summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/math/test/test_factorials.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
commit483eb2f56657e8e7f419ab1a4fab8dce9ade8609 (patch)
treee5d88d25d870d5dedacb6bbdbe2a966086a0a5cf /src/boost/libs/math/test/test_factorials.cpp
parentInitial commit. (diff)
downloadceph-upstream.tar.xz
ceph-upstream.zip
Adding upstream version 14.2.21.upstream/14.2.21upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/boost/libs/math/test/test_factorials.cpp')
-rw-r--r--src/boost/libs/math/test/test_factorials.cpp386
1 files changed, 386 insertions, 0 deletions
diff --git a/src/boost/libs/math/test/test_factorials.cpp b/src/boost/libs/math/test/test_factorials.cpp
new file mode 100644
index 00000000..851f6462
--- /dev/null
+++ b/src/boost/libs/math/test/test_factorials.cpp
@@ -0,0 +1,386 @@
+// Copyright John Maddock 2006.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#include <pch.hpp>
+
+#ifdef _MSC_VER
+# pragma warning(disable: 4127) // conditional expression is constant.
+# pragma warning(disable: 4245) // int/unsigned int conversion
+#endif
+
+// Return infinities not exceptions:
+#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
+
+#include <boost/math/concepts/real_concept.hpp>
+#define BOOST_TEST_MAIN
+#include <boost/test/unit_test.hpp>
+#include <boost/test/tools/floating_point_comparison.hpp>
+#include <boost/math/special_functions/factorials.hpp>
+#include <boost/math/special_functions/gamma.hpp>
+#include <boost/math/tools/stats.hpp>
+#include <boost/math/tools/test.hpp>
+
+#include <iostream>
+#include <iomanip>
+using std::cout;
+using std::endl;
+
+template <class T>
+T naive_falling_factorial(T x, unsigned n)
+{
+ if(n == 0)
+ return 1;
+ T result = x;
+ while(--n)
+ {
+ x -= 1;
+ result *= x;
+ }
+ return result;
+}
+
+template <class T>
+void test_spots(T)
+{
+ //
+ // Basic sanity checks.
+ //
+ T tolerance = boost::math::tools::epsilon<T>() * 100 * 2; // 2 eps as a percent.
+ BOOST_CHECK_CLOSE(
+ ::boost::math::factorial<T>(0),
+ static_cast<T>(1), tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::factorial<T>(1),
+ static_cast<T>(1), tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::factorial<T>(10),
+ static_cast<T>(3628800L), tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::unchecked_factorial<T>(0),
+ static_cast<T>(1), tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::unchecked_factorial<T>(1),
+ static_cast<T>(1), tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::unchecked_factorial<T>(10),
+ static_cast<T>(3628800L), tolerance);
+
+ //
+ // Try some double factorials:
+ //
+ BOOST_CHECK_CLOSE(
+ ::boost::math::double_factorial<T>(0),
+ static_cast<T>(1), tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::double_factorial<T>(1),
+ static_cast<T>(1), tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::double_factorial<T>(2),
+ static_cast<T>(2), tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::double_factorial<T>(5),
+ static_cast<T>(15), tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::double_factorial<T>(10),
+ static_cast<T>(3840), tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::double_factorial<T>(19),
+ static_cast<T>(6.547290750e8L), tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::double_factorial<T>(24),
+ static_cast<T>(1.961990553600000e12L), tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::double_factorial<T>(33),
+ static_cast<T>(6.33265987076285062500000e18L), tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::double_factorial<T>(42),
+ static_cast<T>(1.0714547155728479551488000000e26L), tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::double_factorial<T>(47),
+ static_cast<T>(1.19256819277443412353990764062500000e30L), tolerance);
+
+ if((std::numeric_limits<T>::has_infinity) && (std::numeric_limits<T>::max_exponent <= 1024))
+ {
+ BOOST_CHECK_EQUAL(
+ ::boost::math::double_factorial<T>(320),
+ std::numeric_limits<T>::infinity());
+ BOOST_CHECK_EQUAL(
+ ::boost::math::double_factorial<T>(301),
+ std::numeric_limits<T>::infinity());
+ }
+ //
+ // Rising factorials:
+ //
+ tolerance = boost::math::tools::epsilon<T>() * 100 * 20; // 20 eps as a percent.
+ if(std::numeric_limits<T>::is_specialized == 0)
+ tolerance *= 5; // higher error rates without Lanczos support
+ BOOST_CHECK_CLOSE(
+ ::boost::math::rising_factorial(static_cast<T>(3), 4),
+ static_cast<T>(360), tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::rising_factorial(static_cast<T>(7), -4),
+ static_cast<T>(0.00277777777777777777777777777777777777777777777777777777777778L), tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::rising_factorial(static_cast<T>(120.5f), 8),
+ static_cast<T>(5.58187566784927180664062500e16L), tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::rising_factorial(static_cast<T>(120.5f), -4),
+ static_cast<T>(5.15881498170104646868208445266116850161120996179812063177241e-9L), tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::rising_factorial(static_cast<T>(5000.25f), 8),
+ static_cast<T>(3.92974581976666067544013393509103775024414062500000e29L), tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::rising_factorial(static_cast<T>(5000.25f), -7),
+ static_cast<T>(1.28674092710208810281923019294164707555099052561945725535047e-26L), tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::rising_factorial(static_cast<T>(30.25), 21),
+ static_cast<T>(3.93286957998925490693364184100209193343633629069699964020401e33L), tolerance * 2);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::rising_factorial(static_cast<T>(30.25), -21),
+ static_cast<T>(3.35010902064291983728782493133164809108646650368560147505884e-27L), tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::rising_factorial(static_cast<T>(-30.25), 21),
+ static_cast<T>(-9.76168312768123676601980433377916854311706629232503473758698e26L), tolerance * 2);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::rising_factorial(static_cast<T>(-30.25), -21),
+ static_cast<T>(-1.50079704000923674318934280259377728203516775215430875839823e-34L), 2 * tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::rising_factorial(static_cast<T>(-30.25), 5),
+ static_cast<T>(-1.78799177197265625000000e7L), tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::rising_factorial(static_cast<T>(-30.25), -5),
+ static_cast<T>(-2.47177487004482195012362027432181137141899692171397467859150e-8L), tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::rising_factorial(static_cast<T>(-30.25), 6),
+ static_cast<T>(4.5146792242309570312500000e8L), tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::rising_factorial(static_cast<T>(-30.25), -6),
+ static_cast<T>(6.81868929667537089689274558433603136943171564610751635473516e-10L), tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::rising_factorial(static_cast<T>(-3), 6),
+ static_cast<T>(0), tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::rising_factorial(static_cast<T>(-3.25), 6),
+ static_cast<T>(2.99926757812500L), tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::rising_factorial(static_cast<T>(-5.25), 6),
+ static_cast<T>(50.987548828125000000000000L), tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::rising_factorial(static_cast<T>(-5.25), 13),
+ static_cast<T>(127230.91046623885631561279296875000L), tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::rising_factorial(static_cast<T>(-3.25), -6),
+ static_cast<T>(0.0000129609865918182348202632178291407500332449622510474437452125L), tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::rising_factorial(static_cast<T>(-5.25), -6),
+ static_cast<T>(2.50789821857946332294524052303699065683926911849535903362649e-6L), tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::rising_factorial(static_cast<T>(-5.25), -13),
+ static_cast<T>(-1.38984989447269128946284683518361786049649013886981662962096e-14L), tolerance);
+ //
+ // More cases reported as bugs by Rocco Romeo:
+ //
+ BOOST_CHECK_EQUAL(::boost::math::rising_factorial(static_cast<T>(0), 1), static_cast<T>(0));
+ BOOST_CHECK_EQUAL(::boost::math::rising_factorial(static_cast<T>(0), -1), static_cast<T>(-1));
+ BOOST_CHECK_CLOSE(::boost::math::rising_factorial(static_cast<T>(0.5f), -1), static_cast<T>(-2), tolerance);
+ BOOST_CHECK_CLOSE(::boost::math::rising_factorial(static_cast<T>(40.5), -41), static_cast<T>(-2.75643016796662963097096639854040835565778207128865739e-47L), tolerance);
+ BOOST_CHECK_EQUAL(::boost::math::rising_factorial(static_cast<T>(-2), 3), static_cast<T>(0));
+ BOOST_CHECK_EQUAL(::boost::math::rising_factorial(static_cast<T>(-2), 2), static_cast<T>(2));
+ BOOST_CHECK_EQUAL(::boost::math::rising_factorial(static_cast<T>(-4), 3), static_cast<T>(-24));
+ BOOST_CHECK_CLOSE(::boost::math::rising_factorial(static_cast<T>(-4), -3), static_cast<T>(-0.00476190476190476190476190476190476190476190476190476190476L), tolerance);
+ if(ldexp(T(1), -150) != 0)
+ {
+ BOOST_CHECK_CLOSE(::boost::math::rising_factorial(ldexp(T(1), -150), 0), static_cast<T>(1), tolerance);
+ BOOST_CHECK_CLOSE(::boost::math::rising_factorial(ldexp(T(1), -150), -1), static_cast<T>(-1.00000000000000000000000000000000000000000000070064923216241L), tolerance);
+ BOOST_CHECK_CLOSE(::boost::math::rising_factorial(ldexp(T(1), -150), -2), static_cast<T>(0.500000000000000000000000000000000000000000000525486924121806L), tolerance);
+ BOOST_CHECK_CLOSE(::boost::math::rising_factorial(ldexp(T(1), -150), -25), static_cast<T>(-6.44695028438447339619485321920468720529890442766578870603544e-26L), 15 * tolerance);
+ if(std::numeric_limits<T>::min_exponent10 < -50)
+ {
+ BOOST_CHECK_CLOSE(::boost::math::rising_factorial(ldexp(T(1), -150), -40), static_cast<T>(1.22561743912838584942353998493975692372556196815242899727910e-48L), tolerance);
+ }
+ }
+
+ //
+ // Falling factorials:
+ //
+ BOOST_CHECK_CLOSE(
+ ::boost::math::falling_factorial(static_cast<T>(30.25), 0),
+ static_cast<T>(naive_falling_factorial(30.25L, 0)),
+ tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::falling_factorial(static_cast<T>(30.25), 1),
+ static_cast<T>(naive_falling_factorial(30.25L, 1)),
+ tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::falling_factorial(static_cast<T>(30.25), 2),
+ static_cast<T>(naive_falling_factorial(30.25L, 2)),
+ tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::falling_factorial(static_cast<T>(30.25), 5),
+ static_cast<T>(naive_falling_factorial(30.25L, 5)),
+ tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::falling_factorial(static_cast<T>(30.25), 22),
+ static_cast<T>(naive_falling_factorial(30.25L, 22)),
+ tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::falling_factorial(static_cast<T>(100.5), 6),
+ static_cast<T>(naive_falling_factorial(100.5L, 6)),
+ tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::falling_factorial(static_cast<T>(30.75), 30),
+ static_cast<T>(naive_falling_factorial(30.75L, 30)),
+ tolerance * 3);
+ if(boost::math::policies::digits<T, boost::math::policies::policy<> >() > 50)
+ {
+ BOOST_CHECK_CLOSE(
+ ::boost::math::falling_factorial(static_cast<T>(-30.75L), 30),
+ static_cast<T>(naive_falling_factorial(-30.75L, 30)),
+ tolerance * 3);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::falling_factorial(static_cast<T>(-30.75L), 27),
+ static_cast<T>(naive_falling_factorial(-30.75L, 27)),
+ tolerance * 3);
+ }
+ BOOST_CHECK_CLOSE(
+ ::boost::math::falling_factorial(static_cast<T>(-12.0), 6),
+ static_cast<T>(naive_falling_factorial(-12.0L, 6)),
+ tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::falling_factorial(static_cast<T>(-12), 5),
+ static_cast<T>(naive_falling_factorial(-12.0L, 5)),
+ tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::falling_factorial(static_cast<T>(-3.0), 6),
+ static_cast<T>(naive_falling_factorial(-3.0L, 6)),
+ tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::falling_factorial(static_cast<T>(-3), 5),
+ static_cast<T>(naive_falling_factorial(-3.0L, 5)),
+ tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::falling_factorial(static_cast<T>(3.0), 6),
+ static_cast<T>(naive_falling_factorial(3.0L, 6)),
+ tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::falling_factorial(static_cast<T>(3), 5),
+ static_cast<T>(naive_falling_factorial(3.0L, 5)),
+ tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::falling_factorial(static_cast<T>(3.25), 4),
+ static_cast<T>(naive_falling_factorial(3.25L, 4)),
+ tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::falling_factorial(static_cast<T>(3.25), 5),
+ static_cast<T>(naive_falling_factorial(3.25L, 5)),
+ tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::falling_factorial(static_cast<T>(3.25), 6),
+ static_cast<T>(naive_falling_factorial(3.25L, 6)),
+ tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::falling_factorial(static_cast<T>(3.25), 7),
+ static_cast<T>(naive_falling_factorial(3.25L, 7)),
+ tolerance);
+ BOOST_CHECK_CLOSE(
+ ::boost::math::falling_factorial(static_cast<T>(8.25), 12),
+ static_cast<T>(naive_falling_factorial(8.25L, 12)),
+ tolerance);
+ //
+ // More cases reported as bugs by Rocco Romeo:
+ //
+ BOOST_CHECK_EQUAL(::boost::math::falling_factorial(static_cast<T>(0), 1), static_cast<T>(0));
+ BOOST_CHECK_CLOSE(::boost::math::falling_factorial(static_cast<T>(-2), 3), static_cast<T>(-24), tolerance);
+ BOOST_CHECK_CLOSE(::boost::math::falling_factorial(static_cast<T>(-2), 2), static_cast<T>(6), tolerance);
+ BOOST_CHECK_CLOSE(::boost::math::falling_factorial(static_cast<T>(-4), 3), static_cast<T>(-120), tolerance);
+ if(ldexp(static_cast<T>(1), -100) != 0)
+ {
+ BOOST_CHECK_CLOSE(::boost::math::falling_factorial(ldexp(static_cast<T>(1), -100), 1), static_cast<T>(7.888609052210118054117285652827862296732064351090230047e-31L), tolerance);
+ BOOST_CHECK_CLOSE(::boost::math::falling_factorial(ldexp(static_cast<T>(1), -100), 2), static_cast<T>(-7.88860905221011805411728565282163928145420320938308598e-31L), tolerance);
+ BOOST_CHECK_CLOSE(::boost::math::falling_factorial(ldexp(static_cast<T>(1), -100), 3), static_cast<T>(1.577721810442023610823457130563705554763054527705902790e-30L), tolerance);
+ BOOST_CHECK_CLOSE(::boost::math::falling_factorial(ldexp(static_cast<T>(1), -100), 35), static_cast<T>(2.32897613101315187323300837924676081371219290005311315885e8L), 35 * tolerance);
+ }
+ if((ldexp(static_cast<T>(1), -300) != 0) && (std::numeric_limits<T>::max_exponent10 > 290))
+ {
+ BOOST_CHECK_CLOSE(::boost::math::falling_factorial(ldexp(static_cast<T>(1), -300), 20), static_cast<T>(-5.97167167502482975928590631196751639118233432208390100e-74L), tolerance);
+ BOOST_CHECK_CLOSE(::boost::math::falling_factorial(ldexp(static_cast<T>(1), -300), 200), static_cast<T>(-1.93579759151806711025267355739174942986011285920860098569075e282L), 10 * tolerance);
+ }
+
+
+ tolerance = boost::math::tools::epsilon<T>() * 100 * 20; // 20 eps as a percent.
+ unsigned i = boost::math::max_factorial<T>::value;
+ if((boost::is_floating_point<T>::value) && (sizeof(T) <= sizeof(double)))
+ {
+ // Without Lanczos support, tgamma isn't accurate enough for this test:
+ BOOST_CHECK_CLOSE(
+ ::boost::math::unchecked_factorial<T>(i),
+ boost::math::tgamma(static_cast<T>(i+1)), tolerance);
+ }
+
+ i += 10;
+ while(boost::math::lgamma(static_cast<T>(i+1)) < boost::math::tools::log_max_value<T>())
+ {
+ BOOST_CHECK_CLOSE(
+ ::boost::math::factorial<T>(i),
+ boost::math::tgamma(static_cast<T>(i+1)), tolerance);
+ i += 10;
+ }
+} // template <class T> void test_spots(T)
+
+BOOST_AUTO_TEST_CASE( test_main )
+{
+ BOOST_MATH_CONTROL_FP;
+ test_spots(0.0F);
+ test_spots(0.0);
+#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
+ test_spots(0.0L);
+#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
+ test_spots(boost::math::concepts::real_concept(0.));
+#endif
+#else
+ std::cout << "<note>The long double tests have been disabled on this platform "
+ "either because the long double overloads of the usual math functions are "
+ "not available at all, or because they are too inaccurate for these tests "
+ "to pass.</note>" << std::endl;
+#endif
+ if (std::numeric_limits<double>::digits == std::numeric_limits<long double>::digits)
+ {
+ cout << "Types double and long double have the same number of floating-point significand bits ("
+ << std::numeric_limits<long double>::digits << ") on this platform." << endl;
+ }
+ if (std::numeric_limits<float>::digits == std::numeric_limits<double>::digits)
+ {
+ cout << "Types float and double have the same number of floating-point significand bits ("
+ << std::numeric_limits<double>::digits << ") on this platform." << endl;
+ }
+
+ using boost::math::max_factorial;
+ cout << "max factorial for float " << max_factorial<float>::value << endl;
+ cout << "max factorial for double " << max_factorial<double>::value << endl;
+ cout << "max factorial for long double " << max_factorial<long double>::value << endl;
+ cout << "max factorial for real_concept " << max_factorial<boost::math::concepts::real_concept>::value << endl;
+
+
+
+
+}
+
+/*
+
+Output is:
+
+Running 1 test case...
+Types double and long double have the same number of floating-point significand bits (53) on this platform.
+max factorial for float 34
+max factorial for double 170
+max factorial for long double 170
+max factorial for real_concept 100
+*** No errors detected
+
+*/
+
+
+
+