1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
|
// Copyright John Maddock 2006.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <pch.hpp>
#ifdef _MSC_VER
# pragma warning(disable: 4127) // conditional expression is constant.
# pragma warning(disable: 4245) // int/unsigned int conversion
#endif
// Return infinities not exceptions:
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
#include <boost/math/concepts/real_concept.hpp>
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/special_functions/factorials.hpp>
#include <boost/math/special_functions/gamma.hpp>
#include <boost/math/tools/stats.hpp>
#include <boost/math/tools/test.hpp>
#include <iostream>
#include <iomanip>
using std::cout;
using std::endl;
template <class T>
T naive_falling_factorial(T x, unsigned n)
{
if(n == 0)
return 1;
T result = x;
while(--n)
{
x -= 1;
result *= x;
}
return result;
}
template <class T>
void test_spots(T)
{
//
// Basic sanity checks.
//
T tolerance = boost::math::tools::epsilon<T>() * 100 * 2; // 2 eps as a percent.
BOOST_CHECK_CLOSE(
::boost::math::factorial<T>(0),
static_cast<T>(1), tolerance);
BOOST_CHECK_CLOSE(
::boost::math::factorial<T>(1),
static_cast<T>(1), tolerance);
BOOST_CHECK_CLOSE(
::boost::math::factorial<T>(10),
static_cast<T>(3628800L), tolerance);
BOOST_CHECK_CLOSE(
::boost::math::unchecked_factorial<T>(0),
static_cast<T>(1), tolerance);
BOOST_CHECK_CLOSE(
::boost::math::unchecked_factorial<T>(1),
static_cast<T>(1), tolerance);
BOOST_CHECK_CLOSE(
::boost::math::unchecked_factorial<T>(10),
static_cast<T>(3628800L), tolerance);
//
// Try some double factorials:
//
BOOST_CHECK_CLOSE(
::boost::math::double_factorial<T>(0),
static_cast<T>(1), tolerance);
BOOST_CHECK_CLOSE(
::boost::math::double_factorial<T>(1),
static_cast<T>(1), tolerance);
BOOST_CHECK_CLOSE(
::boost::math::double_factorial<T>(2),
static_cast<T>(2), tolerance);
BOOST_CHECK_CLOSE(
::boost::math::double_factorial<T>(5),
static_cast<T>(15), tolerance);
BOOST_CHECK_CLOSE(
::boost::math::double_factorial<T>(10),
static_cast<T>(3840), tolerance);
BOOST_CHECK_CLOSE(
::boost::math::double_factorial<T>(19),
static_cast<T>(6.547290750e8L), tolerance);
BOOST_CHECK_CLOSE(
::boost::math::double_factorial<T>(24),
static_cast<T>(1.961990553600000e12L), tolerance);
BOOST_CHECK_CLOSE(
::boost::math::double_factorial<T>(33),
static_cast<T>(6.33265987076285062500000e18L), tolerance);
BOOST_CHECK_CLOSE(
::boost::math::double_factorial<T>(42),
static_cast<T>(1.0714547155728479551488000000e26L), tolerance);
BOOST_CHECK_CLOSE(
::boost::math::double_factorial<T>(47),
static_cast<T>(1.19256819277443412353990764062500000e30L), tolerance);
if((std::numeric_limits<T>::has_infinity) && (std::numeric_limits<T>::max_exponent <= 1024))
{
BOOST_CHECK_EQUAL(
::boost::math::double_factorial<T>(320),
std::numeric_limits<T>::infinity());
BOOST_CHECK_EQUAL(
::boost::math::double_factorial<T>(301),
std::numeric_limits<T>::infinity());
}
//
// Rising factorials:
//
tolerance = boost::math::tools::epsilon<T>() * 100 * 20; // 20 eps as a percent.
if(std::numeric_limits<T>::is_specialized == 0)
tolerance *= 5; // higher error rates without Lanczos support
BOOST_CHECK_CLOSE(
::boost::math::rising_factorial(static_cast<T>(3), 4),
static_cast<T>(360), tolerance);
BOOST_CHECK_CLOSE(
::boost::math::rising_factorial(static_cast<T>(7), -4),
static_cast<T>(0.00277777777777777777777777777777777777777777777777777777777778L), tolerance);
BOOST_CHECK_CLOSE(
::boost::math::rising_factorial(static_cast<T>(120.5f), 8),
static_cast<T>(5.58187566784927180664062500e16L), tolerance);
BOOST_CHECK_CLOSE(
::boost::math::rising_factorial(static_cast<T>(120.5f), -4),
static_cast<T>(5.15881498170104646868208445266116850161120996179812063177241e-9L), tolerance);
BOOST_CHECK_CLOSE(
::boost::math::rising_factorial(static_cast<T>(5000.25f), 8),
static_cast<T>(3.92974581976666067544013393509103775024414062500000e29L), tolerance);
BOOST_CHECK_CLOSE(
::boost::math::rising_factorial(static_cast<T>(5000.25f), -7),
static_cast<T>(1.28674092710208810281923019294164707555099052561945725535047e-26L), tolerance);
BOOST_CHECK_CLOSE(
::boost::math::rising_factorial(static_cast<T>(30.25), 21),
static_cast<T>(3.93286957998925490693364184100209193343633629069699964020401e33L), tolerance * 2);
BOOST_CHECK_CLOSE(
::boost::math::rising_factorial(static_cast<T>(30.25), -21),
static_cast<T>(3.35010902064291983728782493133164809108646650368560147505884e-27L), tolerance);
BOOST_CHECK_CLOSE(
::boost::math::rising_factorial(static_cast<T>(-30.25), 21),
static_cast<T>(-9.76168312768123676601980433377916854311706629232503473758698e26L), tolerance * 2);
BOOST_CHECK_CLOSE(
::boost::math::rising_factorial(static_cast<T>(-30.25), -21),
static_cast<T>(-1.50079704000923674318934280259377728203516775215430875839823e-34L), 2 * tolerance);
BOOST_CHECK_CLOSE(
::boost::math::rising_factorial(static_cast<T>(-30.25), 5),
static_cast<T>(-1.78799177197265625000000e7L), tolerance);
BOOST_CHECK_CLOSE(
::boost::math::rising_factorial(static_cast<T>(-30.25), -5),
static_cast<T>(-2.47177487004482195012362027432181137141899692171397467859150e-8L), tolerance);
BOOST_CHECK_CLOSE(
::boost::math::rising_factorial(static_cast<T>(-30.25), 6),
static_cast<T>(4.5146792242309570312500000e8L), tolerance);
BOOST_CHECK_CLOSE(
::boost::math::rising_factorial(static_cast<T>(-30.25), -6),
static_cast<T>(6.81868929667537089689274558433603136943171564610751635473516e-10L), tolerance);
BOOST_CHECK_CLOSE(
::boost::math::rising_factorial(static_cast<T>(-3), 6),
static_cast<T>(0), tolerance);
BOOST_CHECK_CLOSE(
::boost::math::rising_factorial(static_cast<T>(-3.25), 6),
static_cast<T>(2.99926757812500L), tolerance);
BOOST_CHECK_CLOSE(
::boost::math::rising_factorial(static_cast<T>(-5.25), 6),
static_cast<T>(50.987548828125000000000000L), tolerance);
BOOST_CHECK_CLOSE(
::boost::math::rising_factorial(static_cast<T>(-5.25), 13),
static_cast<T>(127230.91046623885631561279296875000L), tolerance);
BOOST_CHECK_CLOSE(
::boost::math::rising_factorial(static_cast<T>(-3.25), -6),
static_cast<T>(0.0000129609865918182348202632178291407500332449622510474437452125L), tolerance);
BOOST_CHECK_CLOSE(
::boost::math::rising_factorial(static_cast<T>(-5.25), -6),
static_cast<T>(2.50789821857946332294524052303699065683926911849535903362649e-6L), tolerance);
BOOST_CHECK_CLOSE(
::boost::math::rising_factorial(static_cast<T>(-5.25), -13),
static_cast<T>(-1.38984989447269128946284683518361786049649013886981662962096e-14L), tolerance);
//
// More cases reported as bugs by Rocco Romeo:
//
BOOST_CHECK_EQUAL(::boost::math::rising_factorial(static_cast<T>(0), 1), static_cast<T>(0));
BOOST_CHECK_EQUAL(::boost::math::rising_factorial(static_cast<T>(0), -1), static_cast<T>(-1));
BOOST_CHECK_CLOSE(::boost::math::rising_factorial(static_cast<T>(0.5f), -1), static_cast<T>(-2), tolerance);
BOOST_CHECK_CLOSE(::boost::math::rising_factorial(static_cast<T>(40.5), -41), static_cast<T>(-2.75643016796662963097096639854040835565778207128865739e-47L), tolerance);
BOOST_CHECK_EQUAL(::boost::math::rising_factorial(static_cast<T>(-2), 3), static_cast<T>(0));
BOOST_CHECK_EQUAL(::boost::math::rising_factorial(static_cast<T>(-2), 2), static_cast<T>(2));
BOOST_CHECK_EQUAL(::boost::math::rising_factorial(static_cast<T>(-4), 3), static_cast<T>(-24));
BOOST_CHECK_CLOSE(::boost::math::rising_factorial(static_cast<T>(-4), -3), static_cast<T>(-0.00476190476190476190476190476190476190476190476190476190476L), tolerance);
if(ldexp(T(1), -150) != 0)
{
BOOST_CHECK_CLOSE(::boost::math::rising_factorial(ldexp(T(1), -150), 0), static_cast<T>(1), tolerance);
BOOST_CHECK_CLOSE(::boost::math::rising_factorial(ldexp(T(1), -150), -1), static_cast<T>(-1.00000000000000000000000000000000000000000000070064923216241L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::rising_factorial(ldexp(T(1), -150), -2), static_cast<T>(0.500000000000000000000000000000000000000000000525486924121806L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::rising_factorial(ldexp(T(1), -150), -25), static_cast<T>(-6.44695028438447339619485321920468720529890442766578870603544e-26L), 15 * tolerance);
if(std::numeric_limits<T>::min_exponent10 < -50)
{
BOOST_CHECK_CLOSE(::boost::math::rising_factorial(ldexp(T(1), -150), -40), static_cast<T>(1.22561743912838584942353998493975692372556196815242899727910e-48L), tolerance);
}
}
//
// Falling factorials:
//
BOOST_CHECK_CLOSE(
::boost::math::falling_factorial(static_cast<T>(30.25), 0),
static_cast<T>(naive_falling_factorial(30.25L, 0)),
tolerance);
BOOST_CHECK_CLOSE(
::boost::math::falling_factorial(static_cast<T>(30.25), 1),
static_cast<T>(naive_falling_factorial(30.25L, 1)),
tolerance);
BOOST_CHECK_CLOSE(
::boost::math::falling_factorial(static_cast<T>(30.25), 2),
static_cast<T>(naive_falling_factorial(30.25L, 2)),
tolerance);
BOOST_CHECK_CLOSE(
::boost::math::falling_factorial(static_cast<T>(30.25), 5),
static_cast<T>(naive_falling_factorial(30.25L, 5)),
tolerance);
BOOST_CHECK_CLOSE(
::boost::math::falling_factorial(static_cast<T>(30.25), 22),
static_cast<T>(naive_falling_factorial(30.25L, 22)),
tolerance);
BOOST_CHECK_CLOSE(
::boost::math::falling_factorial(static_cast<T>(100.5), 6),
static_cast<T>(naive_falling_factorial(100.5L, 6)),
tolerance);
BOOST_CHECK_CLOSE(
::boost::math::falling_factorial(static_cast<T>(30.75), 30),
static_cast<T>(naive_falling_factorial(30.75L, 30)),
tolerance * 3);
if(boost::math::policies::digits<T, boost::math::policies::policy<> >() > 50)
{
BOOST_CHECK_CLOSE(
::boost::math::falling_factorial(static_cast<T>(-30.75L), 30),
static_cast<T>(naive_falling_factorial(-30.75L, 30)),
tolerance * 3);
BOOST_CHECK_CLOSE(
::boost::math::falling_factorial(static_cast<T>(-30.75L), 27),
static_cast<T>(naive_falling_factorial(-30.75L, 27)),
tolerance * 3);
}
BOOST_CHECK_CLOSE(
::boost::math::falling_factorial(static_cast<T>(-12.0), 6),
static_cast<T>(naive_falling_factorial(-12.0L, 6)),
tolerance);
BOOST_CHECK_CLOSE(
::boost::math::falling_factorial(static_cast<T>(-12), 5),
static_cast<T>(naive_falling_factorial(-12.0L, 5)),
tolerance);
BOOST_CHECK_CLOSE(
::boost::math::falling_factorial(static_cast<T>(-3.0), 6),
static_cast<T>(naive_falling_factorial(-3.0L, 6)),
tolerance);
BOOST_CHECK_CLOSE(
::boost::math::falling_factorial(static_cast<T>(-3), 5),
static_cast<T>(naive_falling_factorial(-3.0L, 5)),
tolerance);
BOOST_CHECK_CLOSE(
::boost::math::falling_factorial(static_cast<T>(3.0), 6),
static_cast<T>(naive_falling_factorial(3.0L, 6)),
tolerance);
BOOST_CHECK_CLOSE(
::boost::math::falling_factorial(static_cast<T>(3), 5),
static_cast<T>(naive_falling_factorial(3.0L, 5)),
tolerance);
BOOST_CHECK_CLOSE(
::boost::math::falling_factorial(static_cast<T>(3.25), 4),
static_cast<T>(naive_falling_factorial(3.25L, 4)),
tolerance);
BOOST_CHECK_CLOSE(
::boost::math::falling_factorial(static_cast<T>(3.25), 5),
static_cast<T>(naive_falling_factorial(3.25L, 5)),
tolerance);
BOOST_CHECK_CLOSE(
::boost::math::falling_factorial(static_cast<T>(3.25), 6),
static_cast<T>(naive_falling_factorial(3.25L, 6)),
tolerance);
BOOST_CHECK_CLOSE(
::boost::math::falling_factorial(static_cast<T>(3.25), 7),
static_cast<T>(naive_falling_factorial(3.25L, 7)),
tolerance);
BOOST_CHECK_CLOSE(
::boost::math::falling_factorial(static_cast<T>(8.25), 12),
static_cast<T>(naive_falling_factorial(8.25L, 12)),
tolerance);
//
// More cases reported as bugs by Rocco Romeo:
//
BOOST_CHECK_EQUAL(::boost::math::falling_factorial(static_cast<T>(0), 1), static_cast<T>(0));
BOOST_CHECK_CLOSE(::boost::math::falling_factorial(static_cast<T>(-2), 3), static_cast<T>(-24), tolerance);
BOOST_CHECK_CLOSE(::boost::math::falling_factorial(static_cast<T>(-2), 2), static_cast<T>(6), tolerance);
BOOST_CHECK_CLOSE(::boost::math::falling_factorial(static_cast<T>(-4), 3), static_cast<T>(-120), tolerance);
if(ldexp(static_cast<T>(1), -100) != 0)
{
BOOST_CHECK_CLOSE(::boost::math::falling_factorial(ldexp(static_cast<T>(1), -100), 1), static_cast<T>(7.888609052210118054117285652827862296732064351090230047e-31L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::falling_factorial(ldexp(static_cast<T>(1), -100), 2), static_cast<T>(-7.88860905221011805411728565282163928145420320938308598e-31L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::falling_factorial(ldexp(static_cast<T>(1), -100), 3), static_cast<T>(1.577721810442023610823457130563705554763054527705902790e-30L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::falling_factorial(ldexp(static_cast<T>(1), -100), 35), static_cast<T>(2.32897613101315187323300837924676081371219290005311315885e8L), 35 * tolerance);
}
if((ldexp(static_cast<T>(1), -300) != 0) && (std::numeric_limits<T>::max_exponent10 > 290))
{
BOOST_CHECK_CLOSE(::boost::math::falling_factorial(ldexp(static_cast<T>(1), -300), 20), static_cast<T>(-5.97167167502482975928590631196751639118233432208390100e-74L), tolerance);
BOOST_CHECK_CLOSE(::boost::math::falling_factorial(ldexp(static_cast<T>(1), -300), 200), static_cast<T>(-1.93579759151806711025267355739174942986011285920860098569075e282L), 10 * tolerance);
}
tolerance = boost::math::tools::epsilon<T>() * 100 * 20; // 20 eps as a percent.
unsigned i = boost::math::max_factorial<T>::value;
if((boost::is_floating_point<T>::value) && (sizeof(T) <= sizeof(double)))
{
// Without Lanczos support, tgamma isn't accurate enough for this test:
BOOST_CHECK_CLOSE(
::boost::math::unchecked_factorial<T>(i),
boost::math::tgamma(static_cast<T>(i+1)), tolerance);
}
i += 10;
while(boost::math::lgamma(static_cast<T>(i+1)) < boost::math::tools::log_max_value<T>())
{
BOOST_CHECK_CLOSE(
::boost::math::factorial<T>(i),
boost::math::tgamma(static_cast<T>(i+1)), tolerance);
i += 10;
}
} // template <class T> void test_spots(T)
BOOST_AUTO_TEST_CASE( test_main )
{
BOOST_MATH_CONTROL_FP;
test_spots(0.0F);
test_spots(0.0);
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test_spots(0.0L);
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
test_spots(boost::math::concepts::real_concept(0.));
#endif
#else
std::cout << "<note>The long double tests have been disabled on this platform "
"either because the long double overloads of the usual math functions are "
"not available at all, or because they are too inaccurate for these tests "
"to pass.</note>" << std::endl;
#endif
if (std::numeric_limits<double>::digits == std::numeric_limits<long double>::digits)
{
cout << "Types double and long double have the same number of floating-point significand bits ("
<< std::numeric_limits<long double>::digits << ") on this platform." << endl;
}
if (std::numeric_limits<float>::digits == std::numeric_limits<double>::digits)
{
cout << "Types float and double have the same number of floating-point significand bits ("
<< std::numeric_limits<double>::digits << ") on this platform." << endl;
}
using boost::math::max_factorial;
cout << "max factorial for float " << max_factorial<float>::value << endl;
cout << "max factorial for double " << max_factorial<double>::value << endl;
cout << "max factorial for long double " << max_factorial<long double>::value << endl;
cout << "max factorial for real_concept " << max_factorial<boost::math::concepts::real_concept>::value << endl;
}
/*
Output is:
Running 1 test case...
Types double and long double have the same number of floating-point significand bits (53) on this platform.
max factorial for float 34
max factorial for double 170
max factorial for long double 170
max factorial for real_concept 100
*** No errors detected
*/
|