
else
{
tmTimerQueueSetHead(pQueue, pQueue, pNext);
pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
}
if (pNext)
tmTimerSetPrev(pQueue, pNext, pPrev);
pTimer->idxNext = UINT32_MAX;
pTimer->idxPrev = UINT32_MAX;
}
/*
* Unlink from the schedule list by running it.
*/
if (fPending)
{
Log3(("TMR3TimerDestroy: tmTimerQueueSchedule\n"));
STAM_PROFILE_START(&pVM->tm.s.CTX_SUFF_Z(StatScheduleOne), a);
Assert(pQueue->idxSchedule < pQueue->cTimersAlloc);
tmTimerQueueSchedule(pVM, pQueue, pQueue);
STAM_PROFILE_STOP(&pVM->tm.s.CTX_SUFF_Z(StatScheduleOne), a);
}
#ifdef VBOX_WITH_STATISTICS
/*
* Deregister statistics.
*/
tmR3TimerDeregisterStats(pVM, pTimer);
#endif
/*
* Change it to free state and update the queue accordingly.
*/
Assert(pTimer->idxNext == UINT32_MAX); Assert(pTimer->idxPrev == UINT32_MAX); Assert(pTimer->idxScheduleNext == UINT32_MAX);
TM_SET_STATE(pTimer, TMTIMERSTATE_FREE);
pQueue->cTimersFree += 1;
uint32_t idxTimer = (uint32_t)(pTimer - pQueue->paTimers);
if (idxTimer < pQueue->idxFreeHint)
pQueue->idxFreeHint = idxTimer;
#ifdef VBOX_STRICT
tmTimerQueuesSanityChecks(pVM, "TMR3TimerDestroy");
#endif
PDMCritSectLeave(pVM, &pQueue->TimerLock);
PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
return VINF_SUCCESS;
}
/**
* Destroy a timer
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
* @param hTimer Timer handle as returned by one of the create functions.
*/
VMMR3DECL(int) TMR3TimerDestroy(PVM pVM, TMTIMERHANDLE hTimer)
{
/* We ignore NILs here. */
if (hTimer == NIL_TMTIMERHANDLE)
return VINF_SUCCESS;
TMTIMER_HANDLE_TO_VARS_RETURN(pVM, hTimer); /* => pTimer, pQueueCC, pQueue, idxTimer, idxQueue */
return tmR3TimerDestroy(pVM, pQueue, pTimer);
}
/**
* Destroy all timers owned by a device.
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
* @param pDevIns Device which timers should be destroyed.
*/
VMM_INT_DECL(int) TMR3TimerDestroyDevice(PVM pVM, PPDMDEVINS pDevIns)
{
LogFlow(("TMR3TimerDestroyDevice: pDevIns=%p\n", pDevIns));
if (!pDevIns)
return VERR_INVALID_PARAMETER;
for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
{
PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
uint32_t idxTimer = pQueue->cTimersAlloc;
while (idxTimer-- > 0)
{
PTMTIMER pTimer = &pQueue->paTimers[idxTimer];
if ( pTimer->enmType == TMTIMERTYPE_DEV
&& pTimer->u.Dev.pDevIns == pDevIns
&& pTimer->enmState < TMTIMERSTATE_DESTROY)
{
PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
int rc = tmR3TimerDestroy(pVM, pQueue, pTimer);
AssertRC(rc);
PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
}
}
PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
}
LogFlow(("TMR3TimerDestroyDevice: returns VINF_SUCCESS\n"));
return VINF_SUCCESS;
}
/**
* Destroy all timers owned by a USB device.
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
* @param pUsbIns USB device which timers should be destroyed.
*/
VMM_INT_DECL(int) TMR3TimerDestroyUsb(PVM pVM, PPDMUSBINS pUsbIns)
{
LogFlow(("TMR3TimerDestroyUsb: pUsbIns=%p\n", pUsbIns));
if (!pUsbIns)
return VERR_INVALID_PARAMETER;
for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
{
PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
uint32_t idxTimer = pQueue->cTimersAlloc;
while (idxTimer-- > 0)
{
PTMTIMER pTimer = &pQueue->paTimers[idxTimer];
if ( pTimer->enmType == TMTIMERTYPE_USB
&& pTimer->u.Usb.pUsbIns == pUsbIns
&& pTimer->enmState < TMTIMERSTATE_DESTROY)
{
PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
int rc = tmR3TimerDestroy(pVM, pQueue, pTimer);
AssertRC(rc);
PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
}
}
PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
}
LogFlow(("TMR3TimerDestroyUsb: returns VINF_SUCCESS\n"));
return VINF_SUCCESS;
}
/**
* Destroy all timers owned by a driver.
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
* @param pDrvIns Driver which timers should be destroyed.
*/
VMM_INT_DECL(int) TMR3TimerDestroyDriver(PVM pVM, PPDMDRVINS pDrvIns)
{
LogFlow(("TMR3TimerDestroyDriver: pDrvIns=%p\n", pDrvIns));
if (!pDrvIns)
return VERR_INVALID_PARAMETER;
for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
{
PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
uint32_t idxTimer = pQueue->cTimersAlloc;
while (idxTimer-- > 0)
{
PTMTIMER pTimer = &pQueue->paTimers[idxTimer];
if ( pTimer->enmType == TMTIMERTYPE_DRV
&& pTimer->u.Drv.pDrvIns == pDrvIns
&& pTimer->enmState < TMTIMERSTATE_DESTROY)
{
PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
int rc = tmR3TimerDestroy(pVM, pQueue, pTimer);
AssertRC(rc);
PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
}
}
PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
}
LogFlow(("TMR3TimerDestroyDriver: returns VINF_SUCCESS\n"));
return VINF_SUCCESS;
}
/**
* Internal function for getting the clock time.
*
* @returns clock time.
* @param pVM The cross context VM structure.
* @param enmClock The clock.
*/
DECLINLINE(uint64_t) tmClock(PVM pVM, TMCLOCK enmClock)
{
switch (enmClock)
{
case TMCLOCK_VIRTUAL: return TMVirtualGet(pVM);
case TMCLOCK_VIRTUAL_SYNC: return TMVirtualSyncGet(pVM);
case TMCLOCK_REAL: return TMRealGet(pVM);
case TMCLOCK_TSC: return TMCpuTickGet(pVM->apCpusR3[0] /* just take VCPU 0 */);
default:
AssertMsgFailed(("enmClock=%d\n", enmClock));
return ~(uint64_t)0;
}
}
/**
* Checks if the sync queue has one or more expired timers.
*
* @returns true / false.
*
* @param pVM The cross context VM structure.
* @param enmClock The queue.
*/
DECLINLINE(bool) tmR3HasExpiredTimer(PVM pVM, TMCLOCK enmClock)
{
const uint64_t u64Expire = pVM->tm.s.aTimerQueues[enmClock].u64Expire;
return u64Expire != INT64_MAX && u64Expire <= tmClock(pVM, enmClock);
}
/**
* Checks for expired timers in all the queues.
*
* @returns true / false.
* @param pVM The cross context VM structure.
*/
DECLINLINE(bool) tmR3AnyExpiredTimers(PVM pVM)
{
/*
* Combine the time calculation for the first two since we're not on EMT
* TMVirtualSyncGet only permits EMT.
*/
uint64_t u64Now = TMVirtualGetNoCheck(pVM);
if (pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].u64Expire <= u64Now)
return true;
u64Now = pVM->tm.s.fVirtualSyncTicking
? u64Now - pVM->tm.s.offVirtualSync
: pVM->tm.s.u64VirtualSync;
if (pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].u64Expire <= u64Now)
return true;
/*
* The remaining timers.
*/
if (tmR3HasExpiredTimer(pVM, TMCLOCK_REAL))
return true;
if (tmR3HasExpiredTimer(pVM, TMCLOCK_TSC))
return true;
return false;
}
/**
* Schedule timer callback.
*
* @param pTimer Timer handle.
* @param pvUser Pointer to the VM.
* @thread Timer thread.
*
* @remark We cannot do the scheduling and queues running from a timer handler
* since it's not executing in EMT, and even if it was it would be async
* and we wouldn't know the state of the affairs.
* So, we'll just raise the timer FF and force any REM execution to exit.
*/
static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t /*iTick*/)
{
PVM pVM = (PVM)pvUser;
PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu];
NOREF(pTimer);
AssertCompile(TMCLOCK_MAX == 4);
STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallback);
#ifdef DEBUG_Sander /* very annoying, keep it private. */
if (VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER))
Log(("tmR3TimerCallback: timer event still pending!!\n"));
#endif
if ( !VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)
&& ( pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].idxSchedule != UINT32_MAX /** @todo FIXME - reconsider offSchedule as a reason for running the timer queues. */
|| pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].idxSchedule != UINT32_MAX
|| pVM->tm.s.aTimerQueues[TMCLOCK_REAL].idxSchedule != UINT32_MAX
|| pVM->tm.s.aTimerQueues[TMCLOCK_TSC].idxSchedule != UINT32_MAX
|| tmR3AnyExpiredTimers(pVM)
)
&& !VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)
&& !pVM->tm.s.fRunningQueues
)
{
Log5(("TM(%u): FF: 0 -> 1\n", __LINE__));
VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM | VMNOTIFYFF_FLAGS_POKE);
STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallbackSetFF);
}
}
/**
* Worker for tmR3TimerQueueDoOne that runs pending timers on the specified
* non-empty timer queue.
*
* @param pVM The cross context VM structure.
* @param pQueue The queue to run.
* @param pTimer The head timer. Caller already check that this is
* not NULL.
*/
static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue, PTMTIMER pTimer)
{
VM_ASSERT_EMT(pVM); /** @todo relax this */
/*
* Run timers.
*
* We check the clock once and run all timers which are ACTIVE
* and have an expire time less or equal to the time we read.
*
* N.B. A generic unlink must be applied since other threads
* are allowed to mess with any active timer at any time.
*
* However, we only allow EMT to handle EXPIRED_PENDING
* timers, thus enabling the timer handler function to
* arm the timer again.
*/
/** @todo the above 'however' is outdated. */
const uint64_t u64Now = tmClock(pVM, pQueue->enmClock);
while (pTimer->u64Expire <= u64Now)
{
PTMTIMER const pNext = tmTimerGetNext(pQueue, pTimer);
PPDMCRITSECT pCritSect = pTimer->pCritSect;
if (pCritSect)
{
STAM_PROFILE_START(&pTimer->StatCritSectEnter, Locking);
PDMCritSectEnter(pVM, pCritSect, VERR_IGNORED);
STAM_PROFILE_STOP(&pTimer->StatCritSectEnter, Locking);
}
Log2(("tmR3TimerQueueRun: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .szName='%s'}\n",
pTimer, tmTimerState(pTimer->enmState), pQueue->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->szName));
bool fRc;
TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_GET_UNLINK, TMTIMERSTATE_ACTIVE, fRc);
if (fRc)
{
Assert(pTimer->idxScheduleNext == UINT32_MAX); /* this can trigger falsely */
/* unlink */
const PTMTIMER pPrev = tmTimerGetPrev(pQueue, pTimer);
if (pPrev)
tmTimerSetNext(pQueue, pPrev, pNext);
else
{
tmTimerQueueSetHead(pQueue, pQueue, pNext);
pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
}
if (pNext)
tmTimerSetPrev(pQueue, pNext, pPrev);
pTimer->idxNext = UINT32_MAX;
pTimer->idxPrev = UINT32_MAX;
/* fire */
TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
STAM_PROFILE_START(&pTimer->StatTimer, PrfTimer);
switch (pTimer->enmType)
{
case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer->hSelf, pTimer->pvUser); break;
case TMTIMERTYPE_USB: pTimer->u.Usb.pfnTimer(pTimer->u.Usb.pUsbIns, pTimer->hSelf, pTimer->pvUser); break;
case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer->hSelf, pTimer->pvUser); break;
case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer->hSelf, pTimer->pvUser); break;
default:
AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->szName));
break;
}
STAM_PROFILE_STOP(&pTimer->StatTimer, PrfTimer);
/* change the state if it wasn't changed already in the handler. */
TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
}
if (pCritSect)
PDMCritSectLeave(pVM, pCritSect);
/* Advance? */
pTimer = pNext;
if (!pTimer)
break;
} /* run loop */
}
/**
* Service one regular timer queue.
*
* @param pVM The cross context VM structure.
* @param pQueue The queue.
*/
static void tmR3TimerQueueDoOne(PVM pVM, PTMTIMERQUEUE pQueue)
{
Assert(pQueue->enmClock != TMCLOCK_VIRTUAL_SYNC);
/*
* Only one thread should be "doing" the queue.
*/
if (ASMAtomicCmpXchgBool(&pQueue->fBeingProcessed, true, false))
{
STAM_PROFILE_START(&pQueue->StatDo, s);
PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
if (pQueue->idxSchedule != UINT32_MAX)
tmTimerQueueSchedule(pVM, pQueue, pQueue);
PTMTIMER pHead = tmTimerQueueGetHead(pQueue, pQueue);
if (pHead)
tmR3TimerQueueRun(pVM, pQueue, pHead);
PDMCritSectLeave(pVM, &pQueue->TimerLock);
STAM_PROFILE_STOP(&pQueue->StatDo, s);
ASMAtomicWriteBool(&pQueue->fBeingProcessed, false);
}
}
/**
* Schedules and runs any pending times in the timer queue for the
* synchronous virtual clock.
*
* This scheduling is a bit different from the other queues as it need
* to implement the special requirements of the timer synchronous virtual
* clock, thus this 2nd queue run function.
*
* @param pVM The cross context VM structure.
*
* @remarks The caller must the Virtual Sync lock. Owning the TM lock is no
* longer important.
*/
static void tmR3TimerQueueRunVirtualSync(PVM pVM)
{
PTMTIMERQUEUE const pQueue = &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC];
VM_ASSERT_EMT(pVM);
Assert(PDMCritSectIsOwner(pVM, &pVM->tm.s.VirtualSyncLock));
/*
* Any timers?
*/
PTMTIMER pNext = tmTimerQueueGetHead(pQueue, pQueue);
if (RT_UNLIKELY(!pNext))
{
Assert(pVM->tm.s.fVirtualSyncTicking || !pVM->tm.s.cVirtualTicking);
return;
}
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRun);
/*
* Calculate the time frame for which we will dispatch timers.
*
* We use a time frame ranging from the current sync time (which is most likely the
* same as the head timer) and some configurable period (100000ns) up towards the
* current virtual time. This period might also need to be restricted by the catch-up
* rate so frequent calls to this function won't accelerate the time too much, however
* this will be implemented at a later point if necessary.
*
* Without this frame we would 1) having to run timers much more frequently
* and 2) lag behind at a steady rate.
*/
const uint64_t u64VirtualNow = TMVirtualGetNoCheck(pVM);
uint64_t const offSyncGivenUp = pVM->tm.s.offVirtualSyncGivenUp;
uint64_t u64Now;
if (!pVM->tm.s.fVirtualSyncTicking)
{
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStoppedAlready);
u64Now = pVM->tm.s.u64VirtualSync;
Assert(u64Now <= pNext->u64Expire);
}
else
{
/* Calc 'now'. */
bool fStopCatchup = false;
bool fUpdateStuff = false;
uint64_t off = pVM->tm.s.offVirtualSync;
if (pVM->tm.s.fVirtualSyncCatchUp)
{
uint64_t u64Delta = u64VirtualNow - pVM->tm.s.u64VirtualSyncCatchUpPrev;
if (RT_LIKELY(!(u64Delta >> 32)))
{
uint64_t u64Sub = ASMMultU64ByU32DivByU32(u64Delta, pVM->tm.s.u32VirtualSyncCatchUpPercentage, 100);
if (off > u64Sub + offSyncGivenUp)
{
off -= u64Sub;
Log4(("TM: %'RU64/-%'8RU64: sub %'RU64 [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow - off, off - offSyncGivenUp, u64Sub));
}
else
{
STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
fStopCatchup = true;
off = offSyncGivenUp;
}
fUpdateStuff = true;
}
}
u64Now = u64VirtualNow - off;
/* Adjust against last returned time. */
uint64_t u64Last = ASMAtomicUoReadU64(&pVM->tm.s.u64VirtualSync);
if (u64Last > u64Now)
{
u64Now = u64Last + 1;
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetAdjLast);
}
/* Check if stopped by expired timer. */
uint64_t const u64Expire = pNext->u64Expire;
if (u64Now >= u64Expire)
{
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStop);
u64Now = u64Expire;
ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
Log4(("TM: %'RU64/-%'8RU64: exp tmr [tmR3TimerQueueRunVirtualSync]\n", u64Now, u64VirtualNow - u64Now - offSyncGivenUp));
}
else
{
ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
if (fUpdateStuff)
{
ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, off);
ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev, u64VirtualNow);
ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
if (fStopCatchup)
{
ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
Log4(("TM: %'RU64/0: caught up [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow));
}
}
}
}
/* calc end of frame. */
uint64_t u64Max = u64Now + pVM->tm.s.u32VirtualSyncScheduleSlack;
if (u64Max > u64VirtualNow - offSyncGivenUp)
u64Max = u64VirtualNow - offSyncGivenUp;
/* assert sanity */
Assert(u64Now <= u64VirtualNow - offSyncGivenUp);
Assert(u64Max <= u64VirtualNow - offSyncGivenUp);
Assert(u64Now <= u64Max);
Assert(offSyncGivenUp == pVM->tm.s.offVirtualSyncGivenUp);
/*
* Process the expired timers moving the clock along as we progress.
*/
#ifdef VBOX_STRICT
uint64_t u64Prev = u64Now; NOREF(u64Prev);
#endif
while (pNext && pNext->u64Expire <= u64Max)
{
/* Advance */
PTMTIMER pTimer = pNext;
pNext = tmTimerGetNext(pQueue, pTimer);
/* Take the associated lock. */
PPDMCRITSECT pCritSect = pTimer->pCritSect;
if (pCritSect)
{
STAM_PROFILE_START(&pTimer->StatCritSectEnter, Locking);
PDMCritSectEnter(pVM, pCritSect, VERR_IGNORED);
STAM_PROFILE_STOP(&pTimer->StatCritSectEnter, Locking);
}
Log2(("tmR3TimerQueueRunVirtualSync: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .szName='%s'}\n",
pTimer, tmTimerState(pTimer->enmState), pQueue->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->szName));
/* Advance the clock - don't permit timers to be out of order or armed
in the 'past'. */
#ifdef VBOX_STRICT
AssertMsg(pTimer->u64Expire >= u64Prev, ("%'RU64 < %'RU64 %s\n", pTimer->u64Expire, u64Prev, pTimer->szName));
u64Prev = pTimer->u64Expire;
#endif
ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, pTimer->u64Expire);
ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
/* Unlink it, change the state and do the callout. */
tmTimerQueueUnlinkActive(pVM, pQueue, pQueue, pTimer);
TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
STAM_PROFILE_START(&pTimer->StatTimer, PrfTimer);
switch (pTimer->enmType)
{
case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer->hSelf, pTimer->pvUser); break;
case TMTIMERTYPE_USB: pTimer->u.Usb.pfnTimer(pTimer->u.Usb.pUsbIns, pTimer->hSelf, pTimer->pvUser); break;
case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer->hSelf, pTimer->pvUser); break;
case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer->hSelf, pTimer->pvUser); break;
default:
AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->szName));
break;
}
STAM_PROFILE_STOP(&pTimer->StatTimer, PrfTimer);
/* Change the state if it wasn't changed already in the handler.
Reset the Hz hint too since this is the same as TMTimerStop. */
bool fRc;
TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
if (fRc && pTimer->uHzHint)
{
if (pTimer->uHzHint >= pQueue->uMaxHzHint)
ASMAtomicOrU64(&pVM->tm.s.HzHint.u64Combined, RT_BIT_32(TMCLOCK_VIRTUAL_SYNC) | RT_BIT_32(TMCLOCK_VIRTUAL_SYNC + 16));
pTimer->uHzHint = 0;
}
Log2(("tmR3TimerQueueRunVirtualSync: new state %s\n", tmTimerState(pTimer->enmState)));
/* Leave the associated lock. */
if (pCritSect)
PDMCritSectLeave(pVM, pCritSect);
} /* run loop */
/*
* Restart the clock if it was stopped to serve any timers,
* and start/adjust catch-up if necessary.
*/
if ( !pVM->tm.s.fVirtualSyncTicking
&& pVM->tm.s.cVirtualTicking)
{
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunRestart);
/* calc the slack we've handed out. */
const uint64_t u64VirtualNow2 = TMVirtualGetNoCheck(pVM);
Assert(u64VirtualNow2 >= u64VirtualNow);
AssertMsg(pVM->tm.s.u64VirtualSync >= u64Now, ("%'RU64 < %'RU64\n", pVM->tm.s.u64VirtualSync, u64Now));
const uint64_t offSlack = pVM->tm.s.u64VirtualSync - u64Now;
STAM_STATS({
if (offSlack)
{
PSTAMPROFILE p = &pVM->tm.s.StatVirtualSyncRunSlack;
p->cPeriods++;
p->cTicks += offSlack;
if (p->cTicksMax < offSlack) p->cTicksMax = offSlack;
if (p->cTicksMin > offSlack) p->cTicksMin = offSlack;
}
});
/* Let the time run a little bit while we were busy running timers(?). */
uint64_t u64Elapsed;
#define MAX_ELAPSED 30000U /* ns */
if (offSlack > MAX_ELAPSED)
u64Elapsed = 0;
else
{
u64Elapsed = u64VirtualNow2 - u64VirtualNow;
if (u64Elapsed > MAX_ELAPSED)
u64Elapsed = MAX_ELAPSED;
u64Elapsed = u64Elapsed > offSlack ? u64Elapsed - offSlack : 0;
}
#undef MAX_ELAPSED
/* Calc the current offset. */
uint64_t offNew = u64VirtualNow2 - pVM->tm.s.u64VirtualSync - u64Elapsed;
Assert(!(offNew & RT_BIT_64(63)));
uint64_t offLag = offNew - pVM->tm.s.offVirtualSyncGivenUp;
Assert(!(offLag & RT_BIT_64(63)));
/*
* Deal with starting, adjusting and stopping catchup.
*/
if (pVM->tm.s.fVirtualSyncCatchUp)
{
if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpStopThreshold)
{
/* stop */
STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
Log4(("TM: %'RU64/-%'8RU64: caught up [pt]\n", u64VirtualNow2 - offNew, offLag));
}
else if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
{
/* adjust */
unsigned i = 0;
while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
&& offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
i++;
if (pVM->tm.s.u32VirtualSyncCatchUpPercentage < pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage)
{
STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupAdjust[i]);
ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
Log4(("TM: %'RU64/%'8RU64: adj %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
}
pVM->tm.s.u64VirtualSyncCatchUpPrev = u64VirtualNow2;
}
else
{
/* give up */
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUp);
STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
Log4(("TM: %'RU64/%'8RU64: give up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
LogRel(("TM: Giving up catch-up attempt at a %'RU64 ns lag; new total: %'RU64 ns\n", offLag, offNew));
}
}
else if (offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[0].u64Start)
{
if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
{
/* start */
STAM_PROFILE_ADV_START(&pVM->tm.s.StatVirtualSyncCatchup, c);
unsigned i = 0;
while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
&& offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
i++;
STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupInitial[i]);
ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, true);
Log4(("TM: %'RU64/%'8RU64: catch-up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
}
else
{
/* don't bother */
STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting);
ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
Log4(("TM: %'RU64/%'8RU64: give up\n", u64VirtualNow2 - offNew, offLag));
LogRel(("TM: Not bothering to attempt catching up a %'RU64 ns lag; new total: %'RU64\n", offLag, offNew));
}
}
/*
* Update the offset and restart the clock.
*/
Assert(!(offNew & RT_BIT_64(63)));
ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, offNew);
ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, true);
}
}
/**
* Deals with stopped Virtual Sync clock.
*
* This is called by the forced action flag handling code in EM when it
* encounters the VM_FF_TM_VIRTUAL_SYNC flag. It is called by all VCPUs and they
* will block on the VirtualSyncLock until the pending timers has been executed
* and the clock restarted.
*
* @param pVM The cross context VM structure.
* @param pVCpu The cross context virtual CPU structure of the calling EMT.
*
* @thread EMTs
*/
VMMR3_INT_DECL(void) TMR3VirtualSyncFF(PVM pVM, PVMCPU pVCpu)
{
Log2(("TMR3VirtualSyncFF:\n"));
/*
* The EMT doing the timers is diverted to them.
*/
if (pVCpu->idCpu == pVM->tm.s.idTimerCpu)
TMR3TimerQueuesDo(pVM);
/*
* The other EMTs will block on the virtual sync lock and the first owner
* will run the queue and thus restarting the clock.
*
* Note! This is very suboptimal code wrt to resuming execution when there
* are more than two Virtual CPUs, since they will all have to enter
* the critical section one by one. But it's a very simple solution
* which will have to do the job for now.
*/
else
{
/** @todo Optimize for SMP */
STAM_PROFILE_START(&pVM->tm.s.StatVirtualSyncFF, a);
PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
if (pVM->tm.s.fVirtualSyncTicking)
{
STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
Log2(("TMR3VirtualSyncFF: ticking\n"));
}
else
{
PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
/* try run it. */
PDMCritSectEnter(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].TimerLock, VERR_IGNORED);
PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
if (pVM->tm.s.fVirtualSyncTicking)
Log2(("TMR3VirtualSyncFF: ticking (2)\n"));
else
{
ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
Log2(("TMR3VirtualSyncFF: running queue\n"));
Assert(pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].idxSchedule == UINT32_MAX);
tmR3TimerQueueRunVirtualSync(pVM);
if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
}
PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
PDMCritSectLeave(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].TimerLock);
}
}
}
/**
* Service the special virtual sync timer queue.
*
* @param pVM The cross context VM structure.
* @param pVCpuDst The destination VCpu.
*/
static void tmR3TimerQueueDoVirtualSync(PVM pVM, PVMCPU pVCpuDst)
{
PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC];
if (ASMAtomicCmpXchgBool(&pQueue->fBeingProcessed, true, false))
{
STAM_PROFILE_START(&pQueue->StatDo, s1);
PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /* Clear the FF once we started working for real. */
Assert(pQueue->idxSchedule == UINT32_MAX);
tmR3TimerQueueRunVirtualSync(pVM);
if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
PDMCritSectLeave(pVM, &pQueue->TimerLock);
STAM_PROFILE_STOP(&pQueue->StatDo, s1);
ASMAtomicWriteBool(&pQueue->fBeingProcessed, false);
}
}
/**
* Schedules and runs any pending timers.
*
* This is normally called from a forced action handler in EMT.
*
* @param pVM The cross context VM structure.
*
* @thread EMT (actually EMT0, but we fend off the others)
*/
VMMR3DECL(void) TMR3TimerQueuesDo(PVM pVM)
{
/*
* Only the dedicated timer EMT should do stuff here.
* (fRunningQueues is only used as an indicator.)
*/
Assert(pVM->tm.s.idTimerCpu < pVM->cCpus);
PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu];
if (VMMGetCpu(pVM) != pVCpuDst)
{
Assert(pVM->cCpus > 1);
return;
}
STAM_PROFILE_START(&pVM->tm.s.StatDoQueues, a);
Log2(("TMR3TimerQueuesDo:\n"));
Assert(!pVM->tm.s.fRunningQueues);
ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, true);
/*
* Process the queues.
*/
AssertCompile(TMCLOCK_MAX == 4);
/*
* TMCLOCK_VIRTUAL_SYNC (see also TMR3VirtualSyncFF)
*/
tmR3TimerQueueDoVirtualSync(pVM, pVCpuDst);
/*
* TMCLOCK_VIRTUAL
*/
tmR3TimerQueueDoOne(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL]);
/*
* TMCLOCK_TSC
*/
Assert(pVM->tm.s.aTimerQueues[TMCLOCK_TSC].idxActive == UINT32_MAX); /* not used */
/*
* TMCLOCK_REAL
*/
tmR3TimerQueueDoOne(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_REAL]);
#ifdef VBOX_STRICT
/* check that we didn't screw up. */
tmTimerQueuesSanityChecks(pVM, "TMR3TimerQueuesDo");
#endif
/* done */
Log2(("TMR3TimerQueuesDo: returns void\n"));
ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, false);
STAM_PROFILE_STOP(&pVM->tm.s.StatDoQueues, a);
}
/** @name Saved state values
* @{ */
#define TMTIMERSTATE_SAVED_PENDING_STOP 4
#define TMTIMERSTATE_SAVED_PENDING_SCHEDULE 7
/** @} */
/**
* Saves the state of a timer to a saved state.
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
* @param hTimer Timer to save.
* @param pSSM Save State Manager handle.
*/
VMMR3DECL(int) TMR3TimerSave(PVM pVM, TMTIMERHANDLE hTimer, PSSMHANDLE pSSM)
{
VM_ASSERT_EMT(pVM);
TMTIMER_HANDLE_TO_VARS_RETURN(pVM, hTimer); /* => pTimer, pQueueCC, pQueue, idxTimer, idxQueue */
LogFlow(("TMR3TimerSave: %p:{enmState=%s, .szName='%s'} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->szName, pSSM));
switch (pTimer->enmState)
{
case TMTIMERSTATE_STOPPED:
case TMTIMERSTATE_PENDING_STOP:
case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
return SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_STOP);
case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
AssertMsgFailed(("u64Expire is being updated! (%s)\n", pTimer->szName));
if (!RTThreadYield())
RTThreadSleep(1);
RT_FALL_THRU();
case TMTIMERSTATE_ACTIVE:
case TMTIMERSTATE_PENDING_SCHEDULE:
case TMTIMERSTATE_PENDING_RESCHEDULE:
SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_SCHEDULE);
return SSMR3PutU64(pSSM, pTimer->u64Expire);
case TMTIMERSTATE_EXPIRED_GET_UNLINK:
case TMTIMERSTATE_EXPIRED_DELIVER:
case TMTIMERSTATE_DESTROY:
case TMTIMERSTATE_FREE:
case TMTIMERSTATE_INVALID:
AssertMsgFailed(("Invalid timer state %d %s (%s)\n", pTimer->enmState, tmTimerState(pTimer->enmState), pTimer->szName));
return SSMR3HandleSetStatus(pSSM, VERR_TM_INVALID_STATE);
}
AssertMsgFailed(("Unknown timer state %d (%s)\n", pTimer->enmState, pTimer->szName));
return SSMR3HandleSetStatus(pSSM, VERR_TM_UNKNOWN_STATE);
}
/**
* Loads the state of a timer from a saved state.
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
* @param hTimer Handle of Timer to restore.
* @param pSSM Save State Manager handle.
*/
VMMR3DECL(int) TMR3TimerLoad(PVM pVM, TMTIMERHANDLE hTimer, PSSMHANDLE pSSM)
{
VM_ASSERT_EMT(pVM);
TMTIMER_HANDLE_TO_VARS_RETURN(pVM, hTimer); /* => pTimer, pQueueCC, pQueue, idxTimer, idxQueue */
Assert(pSSM);
LogFlow(("TMR3TimerLoad: %p:{enmState=%s, .szName='%s'} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->szName, pSSM));
/*
* Load the state and validate it.
*/
uint8_t u8State;
int rc = SSMR3GetU8(pSSM, &u8State);
if (RT_FAILURE(rc))
return rc;
/* TMTIMERSTATE_SAVED_XXX: Workaround for accidental state shift in r47786 (2009-05-26 19:12:12). */
if ( u8State == TMTIMERSTATE_SAVED_PENDING_STOP + 1
|| u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE + 1)
u8State--;
if ( u8State != TMTIMERSTATE_SAVED_PENDING_STOP
&& u8State != TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
{
AssertLogRelMsgFailed(("u8State=%d\n", u8State));
return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE);
}
/* Enter the critical sections to make TMTimerSet/Stop happy. */
if (pQueue->enmClock == TMCLOCK_VIRTUAL_SYNC)
PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
PPDMCRITSECT pCritSect = pTimer->pCritSect;
if (pCritSect)
PDMCritSectEnter(pVM, pCritSect, VERR_IGNORED);
if (u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
{
/*
* Load the expire time.
*/
uint64_t u64Expire;
rc = SSMR3GetU64(pSSM, &u64Expire);
if (RT_FAILURE(rc))
return rc;
/*
* Set it.
*/
Log(("u8State=%d u64Expire=%llu\n", u8State, u64Expire));
rc = TMTimerSet(pVM, hTimer, u64Expire);
}
else
{
/*
* Stop it.
*/
Log(("u8State=%d\n", u8State));
rc = TMTimerStop(pVM, hTimer);
}
if (pCritSect)
PDMCritSectLeave(pVM, pCritSect);
if (pQueue->enmClock == TMCLOCK_VIRTUAL_SYNC)
PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
/*
* On failure set SSM status.
*/
if (RT_FAILURE(rc))
rc = SSMR3HandleSetStatus(pSSM, rc);
return rc;
}
/**
* Skips the state of a timer in a given saved state.
*
* @returns VBox status.
* @param pSSM Save State Manager handle.
* @param pfActive Where to store whether the timer was active
* when the state was saved.
*/
VMMR3DECL(int) TMR3TimerSkip(PSSMHANDLE pSSM, bool *pfActive)
{
Assert(pSSM); AssertPtr(pfActive);
LogFlow(("TMR3TimerSkip: pSSM=%p pfActive=%p\n", pSSM, pfActive));
/*
* Load the state and validate it.
*/
uint8_t u8State;
int rc = SSMR3GetU8(pSSM, &u8State);
if (RT_FAILURE(rc))
return rc;
/* TMTIMERSTATE_SAVED_XXX: Workaround for accidental state shift in r47786 (2009-05-26 19:12:12). */
if ( u8State == TMTIMERSTATE_SAVED_PENDING_STOP + 1
|| u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE + 1)
u8State--;
if ( u8State != TMTIMERSTATE_SAVED_PENDING_STOP
&& u8State != TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
{
AssertLogRelMsgFailed(("u8State=%d\n", u8State));
return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE);
}
*pfActive = (u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE);
if (*pfActive)
{
/*
* Load the expire time.
*/
uint64_t u64Expire;
rc = SSMR3GetU64(pSSM, &u64Expire);
}
return rc;
}
/**
* Associates a critical section with a timer.
*
* The critical section will be entered prior to doing the timer call back, thus
* avoiding potential races between the timer thread and other threads trying to
* stop or adjust the timer expiration while it's being delivered. The timer
* thread will leave the critical section when the timer callback returns.
*
* In strict builds, ownership of the critical section will be asserted by
* TMTimerSet, TMTimerStop, TMTimerGetExpire and TMTimerDestroy (when called at
* runtime).
*
* @retval VINF_SUCCESS on success.
* @retval VERR_INVALID_HANDLE if the timer handle is NULL or invalid
* (asserted).
* @retval VERR_INVALID_PARAMETER if pCritSect is NULL or has an invalid magic
* (asserted).
* @retval VERR_ALREADY_EXISTS if a critical section was already associated
* with the timer (asserted).
* @retval VERR_INVALID_STATE if the timer isn't stopped.
*
* @param pVM The cross context VM structure.
* @param hTimer The timer handle.
* @param pCritSect The critical section. The caller must make sure this
* is around for the life time of the timer.
*
* @thread Any, but the caller is responsible for making sure the timer is not
* active.
*/
VMMR3DECL(int) TMR3TimerSetCritSect(PVM pVM, TMTIMERHANDLE hTimer, PPDMCRITSECT pCritSect)
{
TMTIMER_HANDLE_TO_VARS_RETURN(pVM, hTimer); /* => pTimer, pQueueCC, pQueue, idxTimer, idxQueue */
AssertPtrReturn(pCritSect, VERR_INVALID_PARAMETER);
const char *pszName = PDMR3CritSectName(pCritSect); /* exploited for validation */
AssertReturn(pszName, VERR_INVALID_PARAMETER);
AssertReturn(!pTimer->pCritSect, VERR_ALREADY_EXISTS);
AssertReturn(pTimer->enmState == TMTIMERSTATE_STOPPED, VERR_INVALID_STATE);
AssertReturn( pTimer->enmType == TMTIMERTYPE_DEV
|| pTimer->enmType == TMTIMERTYPE_DRV
|| pTimer->enmType == TMTIMERTYPE_USB,
VERR_NOT_SUPPORTED); /* Not supported on internal timers, see tmRZTimerGetCritSect. */
LogFlow(("pTimer=%p (%s) pCritSect=%p (%s)\n", pTimer, pTimer->szName, pCritSect, pszName));
pTimer->pCritSect = pCritSect;
return VINF_SUCCESS;
}
/**
* Get the real world UTC time adjusted for VM lag.
*
* @returns pTime.
* @param pVM The cross context VM structure.
* @param pTime Where to store the time.
*/
VMMR3_INT_DECL(PRTTIMESPEC) TMR3UtcNow(PVM pVM, PRTTIMESPEC pTime)
{
/*
* Get a stable set of VirtualSync parameters and calc the lag.
*/
uint64_t offVirtualSync;
uint64_t offVirtualSyncGivenUp;
do
{
offVirtualSync = ASMAtomicReadU64(&pVM->tm.s.offVirtualSync);
offVirtualSyncGivenUp = ASMAtomicReadU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp);
} while (ASMAtomicReadU64(&pVM->tm.s.offVirtualSync) != offVirtualSync);
Assert(offVirtualSync >= offVirtualSyncGivenUp);
uint64_t const offLag = offVirtualSync - offVirtualSyncGivenUp;
/*
* Get current time and adjust for virtual sync lag and do time displacement.
*/
RTTimeNow(pTime);
RTTimeSpecSubNano(pTime, offLag);
RTTimeSpecAddNano(pTime, pVM->tm.s.offUTC);
/*
* Log details if the time changed radically (also triggers on first call).
*/
int64_t nsPrev = ASMAtomicXchgS64(&pVM->tm.s.nsLastUtcNow, RTTimeSpecGetNano(pTime));
int64_t cNsDelta = RTTimeSpecGetNano(pTime) - nsPrev;
if ((uint64_t)RT_ABS(cNsDelta) > RT_NS_1HOUR / 2)
{
RTTIMESPEC NowAgain;
RTTimeNow(&NowAgain);
LogRel(("TMR3UtcNow: nsNow=%'RI64 nsPrev=%'RI64 -> cNsDelta=%'RI64 (offLag=%'RI64 offVirtualSync=%'RU64 offVirtualSyncGivenUp=%'RU64, NowAgain=%'RI64)\n",
RTTimeSpecGetNano(pTime), nsPrev, cNsDelta, offLag, offVirtualSync, offVirtualSyncGivenUp, RTTimeSpecGetNano(&NowAgain)));
if (pVM->tm.s.pszUtcTouchFileOnJump && nsPrev != 0)
{
RTFILE hFile;
int rc = RTFileOpen(&hFile, pVM->tm.s.pszUtcTouchFileOnJump,
RTFILE_O_WRITE | RTFILE_O_APPEND | RTFILE_O_OPEN_CREATE | RTFILE_O_DENY_NONE);
if (RT_SUCCESS(rc))
{
char szMsg[256];
size_t cch;
cch = RTStrPrintf(szMsg, sizeof(szMsg),
"TMR3UtcNow: nsNow=%'RI64 nsPrev=%'RI64 -> cNsDelta=%'RI64 (offLag=%'RI64 offVirtualSync=%'RU64 offVirtualSyncGivenUp=%'RU64, NowAgain=%'RI64)\n",
RTTimeSpecGetNano(pTime), nsPrev, cNsDelta, offLag, offVirtualSync, offVirtualSyncGivenUp, RTTimeSpecGetNano(&NowAgain));
RTFileWrite(hFile, szMsg, cch, NULL);
RTFileClose(hFile);
}
}
}
return pTime;
}
/**
* Pauses all clocks except TMCLOCK_REAL.
*
* @returns VBox status code, all errors are asserted.
* @param pVM The cross context VM structure.
* @param pVCpu The cross context virtual CPU structure.
* @thread EMT corresponding to Pointer to the VMCPU.
*/
VMMR3DECL(int) TMR3NotifySuspend(PVM pVM, PVMCPU pVCpu)
{
VMCPU_ASSERT_EMT(pVCpu);
PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED); /* Paranoia: Exploiting the virtual sync lock here. */
/*
* The shared virtual clock (includes virtual sync which is tied to it).
*/
int rc = tmVirtualPauseLocked(pVM);
AssertRCReturnStmt(rc, PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock), rc);
/*
* Pause the TSC last since it is normally linked to the virtual
* sync clock, so the above code may actually stop both clocks.
*/
if (!pVM->tm.s.fTSCTiedToExecution)
{
rc = tmCpuTickPauseLocked(pVM, pVCpu);
AssertRCReturnStmt(rc, PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock), rc);
}
#ifndef VBOX_WITHOUT_NS_ACCOUNTING
/*
* Update cNsTotal and stats.
*/
Assert(!pVCpu->tm.s.fSuspended);
uint64_t const cNsTotalNew = RTTimeNanoTS() - pVCpu->tm.s.nsStartTotal;
uint64_t const cNsOtherNew = cNsTotalNew - pVCpu->tm.s.cNsExecuting - pVCpu->tm.s.cNsHalted;
# if defined(VBOX_WITH_STATISTICS) || defined(VBOX_WITH_NS_ACCOUNTING_STATS)
STAM_REL_COUNTER_ADD(&pVCpu->tm.s.StatNsTotal, cNsTotalNew - pVCpu->tm.s.cNsTotalStat);
int64_t const cNsOtherNewDelta = cNsOtherNew - pVCpu->tm.s.cNsOtherStat;
if (cNsOtherNewDelta > 0)
STAM_REL_COUNTER_ADD(&pVCpu->tm.s.StatNsOther, (uint64_t)cNsOtherNewDelta);
# endif
uint32_t uGen = ASMAtomicIncU32(&pVCpu->tm.s.uTimesGen); Assert(uGen & 1);
pVCpu->tm.s.nsStartTotal = cNsTotalNew;
pVCpu->tm.s.fSuspended = true;
pVCpu->tm.s.cNsTotalStat = cNsTotalNew;
pVCpu->tm.s.cNsOtherStat = cNsOtherNew;
ASMAtomicWriteU32(&pVCpu->tm.s.uTimesGen, (uGen | 1) + 1);
#endif
PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
return VINF_SUCCESS;
}
/**
* Resumes all clocks except TMCLOCK_REAL.
*
* @returns VBox status code, all errors are asserted.
* @param pVM The cross context VM structure.
* @param pVCpu The cross context virtual CPU structure.
* @thread EMT corresponding to Pointer to the VMCPU.
*/
VMMR3DECL(int) TMR3NotifyResume(PVM pVM, PVMCPU pVCpu)
{
VMCPU_ASSERT_EMT(pVCpu);
PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED); /* Paranoia: Exploiting the virtual sync lock here. */
#ifndef VBOX_WITHOUT_NS_ACCOUNTING
/*
* Set u64NsTsStartTotal. There is no need to back this out if either of
* the two calls below fail.
*/
uint32_t uGen = ASMAtomicIncU32(&pVCpu->tm.s.uTimesGen); Assert(uGen & 1);
pVCpu->tm.s.nsStartTotal = RTTimeNanoTS() - pVCpu->tm.s.nsStartTotal;
pVCpu->tm.s.fSuspended = false;
ASMAtomicWriteU32(&pVCpu->tm.s.uTimesGen, (uGen | 1) + 1);
#endif
/*
* Resume the TSC first since it is normally linked to the virtual sync
* clock, so it may actually not be resumed until we've executed the code
* below.
*/
if (!pVM->tm.s.fTSCTiedToExecution)
{
int rc = tmCpuTickResumeLocked(pVM, pVCpu);
AssertRCReturnStmt(rc, PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock), rc);
}
/*
* The shared virtual clock (includes virtual sync which is tied to it).
*/
int rc = tmVirtualResumeLocked(pVM);
PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
return rc;
}
/**
* Sets the warp drive percent of the virtual time.
*
* @returns VBox status code.
* @param pUVM The user mode VM structure.
* @param u32Percent The new percentage. 100 means normal operation.
*/
VMMDECL(int) TMR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent)
{
return VMR3ReqPriorityCallWaitU(pUVM, VMCPUID_ANY, (PFNRT)tmR3SetWarpDrive, 2, pUVM, u32Percent);
}
/**
* EMT worker for TMR3SetWarpDrive.
*
* @returns VBox status code.
* @param pUVM The user mode VM handle.
* @param u32Percent See TMR3SetWarpDrive().
* @internal
*/
static DECLCALLBACK(int) tmR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent)
{
PVM pVM = pUVM->pVM;
VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
PVMCPU pVCpu = VMMGetCpu(pVM);
/*
* Validate it.
*/
AssertMsgReturn(u32Percent >= 2 && u32Percent <= 20000,
("%RX32 is not between 2 and 20000 (inclusive).\n", u32Percent),
VERR_INVALID_PARAMETER);
/** @todo This isn't a feature specific to virtual time, move the variables to
* TM level and make it affect TMR3UTCNow as well! */
PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED); /* Paranoia: Exploiting the virtual sync lock here. */
/*
* If the time is running we'll have to pause it before we can change
* the warp drive settings.
*/
bool fPaused = !!pVM->tm.s.cVirtualTicking;
if (fPaused) /** @todo this isn't really working, but wtf. */
TMR3NotifySuspend(pVM, pVCpu);
/** @todo Should switch TM mode to virt-tsc-emulated if it isn't already! */
pVM->tm.s.u32VirtualWarpDrivePercentage = u32Percent;
pVM->tm.s.fVirtualWarpDrive = u32Percent != 100;
LogRel(("TM: u32VirtualWarpDrivePercentage=%RI32 fVirtualWarpDrive=%RTbool\n",
pVM->tm.s.u32VirtualWarpDrivePercentage, pVM->tm.s.fVirtualWarpDrive));
if (fPaused)
TMR3NotifyResume(pVM, pVCpu);
PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
return VINF_SUCCESS;
}
/**
* Gets the current TMCLOCK_VIRTUAL time without checking
* timers or anything.
*
* @returns The timestamp.
* @param pUVM The user mode VM structure.
*
* @remarks See TMVirtualGetNoCheck.
*/
VMMR3DECL(uint64_t) TMR3TimeVirtGet(PUVM pUVM)
{
UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX);
PVM pVM = pUVM->pVM;
VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
return TMVirtualGetNoCheck(pVM);
}
/**
* Gets the current TMCLOCK_VIRTUAL time in milliseconds without checking
* timers or anything.
*
* @returns The timestamp in milliseconds.
* @param pUVM The user mode VM structure.
*
* @remarks See TMVirtualGetNoCheck.
*/
VMMR3DECL(uint64_t) TMR3TimeVirtGetMilli(PUVM pUVM)
{
UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX);
PVM pVM = pUVM->pVM;
VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
return TMVirtualToMilli(pVM, TMVirtualGetNoCheck(pVM));
}
/**
* Gets the current TMCLOCK_VIRTUAL time in microseconds without checking
* timers or anything.
*
* @returns The timestamp in microseconds.
* @param pUVM The user mode VM structure.
*
* @remarks See TMVirtualGetNoCheck.
*/
VMMR3DECL(uint64_t) TMR3TimeVirtGetMicro(PUVM pUVM)
{
UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX);
PVM pVM = pUVM->pVM;
VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
return TMVirtualToMicro(pVM, TMVirtualGetNoCheck(pVM));
}
/**
* Gets the current TMCLOCK_VIRTUAL time in nanoseconds without checking
* timers or anything.
*
* @returns The timestamp in nanoseconds.
* @param pUVM The user mode VM structure.
*
* @remarks See TMVirtualGetNoCheck.
*/
VMMR3DECL(uint64_t) TMR3TimeVirtGetNano(PUVM pUVM)
{
UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX);
PVM pVM = pUVM->pVM;
VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
return TMVirtualToNano(pVM, TMVirtualGetNoCheck(pVM));
}
/**
* Gets the current warp drive percent.
*
* @returns The warp drive percent.
* @param pUVM The user mode VM structure.
*/
VMMR3DECL(uint32_t) TMR3GetWarpDrive(PUVM pUVM)
{
UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT32_MAX);
PVM pVM = pUVM->pVM;
VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
return pVM->tm.s.u32VirtualWarpDrivePercentage;
}
#if 0 /* unused - needs a little updating after @bugref{9941}*/
/**
* Gets the performance information for one virtual CPU as seen by the VMM.
*
* The returned times covers the period where the VM is running and will be
* reset when restoring a previous VM state (at least for the time being).
*
* @retval VINF_SUCCESS on success.
* @retval VERR_NOT_IMPLEMENTED if not compiled in.
* @retval VERR_INVALID_STATE if the VM handle is bad.
* @retval VERR_INVALID_CPU_ID if idCpu is out of range.
*
* @param pVM The cross context VM structure.
* @param idCpu The ID of the virtual CPU which times to get.
* @param pcNsTotal Where to store the total run time (nano seconds) of
* the CPU, i.e. the sum of the three other returns.
* Optional.
* @param pcNsExecuting Where to store the time (nano seconds) spent
* executing guest code. Optional.
* @param pcNsHalted Where to store the time (nano seconds) spent
* halted. Optional
* @param pcNsOther Where to store the time (nano seconds) spent
* preempted by the host scheduler, on virtualization
* overhead and on other tasks.
*/
VMMR3DECL(int) TMR3GetCpuLoadTimes(PVM pVM, VMCPUID idCpu, uint64_t *pcNsTotal, uint64_t *pcNsExecuting,
uint64_t *pcNsHalted, uint64_t *pcNsOther)
{
VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_STATE);
AssertReturn(idCpu < pVM->cCpus, VERR_INVALID_CPU_ID);
#ifndef VBOX_WITHOUT_NS_ACCOUNTING
/*
* Get a stable result set.
* This should be way quicker than an EMT request.
*/
PVMCPU pVCpu = pVM->apCpusR3[idCpu];
uint32_t uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
uint64_t cNsTotal = pVCpu->tm.s.cNsTotal;
uint64_t cNsExecuting = pVCpu->tm.s.cNsExecuting;
uint64_t cNsHalted = pVCpu->tm.s.cNsHalted;
uint64_t cNsOther = pVCpu->tm.s.cNsOther;
while ( (uTimesGen & 1) /* update in progress */
|| uTimesGen != ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen))
{
RTThreadYield();
uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
cNsTotal = pVCpu->tm.s.cNsTotal;
cNsExecuting = pVCpu->tm.s.cNsExecuting;
cNsHalted = pVCpu->tm.s.cNsHalted;
cNsOther = pVCpu->tm.s.cNsOther;
}
/*
* Fill in the return values.
*/
if (pcNsTotal)
*pcNsTotal = cNsTotal;
if (pcNsExecuting)
*pcNsExecuting = cNsExecuting;
if (pcNsHalted)
*pcNsHalted = cNsHalted;
if (pcNsOther)
*pcNsOther = cNsOther;
return VINF_SUCCESS;
#else
return VERR_NOT_IMPLEMENTED;
#endif
}
#endif /* unused */
/**
* Gets the performance information for one virtual CPU as seen by the VMM in
* percents.
*
* The returned times covers the period where the VM is running and will be
* reset when restoring a previous VM state (at least for the time being).
*
* @retval VINF_SUCCESS on success.
* @retval VERR_NOT_IMPLEMENTED if not compiled in.
* @retval VERR_INVALID_VM_HANDLE if the VM handle is bad.
* @retval VERR_INVALID_CPU_ID if idCpu is out of range.
*
* @param pUVM The usermode VM structure.
* @param idCpu The ID of the virtual CPU which times to get.
* @param pcMsInterval Where to store the interval of the percentages in
* milliseconds. Optional.
* @param pcPctExecuting Where to return the percentage of time spent
* executing guest code. Optional.
* @param pcPctHalted Where to return the percentage of time spent halted.
* Optional
* @param pcPctOther Where to return the percentage of time spent
* preempted by the host scheduler, on virtualization
* overhead and on other tasks.
*/
VMMR3DECL(int) TMR3GetCpuLoadPercents(PUVM pUVM, VMCPUID idCpu, uint64_t *pcMsInterval, uint8_t *pcPctExecuting,
uint8_t *pcPctHalted, uint8_t *pcPctOther)
{
UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
PVM pVM = pUVM->pVM;
VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
AssertReturn(idCpu == VMCPUID_ALL || idCpu < pVM->cCpus, VERR_INVALID_CPU_ID);
#ifndef VBOX_WITHOUT_NS_ACCOUNTING
TMCPULOADSTATE volatile *pState;
if (idCpu == VMCPUID_ALL)
pState = &pVM->tm.s.CpuLoad;
else
pState = &pVM->apCpusR3[idCpu]->tm.s.CpuLoad;
if (pcMsInterval)
*pcMsInterval = RT_MS_1SEC;
if (pcPctExecuting)
*pcPctExecuting = pState->cPctExecuting;
if (pcPctHalted)
*pcPctHalted = pState->cPctHalted;
if (pcPctOther)
*pcPctOther = pState->cPctOther;
return VINF_SUCCESS;
#else
RT_NOREF(pcMsInterval, pcPctExecuting, pcPctHalted, pcPctOther);
return VERR_NOT_IMPLEMENTED;
#endif
}
#ifndef VBOX_WITHOUT_NS_ACCOUNTING
/**
* Helper for tmR3CpuLoadTimer.
* @returns
* @param pState The state to update.
* @param cNsTotal Total time.
* @param cNsExecuting Time executing.
* @param cNsHalted Time halted.
*/
DECLINLINE(void) tmR3CpuLoadTimerMakeUpdate(PTMCPULOADSTATE pState, uint64_t cNsTotal, uint64_t cNsExecuting, uint64_t cNsHalted)
{
/* Calc & update deltas */
uint64_t cNsTotalDelta = cNsTotal - pState->cNsPrevTotal;
uint64_t cNsExecutingDelta = cNsExecuting - pState->cNsPrevExecuting;
uint64_t cNsHaltedDelta = cNsHalted - pState->cNsPrevHalted;
if (cNsExecutingDelta + cNsHaltedDelta <= cNsTotalDelta)
{ /* likely */ }
else
{
/* Just adjust the executing and halted values down to match the total delta. */
uint64_t const cNsExecAndHalted = cNsExecutingDelta + cNsHaltedDelta;
uint64_t const cNsAdjust = cNsExecAndHalted - cNsTotalDelta + cNsTotalDelta / 64;
cNsExecutingDelta -= (cNsAdjust * cNsExecutingDelta + cNsExecAndHalted - 1) / cNsExecAndHalted;
cNsHaltedDelta -= (cNsAdjust * cNsHaltedDelta + cNsExecAndHalted - 1) / cNsExecAndHalted;
/*Assert(cNsExecutingDelta + cNsHaltedDelta <= cNsTotalDelta); - annoying when debugging */
}
pState->cNsPrevExecuting = cNsExecuting;
pState->cNsPrevHalted = cNsHalted;
pState->cNsPrevTotal = cNsTotal;
/* Calc pcts. */
uint8_t cPctExecuting, cPctHalted, cPctOther;
if (!cNsTotalDelta)
{
cPctExecuting = 0;
cPctHalted = 100;
cPctOther = 0;
}
else if (cNsTotalDelta < UINT64_MAX / 4)
{
cPctExecuting = (uint8_t)(cNsExecutingDelta * 100 / cNsTotalDelta);
cPctHalted = (uint8_t)(cNsHaltedDelta * 100 / cNsTotalDelta);
cPctOther = (uint8_t)((cNsTotalDelta - cNsExecutingDelta - cNsHaltedDelta) * 100 / cNsTotalDelta);
}
else
{
cPctExecuting = 0;
cPctHalted = 100;
cPctOther = 0;
}
/* Update percentages: */
size_t idxHistory = pState->idxHistory + 1;
if (idxHistory >= RT_ELEMENTS(pState->aHistory))
idxHistory = 0;
pState->cPctExecuting = cPctExecuting;
pState->cPctHalted = cPctHalted;
pState->cPctOther = cPctOther;
pState->aHistory[idxHistory].cPctExecuting = cPctExecuting;
pState->aHistory[idxHistory].cPctHalted = cPctHalted;
pState->aHistory[idxHistory].cPctOther = cPctOther;
pState->idxHistory = (uint16_t)idxHistory;
if (pState->cHistoryEntries < RT_ELEMENTS(pState->aHistory))
pState->cHistoryEntries++;
}
/**
* @callback_method_impl{FNTMTIMERINT,
* Timer callback that calculates the CPU load since the last
* time it was called.}
*/
static DECLCALLBACK(void) tmR3CpuLoadTimer(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser)
{
/*
* Re-arm the timer first.
*/
int rc = TMTimerSetMillies(pVM, hTimer, 1000);
AssertLogRelRC(rc);
NOREF(pvUser);
/*
* Update the values for each CPU.
*/
uint64_t cNsTotalAll = 0;
uint64_t cNsExecutingAll = 0;
uint64_t cNsHaltedAll = 0;
for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
{
PVMCPU pVCpu = pVM->apCpusR3[iCpu];
/* Try get a stable data set. */
uint32_t cTries = 3;
uint64_t nsNow = RTTimeNanoTS();
uint32_t uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
bool fSuspended = pVCpu->tm.s.fSuspended;
uint64_t nsStartTotal = pVCpu->tm.s.nsStartTotal;
uint64_t cNsExecuting = pVCpu->tm.s.cNsExecuting;
uint64_t cNsHalted = pVCpu->tm.s.cNsHalted;
while (RT_UNLIKELY( (uTimesGen & 1) /* update in progress */
|| uTimesGen != ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen)))
{
if (!--cTries)
break;
ASMNopPause();
nsNow = RTTimeNanoTS();
uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
fSuspended = pVCpu->tm.s.fSuspended;
nsStartTotal = pVCpu->tm.s.nsStartTotal;
cNsExecuting = pVCpu->tm.s.cNsExecuting;
cNsHalted = pVCpu->tm.s.cNsHalted;
}
/* Totals */
uint64_t cNsTotal = fSuspended ? nsStartTotal : nsNow - nsStartTotal;
cNsTotalAll += cNsTotal;
cNsExecutingAll += cNsExecuting;
cNsHaltedAll += cNsHalted;
/* Calc the PCTs and update the state. */
tmR3CpuLoadTimerMakeUpdate(&pVCpu->tm.s.CpuLoad, cNsTotal, cNsExecuting, cNsHalted);
/* Tell the VCpu to update the other and total stat members. */
ASMAtomicWriteBool(&pVCpu->tm.s.fUpdateStats, true);
}
/*
* Update the value for all the CPUs.
*/
tmR3CpuLoadTimerMakeUpdate(&pVM->tm.s.CpuLoad, cNsTotalAll, cNsExecutingAll, cNsHaltedAll);
}
#endif /* !VBOX_WITHOUT_NS_ACCOUNTING */
/**
* @callback_method_impl{PFNVMMEMTRENDEZVOUS,
* Worker for TMR3CpuTickParavirtEnable}
*/
static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtEnable(PVM pVM, PVMCPU pVCpuEmt, void *pvData)
{
AssertPtr(pVM); Assert(pVM->tm.s.fTSCModeSwitchAllowed); NOREF(pVCpuEmt); NOREF(pvData);
Assert(pVM->tm.s.enmTSCMode != TMTSCMODE_NATIVE_API); /** @todo figure out NEM/win and paravirt */
Assert(tmR3HasFixedTSC(pVM));
if (pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET)
{
/*
* The return value of TMCpuTickGet() and the guest's TSC value for each
* CPU must remain constant across the TM TSC mode-switch. Thus we have
* the following equation (new/old signifies the new/old tsc modes):
* uNewTsc = uOldTsc
*
* Where (see tmCpuTickGetInternal):
* uOldTsc = uRawOldTsc - offTscRawSrcOld
* uNewTsc = uRawNewTsc - offTscRawSrcNew
*
* Solve it for offTscRawSrcNew without replacing uOldTsc:
* uRawNewTsc - offTscRawSrcNew = uOldTsc
* => -offTscRawSrcNew = uOldTsc - uRawNewTsc
* => offTscRawSrcNew = uRawNewTsc - uOldTsc
*/
uint64_t uRawOldTsc = tmR3CpuTickGetRawVirtualNoCheck(pVM);
uint64_t uRawNewTsc = SUPReadTsc();
uint32_t cCpus = pVM->cCpus;
for (uint32_t i = 0; i < cCpus; i++)
{
PVMCPU pVCpu = pVM->apCpusR3[i];
uint64_t uOldTsc = uRawOldTsc - pVCpu->tm.s.offTSCRawSrc;
pVCpu->tm.s.offTSCRawSrc = uRawNewTsc - uOldTsc;
Assert(uRawNewTsc - pVCpu->tm.s.offTSCRawSrc >= uOldTsc); /* paranoia^256 */
}
LogRel(("TM: Switching TSC mode from '%s' to '%s'\n", tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode),
tmR3GetTSCModeNameEx(TMTSCMODE_REAL_TSC_OFFSET)));
pVM->tm.s.enmTSCMode = TMTSCMODE_REAL_TSC_OFFSET;
}
return VINF_SUCCESS;
}
/**
* Notify TM that the guest has enabled usage of a paravirtualized TSC.
*
* This may perform a EMT rendezvous and change the TSC virtualization mode.
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
*/
VMMR3_INT_DECL(int) TMR3CpuTickParavirtEnable(PVM pVM)
{
int rc = VINF_SUCCESS;
if (pVM->tm.s.fTSCModeSwitchAllowed)
rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, tmR3CpuTickParavirtEnable, NULL);
else
LogRel(("TM: Host/VM is not suitable for using TSC mode '%s', request to change TSC mode ignored\n",
tmR3GetTSCModeNameEx(TMTSCMODE_REAL_TSC_OFFSET)));
pVM->tm.s.fParavirtTscEnabled = true;
return rc;
}
/**
* @callback_method_impl{PFNVMMEMTRENDEZVOUS,
* Worker for TMR3CpuTickParavirtDisable}
*/
static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtDisable(PVM pVM, PVMCPU pVCpuEmt, void *pvData)
{
AssertPtr(pVM); Assert(pVM->tm.s.fTSCModeSwitchAllowed); NOREF(pVCpuEmt);
RT_NOREF1(pvData);
if ( pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET
&& pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode)
{
/*
* See tmR3CpuTickParavirtEnable for an explanation of the conversion math.
*/
uint64_t uRawOldTsc = SUPReadTsc();
uint64_t uRawNewTsc = tmR3CpuTickGetRawVirtualNoCheck(pVM);
uint32_t cCpus = pVM->cCpus;
for (uint32_t i = 0; i < cCpus; i++)
{
PVMCPU pVCpu = pVM->apCpusR3[i];
uint64_t uOldTsc = uRawOldTsc - pVCpu->tm.s.offTSCRawSrc;
pVCpu->tm.s.offTSCRawSrc = uRawNewTsc - uOldTsc;
Assert(uRawNewTsc - pVCpu->tm.s.offTSCRawSrc >= uOldTsc); /* paranoia^256 */
/* Update the last-seen tick here as we havent't been updating it (as we don't
need it) while in pure TSC-offsetting mode. */
pVCpu->tm.s.u64TSCLastSeen = uOldTsc;
}
LogRel(("TM: Switching TSC mode from '%s' to '%s'\n", tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode),
tmR3GetTSCModeNameEx(pVM->tm.s.enmOriginalTSCMode)));
pVM->tm.s.enmTSCMode = pVM->tm.s.enmOriginalTSCMode;
}
return VINF_SUCCESS;
}
/**
* Notify TM that the guest has disabled usage of a paravirtualized TSC.
*
* If TMR3CpuTickParavirtEnable() changed the TSC virtualization mode, this will
* perform an EMT rendezvous to revert those changes.
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
*/
VMMR3_INT_DECL(int) TMR3CpuTickParavirtDisable(PVM pVM)
{
int rc = VINF_SUCCESS;
if (pVM->tm.s.fTSCModeSwitchAllowed)
rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, tmR3CpuTickParavirtDisable, NULL);
pVM->tm.s.fParavirtTscEnabled = false;
return rc;
}
/**
* Check whether the guest can be presented a fixed rate & monotonic TSC.
*
* @returns true if TSC is stable, false otherwise.
* @param pVM The cross context VM structure.
* @param fWithParavirtEnabled Whether it's fixed & monotonic when
* paravirt. TSC is enabled or not.
*
* @remarks Must be called only after TMR3InitFinalize().
*/
VMMR3_INT_DECL(bool) TMR3CpuTickIsFixedRateMonotonic(PVM pVM, bool fWithParavirtEnabled)
{
/** @todo figure out what exactly we want here later. */
NOREF(fWithParavirtEnabled);
PSUPGLOBALINFOPAGE pGip;
return tmR3HasFixedTSC(pVM) /* Host has fixed-rate TSC. */
&& ( (pGip = g_pSUPGlobalInfoPage) == NULL /* Can be NULL in driverless mode. */
|| (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)); /* GIP thinks it's monotonic. */
}
/**
* Gets the 5 char clock name for the info tables.
*
* @returns The name.
* @param enmClock The clock.
*/
DECLINLINE(const char *) tmR3Get5CharClockName(TMCLOCK enmClock)
{
switch (enmClock)
{
case TMCLOCK_REAL: return "Real ";
case TMCLOCK_VIRTUAL: return "Virt ";
case TMCLOCK_VIRTUAL_SYNC: return "VrSy ";
case TMCLOCK_TSC: return "TSC ";
default: return "Bad ";
}
}
/**
* Display all timers.
*
* @param pVM The cross context VM structure.
* @param pHlp The info helpers.
* @param pszArgs Arguments, ignored.
*/
static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
NOREF(pszArgs);
pHlp->pfnPrintf(pHlp,
"Timers (pVM=%p)\n"
"%.*s %.*s %.*s %.*s Clock %18s %18s %6s %-25s Description\n",
pVM,
sizeof(RTR3PTR) * 2, "pTimerR3 ",
sizeof(int32_t) * 2, "offNext ",
sizeof(int32_t) * 2, "offPrev ",
sizeof(int32_t) * 2, "offSched ",
"Time",
"Expire",
"HzHint",
"State");
for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
{
PTMTIMERQUEUE const pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
const char * const pszClock = tmR3Get5CharClockName(pQueue->enmClock);
PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
for (uint32_t idxTimer = 0; idxTimer < pQueue->cTimersAlloc; idxTimer++)
{
PTMTIMER pTimer = &pQueue->paTimers[idxTimer];
TMTIMERSTATE enmState = pTimer->enmState;
if (enmState < TMTIMERSTATE_DESTROY && enmState > TMTIMERSTATE_INVALID)
pHlp->pfnPrintf(pHlp,
"%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %6RU32 %-25s %s\n",
pTimer,
pTimer->idxNext,
pTimer->idxPrev,
pTimer->idxScheduleNext,
pszClock,
TMTimerGet(pVM, pTimer->hSelf),
pTimer->u64Expire,
pTimer->uHzHint,
tmTimerState(enmState),
pTimer->szName);
}
PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
}
}
/**
* Display all active timers.
*
* @param pVM The cross context VM structure.
* @param pHlp The info helpers.
* @param pszArgs Arguments, ignored.
*/
static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
NOREF(pszArgs);
pHlp->pfnPrintf(pHlp,
"Active Timers (pVM=%p)\n"
"%.*s %.*s %.*s %.*s Clock %18s %18s %6s %-25s Description\n",
pVM,
sizeof(RTR3PTR) * 2, "pTimerR3 ",
sizeof(int32_t) * 2, "offNext ",
sizeof(int32_t) * 2, "offPrev ",
sizeof(int32_t) * 2, "offSched ",
"Time",
"Expire",
"HzHint",
"State");
for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
{
PTMTIMERQUEUE const pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
const char * const pszClock = tmR3Get5CharClockName(pQueue->enmClock);
PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
for (PTMTIMERR3 pTimer = tmTimerQueueGetHead(pQueue, pQueue);
pTimer;
pTimer = tmTimerGetNext(pQueue, pTimer))
{
pHlp->pfnPrintf(pHlp,
"%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %6RU32 %-25s %s\n",
pTimer,
pTimer->idxNext,
pTimer->idxPrev,
pTimer->idxScheduleNext,
pszClock,
TMTimerGet(pVM, pTimer->hSelf),
pTimer->u64Expire,
pTimer->uHzHint,
tmTimerState(pTimer->enmState),
pTimer->szName);
}
PDMCritSectLeave(pVM, &pQueue->TimerLock);
PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
}
}
/**
* Display all clocks.
*
* @param pVM The cross context VM structure.
* @param pHlp The info helpers.
* @param pszArgs Arguments, ignored.
*/
static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
NOREF(pszArgs);
/*
* Read the times first to avoid more than necessary time variation.
*/
const uint64_t u64Virtual = TMVirtualGet(pVM);
const uint64_t u64VirtualSync = TMVirtualSyncGet(pVM);
const uint64_t u64Real = TMRealGet(pVM);
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = pVM->apCpusR3[i];
uint64_t u64TSC = TMCpuTickGet(pVCpu);
/*
* TSC
*/
pHlp->pfnPrintf(pHlp,
"Cpu Tick: %18RU64 (%#016RX64) %RU64Hz %s - virtualized",
u64TSC, u64TSC, TMCpuTicksPerSecond(pVM),
pVCpu->tm.s.fTSCTicking ? "ticking" : "paused");
if (pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET)
{
pHlp->pfnPrintf(pHlp, " - real tsc offset");
if (pVCpu->tm.s.offTSCRawSrc)
pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVCpu->tm.s.offTSCRawSrc);
}
else if (pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API)
pHlp->pfnPrintf(pHlp, " - native api");
else
pHlp->pfnPrintf(pHlp, " - virtual clock");
pHlp->pfnPrintf(pHlp, "\n");
}
/*
* virtual
*/
pHlp->pfnPrintf(pHlp,
" Virtual: %18RU64 (%#016RX64) %RU64Hz %s",
u64Virtual, u64Virtual, TMVirtualGetFreq(pVM),
pVM->tm.s.cVirtualTicking ? "ticking" : "paused");
if (pVM->tm.s.fVirtualWarpDrive)
pHlp->pfnPrintf(pHlp, " WarpDrive %RU32 %%", pVM->tm.s.u32VirtualWarpDrivePercentage);
pHlp->pfnPrintf(pHlp, "\n");
/*
* virtual sync
*/
pHlp->pfnPrintf(pHlp,
"VirtSync: %18RU64 (%#016RX64) %s%s",
u64VirtualSync, u64VirtualSync,
pVM->tm.s.fVirtualSyncTicking ? "ticking" : "paused",
pVM->tm.s.fVirtualSyncCatchUp ? " - catchup" : "");
if (pVM->tm.s.offVirtualSync)
{
pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVM->tm.s.offVirtualSync);
if (pVM->tm.s.u32VirtualSyncCatchUpPercentage)
pHlp->pfnPrintf(pHlp, " catch-up rate %u %%", pVM->tm.s.u32VirtualSyncCatchUpPercentage);
}
pHlp->pfnPrintf(pHlp, "\n");
/*
* real
*/
pHlp->pfnPrintf(pHlp,
" Real: %18RU64 (%#016RX64) %RU64Hz\n",
u64Real, u64Real, TMRealGetFreq(pVM));
}
/**
* Helper for tmR3InfoCpuLoad that adjust @a uPct to the given graph width.
*/
DECLINLINE(size_t) tmR3InfoCpuLoadAdjustWidth(size_t uPct, size_t cchWidth)
{
if (cchWidth != 100)
uPct = (size_t)(((double)uPct + 0.5) * ((double)cchWidth / 100.0));
return uPct;
}
/**
* @callback_method_impl{FNDBGFINFOARGVINT}
*/
static DECLCALLBACK(void) tmR3InfoCpuLoad(PVM pVM, PCDBGFINFOHLP pHlp, int cArgs, char **papszArgs)
{
char szTmp[1024];
/*
* Parse arguments.
*/
PTMCPULOADSTATE pState = &pVM->tm.s.CpuLoad;
VMCPUID idCpu = 0;
bool fAllCpus = true;
bool fExpGraph = true;
uint32_t cchWidth = 80;
uint32_t cPeriods = RT_ELEMENTS(pState->aHistory);
uint32_t cRows = 60;
static const RTGETOPTDEF s_aOptions[] =
{
{ "all", 'a', RTGETOPT_REQ_NOTHING },
{ "cpu", 'c', RTGETOPT_REQ_UINT32 },
{ "periods", 'p', RTGETOPT_REQ_UINT32 },
{ "rows", 'r', RTGETOPT_REQ_UINT32 },
{ "uni", 'u', RTGETOPT_REQ_NOTHING },
{ "uniform", 'u', RTGETOPT_REQ_NOTHING },
{ "width", 'w', RTGETOPT_REQ_UINT32 },
{ "exp", 'x', RTGETOPT_REQ_NOTHING },
{ "exponential", 'x', RTGETOPT_REQ_NOTHING },
};
RTGETOPTSTATE State;
int rc = RTGetOptInit(&State, cArgs, papszArgs, s_aOptions, RT_ELEMENTS(s_aOptions), 0, 0 /*fFlags*/);
AssertRC(rc);
RTGETOPTUNION ValueUnion;
while ((rc = RTGetOpt(&State, &ValueUnion)) != 0)
{
switch (rc)
{
case 'a':
pState = &pVM->apCpusR3[0]->tm.s.CpuLoad;
idCpu = 0;
fAllCpus = true;
break;
case 'c':
if (ValueUnion.u32 < pVM->cCpus)
{
pState = &pVM->apCpusR3[ValueUnion.u32]->tm.s.CpuLoad;
idCpu = ValueUnion.u32;
}
else
{
pState = &pVM->tm.s.CpuLoad;
idCpu = VMCPUID_ALL;
}
fAllCpus = false;
break;
case 'p':
cPeriods = RT_MIN(RT_MAX(ValueUnion.u32, 1), RT_ELEMENTS(pState->aHistory));
break;
case 'r':
cRows = RT_MIN(RT_MAX(ValueUnion.u32, 5), RT_ELEMENTS(pState->aHistory));
break;
case 'w':
cchWidth = RT_MIN(RT_MAX(ValueUnion.u32, 10), sizeof(szTmp) - 32);
break;
case 'x':
fExpGraph = true;
break;
case 'u':
fExpGraph = false;
break;
case 'h':
pHlp->pfnPrintf(pHlp,
"Usage: cpuload [parameters]\n"
" all, -a\n"
" Show statistics for all CPUs. (default)\n"
" cpu=id, -c id\n"
" Show statistics for the specified CPU ID. Show combined stats if out of range.\n"
" periods=count, -p count\n"
" Number of periods to show. Default: all\n"
" rows=count, -r count\n"
" Number of rows in the graphs. Default: 60\n"
" width=count, -w count\n"
" Core graph width in characters. Default: 80\n"
" exp, exponential, -e\n"
" Do 1:1 for more recent half / 30 seconds of the graph, combine the\n"
" rest into increasinly larger chunks. Default.\n"
" uniform, uni, -u\n"
" Combine periods into rows in a uniform manner for the whole graph.\n");
return;
default:
pHlp->pfnGetOptError(pHlp, rc, &ValueUnion, &State);
return;
}
}
/*
* Do the job.
*/
for (;;)
{
uint32_t const cMaxPeriods = pState->cHistoryEntries;
if (cPeriods > cMaxPeriods)
cPeriods = cMaxPeriods;
if (cPeriods > 0)
{
if (fAllCpus)
{
if (idCpu > 0)
pHlp->pfnPrintf(pHlp, "\n");
pHlp->pfnPrintf(pHlp, " CPU load for virtual CPU %#04x\n"
" -------------------------------\n", idCpu);
}
/*
* Figure number of periods per chunk. We can either do this in a linear
* fashion or a exponential fashion that compresses old history more.
*/
size_t cPerRowDecrement = 0;
size_t cPeriodsPerRow = 1;
if (cRows < cPeriods)
{
if (!fExpGraph)
cPeriodsPerRow = (cPeriods + cRows / 2) / cRows;
else
{
/* The last 30 seconds or half of the rows are 1:1, the other part
is in increasing period counts. Code is a little simple but seems
to do the job most of the time, which is all I have time now. */
size_t cPeriodsOneToOne = RT_MIN(30, cRows / 2);
size_t cRestRows = cRows - cPeriodsOneToOne;
size_t cRestPeriods = cPeriods - cPeriodsOneToOne;
size_t cPeriodsInWindow = 0;
for (cPeriodsPerRow = 0; cPeriodsPerRow <= cRestRows && cPeriodsInWindow < cRestPeriods; cPeriodsPerRow++)
cPeriodsInWindow += cPeriodsPerRow + 1;
size_t iLower = 1;
while (cPeriodsInWindow < cRestPeriods)
{
cPeriodsPerRow++;
cPeriodsInWindow += cPeriodsPerRow;
cPeriodsInWindow -= iLower;
iLower++;
}
cPerRowDecrement = 1;
}
}
/*
* Do the work.
*/
size_t cPctExecuting = 0;
size_t cPctOther = 0;
size_t cPeriodsAccumulated = 0;
size_t cRowsLeft = cRows;
size_t iHistory = (pState->idxHistory - cPeriods) % RT_ELEMENTS(pState->aHistory);
while (cPeriods-- > 0)
{
iHistory++;
if (iHistory >= RT_ELEMENTS(pState->aHistory))
iHistory = 0;
cPctExecuting += pState->aHistory[iHistory].cPctExecuting;
cPctOther += pState->aHistory[iHistory].cPctOther;
cPeriodsAccumulated += 1;
if ( cPeriodsAccumulated >= cPeriodsPerRow
|| cPeriods < cRowsLeft)
{
/*
* Format and output the line.
*/
size_t offTmp = 0;
size_t i = tmR3InfoCpuLoadAdjustWidth(cPctExecuting / cPeriodsAccumulated, cchWidth);
while (i-- > 0)
szTmp[offTmp++] = '#';
i = tmR3InfoCpuLoadAdjustWidth(cPctOther / cPeriodsAccumulated, cchWidth);
while (i-- > 0)
szTmp[offTmp++] = 'O';
szTmp[offTmp] = '\0';
cRowsLeft--;
pHlp->pfnPrintf(pHlp, "%3zus: %s\n", cPeriods + cPeriodsAccumulated / 2, szTmp);
/* Reset the state: */
cPctExecuting = 0;
cPctOther = 0;
cPeriodsAccumulated = 0;
if (cPeriodsPerRow > cPerRowDecrement)
cPeriodsPerRow -= cPerRowDecrement;
}
}
pHlp->pfnPrintf(pHlp, " (#=guest, O=VMM overhead) idCpu=%#x\n", idCpu);
}
else
pHlp->pfnPrintf(pHlp, "No load data.\n");
/*
* Next CPU if we're display all.
*/
if (!fAllCpus)
break;
idCpu++;
if (idCpu >= pVM->cCpus)
break;
pState = &pVM->apCpusR3[idCpu]->tm.s.CpuLoad;
}
}
/**
* Gets the descriptive TM TSC mode name given the enum value.
*
* @returns The name.
* @param enmMode The mode to name.
*/
static const char *tmR3GetTSCModeNameEx(TMTSCMODE enmMode)
{
switch (enmMode)
{
case TMTSCMODE_REAL_TSC_OFFSET: return "RealTSCOffset";
case TMTSCMODE_VIRT_TSC_EMULATED: return "VirtTSCEmulated";
case TMTSCMODE_DYNAMIC: return "Dynamic";
case TMTSCMODE_NATIVE_API: return "NativeApi";
default: return "???";
}
}
/**
* Gets the descriptive TM TSC mode name.
*
* @returns The name.
* @param pVM The cross context VM structure.
*/
static const char *tmR3GetTSCModeName(PVM pVM)
{
Assert(pVM);
return tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode);
}
|