summaryrefslogtreecommitdiffstats
path: root/third_party/rust/itertools-0.8.0
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 14:29:10 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 14:29:10 +0000
commit2aa4a82499d4becd2284cdb482213d541b8804dd (patch)
treeb80bf8bf13c3766139fbacc530efd0dd9d54394c /third_party/rust/itertools-0.8.0
parentInitial commit. (diff)
downloadfirefox-2aa4a82499d4becd2284cdb482213d541b8804dd.tar.xz
firefox-2aa4a82499d4becd2284cdb482213d541b8804dd.zip
Adding upstream version 86.0.1.upstream/86.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/itertools-0.8.0')
-rw-r--r--third_party/rust/itertools-0.8.0/.cargo-checksum.json1
-rw-r--r--third_party/rust/itertools-0.8.0/Cargo.toml47
-rw-r--r--third_party/rust/itertools-0.8.0/LICENSE-APACHE201
-rw-r--r--third_party/rust/itertools-0.8.0/LICENSE-MIT25
-rw-r--r--third_party/rust/itertools-0.8.0/README.rst526
-rw-r--r--third_party/rust/itertools-0.8.0/benches/bench1.rs733
-rw-r--r--third_party/rust/itertools-0.8.0/benches/extra/mod.rs4
-rw-r--r--third_party/rust/itertools-0.8.0/benches/extra/zipslices.rs189
-rw-r--r--third_party/rust/itertools-0.8.0/benches/tree_fold1.rs126
-rw-r--r--third_party/rust/itertools-0.8.0/benches/tuple_combinations.rs97
-rw-r--r--third_party/rust/itertools-0.8.0/benches/tuples.rs190
-rw-r--r--third_party/rust/itertools-0.8.0/examples/iris.data150
-rw-r--r--third_party/rust/itertools-0.8.0/examples/iris.rs141
-rw-r--r--third_party/rust/itertools-0.8.0/src/adaptors/mod.rs1278
-rw-r--r--third_party/rust/itertools-0.8.0/src/adaptors/multi_product.rs220
-rw-r--r--third_party/rust/itertools-0.8.0/src/combinations.rs165
-rw-r--r--third_party/rust/itertools-0.8.0/src/concat_impl.rs22
-rw-r--r--third_party/rust/itertools-0.8.0/src/cons_tuples_impl.rs68
-rw-r--r--third_party/rust/itertools-0.8.0/src/diff.rs61
-rw-r--r--third_party/rust/itertools-0.8.0/src/either_or_both.rs58
-rw-r--r--third_party/rust/itertools-0.8.0/src/format.rs113
-rw-r--r--third_party/rust/itertools-0.8.0/src/free.rs236
-rw-r--r--third_party/rust/itertools-0.8.0/src/group_map.rs22
-rw-r--r--third_party/rust/itertools-0.8.0/src/groupbylazy.rs571
-rw-r--r--third_party/rust/itertools-0.8.0/src/impl_macros.rs14
-rw-r--r--third_party/rust/itertools-0.8.0/src/intersperse.rs60
-rw-r--r--third_party/rust/itertools-0.8.0/src/kmerge_impl.rs256
-rw-r--r--third_party/rust/itertools-0.8.0/src/lib.rs2176
-rw-r--r--third_party/rust/itertools-0.8.0/src/merge_join.rs87
-rw-r--r--third_party/rust/itertools-0.8.0/src/minmax.rs114
-rw-r--r--third_party/rust/itertools-0.8.0/src/multipeek_impl.rs104
-rw-r--r--third_party/rust/itertools-0.8.0/src/pad_tail.rs83
-rw-r--r--third_party/rust/itertools-0.8.0/src/peeking_take_while.rs149
-rw-r--r--third_party/rust/itertools-0.8.0/src/process_results_impl.rs81
-rw-r--r--third_party/rust/itertools-0.8.0/src/put_back_n_impl.rs63
-rw-r--r--third_party/rust/itertools-0.8.0/src/rciter_impl.rs98
-rw-r--r--third_party/rust/itertools-0.8.0/src/repeatn.rs54
-rw-r--r--third_party/rust/itertools-0.8.0/src/size_hint.rs104
-rw-r--r--third_party/rust/itertools-0.8.0/src/sources.rs190
-rw-r--r--third_party/rust/itertools-0.8.0/src/tee.rs78
-rw-r--r--third_party/rust/itertools-0.8.0/src/tuple_impl.rs266
-rw-r--r--third_party/rust/itertools-0.8.0/src/unique_impl.rs134
-rw-r--r--third_party/rust/itertools-0.8.0/src/with_position.rs90
-rw-r--r--third_party/rust/itertools-0.8.0/src/zip_eq_impl.rs60
-rw-r--r--third_party/rust/itertools-0.8.0/src/zip_longest.rs78
-rw-r--r--third_party/rust/itertools-0.8.0/src/ziptuple.rs111
-rw-r--r--third_party/rust/itertools-0.8.0/tests/merge_join.rs110
-rw-r--r--third_party/rust/itertools-0.8.0/tests/peeking_take_while.rs53
-rw-r--r--third_party/rust/itertools-0.8.0/tests/quick.rs1017
-rw-r--r--third_party/rust/itertools-0.8.0/tests/test_core.rs246
-rw-r--r--third_party/rust/itertools-0.8.0/tests/test_std.rs735
-rw-r--r--third_party/rust/itertools-0.8.0/tests/tuples.rs88
-rw-r--r--third_party/rust/itertools-0.8.0/tests/zip.rs65
53 files changed, 12008 insertions, 0 deletions
diff --git a/third_party/rust/itertools-0.8.0/.cargo-checksum.json b/third_party/rust/itertools-0.8.0/.cargo-checksum.json
new file mode 100644
index 0000000000..d7eca710e8
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/.cargo-checksum.json
@@ -0,0 +1 @@
+{"files":{"Cargo.toml":"a4dc734c8e5ac0e5b57ded98adeb9340621d5c586d196d423781d7ceab06538b","LICENSE-APACHE":"a60eea817514531668d7e00765731449fe14d059d3249e0bc93b36de45f759f2","LICENSE-MIT":"7576269ea71f767b99297934c0b2367532690f8c4badc695edf8e04ab6a1e545","README.rst":"9db27658be49c4d5501c6bb6fbed1dcc1e796c7d934757cf3e94eab14d241d1d","benches/bench1.rs":"9794e5377019e4cf8caee3e7bb30034cf8ac291a485e64407df321f3f33affa0","benches/extra/mod.rs":"4c5b03e74fc5b02383500c9da9fd6550262706ee569d70d085700f6d0b5749ba","benches/extra/zipslices.rs":"108dd488de366b2d83fb6bcc603ecbf9a017e165ac19d03440074fa244af3fb2","benches/tree_fold1.rs":"84cddbabb1a681f3196430a8e27b060103366143a3ee4c42c3b0628fc00a7543","benches/tuple_combinations.rs":"6a4b89eb2e45fa0c99e5e5942b3196b76998213c66c44b3765b869be42016a82","benches/tuples.rs":"412a952f08bb03695952d5cfd57949dcf28be8b99e3c6653994bdb8af9654653","examples/iris.data":"596ffd580471ca4d4880f8e439c7281f3b50d8249a5960353cb200b1490f63a0","examples/iris.rs":"3996ca0a62762aec2b102f0f4244fe90d4b4354286d68d80cdc40e35f4352ba3","src/adaptors/mod.rs":"11ef622421a5980a722a8cd2a732e9379470c1817d8b9c4bcde654c3e417b794","src/adaptors/multi_product.rs":"bb239555be38cde1f419bacfd09728f6ccaf51b6b4811c266b5677705175e685","src/combinations.rs":"a9a3fc78eb5c9f3933ff60275a635d0c81f4864a73515dc052aeb2add4ad4909","src/concat_impl.rs":"276339b00588f54c25f8ffbe0ae3c0031f7e52fb53c6578554a0bde1681b58a5","src/cons_tuples_impl.rs":"87c620d2ffdd3475218f5f493dbef601491be9f6cdfe57c44929449b32e6709f","src/diff.rs":"921e2b867d7b32ffedc72a5eb780811322d14d1e0883a608b9028a2afcad0df2","src/either_or_both.rs":"8ea6db74fa21535de45cb48ee7134495e8822a0fa181fdb646e081251ac9459f","src/format.rs":"412fbe02f12311c6fbcec1044f57ad6991783f5a3f323b9c391accfe4915106f","src/free.rs":"473d19906720eb2a1309c0505497658b1426f3ea0c845b40f41f3154194fff18","src/group_map.rs":"872d6e243e649ad30c94973c034596cc3377b10018e361bca07e11c612006de6","src/groupbylazy.rs":"a067a12671be9ae05a9152518103f39f7286fde09f758de8af75a1064a3b5567","src/impl_macros.rs":"eb0bb3f70ec1bcaffa6110ae4134c777951ed1e5f48d8c811dbf0a597dc48faa","src/intersperse.rs":"9c18f239654ebfcce1d68a0256d2df6d79a2b8c4fb5df87d67e2ebe04a07e1a9","src/kmerge_impl.rs":"51e71d3e76670a8efb16597a9224d2c9b40cee6bc6270d06b66aadafea6dc26b","src/lib.rs":"edac21e8bff7bc7695480022a33ded58916eb1c5ed43f5aa68a7c965b452af0b","src/merge_join.rs":"98e6fcc761a558ad21789efe041c3f90e62f6c75e05840670df45ad4f9b07e1f","src/minmax.rs":"4668a7f824fbc133599f43ffb6f7283e5bd603e07df2d8176abc6f25d6af9db0","src/multipeek_impl.rs":"ebe9544d94d0bf7200f7625241a3b5a291b7b564091a08cad40ff08b51f1b1bf","src/pad_tail.rs":"078615a2892f8c6db665074cf6f1be1bef4cf5ee418bc174edcfd4dc703e163f","src/peeking_take_while.rs":"6aea3bb40fb480e9f3695ce2a7a3a2e2346d437ca846d20e6bb3c09beb0934f4","src/process_results_impl.rs":"5f454cf62ceb82cab7c08c0c190de3ae083e219a8acc7a1a22f17eec9cfcd65c","src/put_back_n_impl.rs":"d35858184c525372b22d14d42cdf63726cf0fd50f5bd42ec7a82d55a8e180e9f","src/rciter_impl.rs":"8f51abc7e1ae3320cc5d56fadd66f880a7a06773be656bd8c4712357f01ae1d9","src/repeatn.rs":"4bd1782364b16105fbef3f3de7bf62780710e5c996db44a00e4b5f16c2625d86","src/size_hint.rs":"c1d35b422a696cf3d63e7c90d8f9fdf01a304cf8156e914287c4ef48fea62dd3","src/sources.rs":"cb6ebe06b05f7da0ac1073ba486c45afaeebf8b558c0f5499f0eacd2cd1785da","src/tee.rs":"59cf9ef0b41882307ea1e3503a2ff351f401f4c43d95acf423a990b0bf0e29ae","src/tuple_impl.rs":"0c7f907e85d2ef0661583b36c7b8a7341b8feadafe28d10539a211dff5c028ea","src/unique_impl.rs":"63db2d720ff5e3d9c0d6c2b245ffff25d4040e4fcbcb2a6524b0f912826f86af","src/with_position.rs":"d922f045f6fa090a431be928f3221c6dc37ac6f9bb54461b3b84f99a7e91244a","src/zip_eq_impl.rs":"f857c69120255db16ad6ddec628c79cb573b1d5179fcebab1906bf5b762c02e3","src/zip_longest.rs":"375325ef069970e6fb83c6097c2824877bb0f06e4f1e664e4fe681804abe003c","src/ziptuple.rs":"d7ae7d3c33185ad74ab2bba750ac337b5c236750cc8341dd9883faf6465712a1","tests/merge_join.rs":"546eaffae40010f15a7bcf95bc53f5e9b67424c5b93df6ffb0aaa1e48e8b90c0","tests/peeking_take_while.rs":"a2ae6474e09620a47bb8a6e3c62929261e72c52881370adb2d22e89aa9e9aec8","tests/quick.rs":"290d52047c66b5c493ff425cc527a476c55a150bc859709a8a8559f3f0a74274","tests/test_core.rs":"1a1c4c2dbb657e9ce5cd2bb0d6475cf965878e2a259b730ada9238c71c2a8d4f","tests/test_std.rs":"90d2794cbee64b3a5a1cb53193387e2d83d2b9bdf588edb506a7bf3c5191d2ec","tests/tuples.rs":"5323d15a7abf6545b2655167d3206b6cf6a947e9409a244ea6a8cf4ad8ceac64","tests/zip.rs":"fe213d70c4fa114cb4d1930a6b971f4af617a239041ddb87e6b5a9bbe62261b8"},"package":"5b8467d9c1cebe26feb08c640139247fac215782d35371ade9a2136ed6085358"} \ No newline at end of file
diff --git a/third_party/rust/itertools-0.8.0/Cargo.toml b/third_party/rust/itertools-0.8.0/Cargo.toml
new file mode 100644
index 0000000000..9141434fe4
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/Cargo.toml
@@ -0,0 +1,47 @@
+# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO
+#
+# When uploading crates to the registry Cargo will automatically
+# "normalize" Cargo.toml files for maximal compatibility
+# with all versions of Cargo and also rewrite `path` dependencies
+# to registry (e.g. crates.io) dependencies
+#
+# If you believe there's an error in this file please file an
+# issue against the rust-lang/cargo repository. If you're
+# editing this file be aware that the upstream Cargo.toml
+# will likely look very different (and much more reasonable)
+
+[package]
+name = "itertools"
+version = "0.8.0"
+authors = ["bluss"]
+exclude = ["/bors.toml"]
+description = "Extra iterator adaptors, iterator methods, free functions, and macros."
+documentation = "https://docs.rs/itertools/"
+keywords = ["iterator", "data-structure", "zip", "product", "group-by"]
+categories = ["algorithms", "rust-patterns"]
+license = "MIT/Apache-2.0"
+repository = "https://github.com/bluss/rust-itertools"
+[package.metadata.release]
+no-dev-version = true
+[profile.bench]
+debug = true
+
+[lib]
+test = false
+bench = false
+[dependencies.either]
+version = "1.0"
+default-features = false
+[dev-dependencies.permutohedron]
+version = "0.2"
+
+[dev-dependencies.quickcheck]
+version = "0.7"
+default-features = false
+
+[dev-dependencies.rand]
+version = "0.6"
+
+[features]
+default = ["use_std"]
+use_std = []
diff --git a/third_party/rust/itertools-0.8.0/LICENSE-APACHE b/third_party/rust/itertools-0.8.0/LICENSE-APACHE
new file mode 100644
index 0000000000..16fe87b06e
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/LICENSE-APACHE
@@ -0,0 +1,201 @@
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+
+TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+1. Definitions.
+
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+
+2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+
+3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+
+4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+
+5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+
+6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+
+7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+
+8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+
+9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+
+END OF TERMS AND CONDITIONS
+
+APPENDIX: How to apply the Apache License to your work.
+
+ To apply the Apache License to your work, attach the following
+ boilerplate notice, with the fields enclosed by brackets "[]"
+ replaced with your own identifying information. (Don't include
+ the brackets!) The text should be enclosed in the appropriate
+ comment syntax for the file format. We also recommend that a
+ file or class name and description of purpose be included on the
+ same "printed page" as the copyright notice for easier
+ identification within third-party archives.
+
+Copyright [yyyy] [name of copyright owner]
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
diff --git a/third_party/rust/itertools-0.8.0/LICENSE-MIT b/third_party/rust/itertools-0.8.0/LICENSE-MIT
new file mode 100644
index 0000000000..9203baa055
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/LICENSE-MIT
@@ -0,0 +1,25 @@
+Copyright (c) 2015
+
+Permission is hereby granted, free of charge, to any
+person obtaining a copy of this software and associated
+documentation files (the "Software"), to deal in the
+Software without restriction, including without
+limitation the rights to use, copy, modify, merge,
+publish, distribute, sublicense, and/or sell copies of
+the Software, and to permit persons to whom the Software
+is furnished to do so, subject to the following
+conditions:
+
+The above copyright notice and this permission notice
+shall be included in all copies or substantial portions
+of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
+ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
+TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
+PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
+SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
+IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+DEALINGS IN THE SOFTWARE.
diff --git a/third_party/rust/itertools-0.8.0/README.rst b/third_party/rust/itertools-0.8.0/README.rst
new file mode 100644
index 0000000000..b0ddda3c81
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/README.rst
@@ -0,0 +1,526 @@
+
+Itertools
+=========
+
+Extra iterator adaptors, functions and macros.
+
+Please read the `API documentation here`__
+
+__ https://docs.rs/itertools/
+
+|build_status|_ |crates|_
+
+.. |build_status| image:: https://travis-ci.org/bluss/rust-itertools.svg?branch=master
+.. _build_status: https://travis-ci.org/bluss/rust-itertools
+
+.. |crates| image:: http://meritbadge.herokuapp.com/itertools
+.. _crates: https://crates.io/crates/itertools
+
+How to use with cargo:
+
+.. code:: toml
+
+ [dependencies]
+ itertools = "0.8"
+
+How to use in your crate:
+
+.. code:: rust
+
+ #[macro_use] extern crate itertools;
+
+ use itertools::Itertools;
+
+How to contribute
+-----------------
+
+- Fix a bug or implement a new thing
+- Include tests for your new feature, preferably a quickcheck test
+- Make a Pull Request
+
+For new features, please first consider filing a PR to `rust-lang/rust <https://github.com/rust-lang/rust/>`_,
+adding your new feature to the `Iterator` trait of the standard library, if you believe it is reasonable.
+If it isn't accepted there, proposing it for inclusion in ``itertools`` is a good idea.
+The reason for doing is this is so that we avoid future breakage as with ``.flatten()``.
+However, if your feature involves heap allocation, such as storing elements in a ``Vec<T>``,
+then it can't be accepted into ``libcore``, and you should propose it for ``itertools`` directly instead.
+
+Recent Changes
+--------------
+
+- 0.8.0
+
+ - Added new adaptor ``.map_into()`` for conversions using ``Into`` by @vorner
+ - Improved ``Itertools`` docs by @JohnHeitmann
+ - The return type of ``.sorted/_by/_by_key()`` is now an iterator, not a Vec.
+ - The return type of the ``izip!(x, y)`` macro with exactly two arguments
+ is now the usual ``Iterator::zip``.
+ - Remove ``.flatten()`` in favour of std's ``.flatten()``
+ - Deprecate ``.foreach()`` in favour of std's ``.for_each()``
+ - Deprecate ``.step()`` in favour of std's ``.step_by()``
+ - Deprecate ``repeat_call`` in favour of std's ``repeat_with``
+ - Deprecate ``.fold_while()`` in favour of std's ``.try_fold()``
+ - Require Rust 1.24 as minimal version.
+
+- 0.7.11
+
+ - Add convenience methods to ``EitherOrBoth``, making it more similar to ``Option``
+ and ``Either`` by @jethrogb
+
+- 0.7.10
+
+ - No changes.
+
+- 0.7.9
+
+ - New inclusion policy: See the readme about suggesting features for std before
+ accepting them in itertools.
+ - The ``FoldWhile`` type now implements ``Eq`` and ``PartialEq`` by @jturner314
+
+- 0.7.8
+
+ - Add new iterator method ``.tree_fold1()`` which is like ``.fold1()``
+ except items are combined in a tree structure (see its docs).
+ By @scottmcm
+ - Add more ``Debug`` impls by @phimuemue: KMerge, KMergeBy, MergeJoinBy,
+ ConsTuples, Intersperse, ProcessResults, RcIter, Tee, TupleWindows, Tee,
+ ZipLongest, ZipEq, Zip.
+
+- 0.7.7
+
+ - Add new iterator method ``.into_group_map() -> HashMap<K, Vec<V>>``
+ which turns an iterator of ``(K, V)`` elements into such a hash table,
+ where values are grouped by key. By @tobz1000
+ - Add new free function ``flatten`` for the ``.flatten()`` adaptor.
+ **NOTE:** recent Rust nightlies have ``Iterator::flatten`` and thus a clash
+ with our flatten adaptor. One workaround is to use the itertools ``flatten``
+ free function.
+
+- 0.7.6
+
+ - Add new adaptor ``.multi_cartesian_product()`` which is an n-ary product
+ iterator by @tobz1000
+ - Add new method ``.sorted_by_key()`` by @Xion
+ - Provide simpler and faster ``.count()`` for ``.unique()`` and ``.unique_by()``
+
+- 0.7.5
+
+ - ``.multipeek()`` now implements ``PeekingNext``, by @nicopap.
+
+- 0.7.4
+
+ - Add new adaptor ``.update()`` by @lucasem; this adaptor is used
+ to modify an element before passing it on in an iterator chain.
+
+- 0.7.3
+
+ - Add new method ``.collect_tuple()`` by @matklad; it makes a tuple out of
+ the iterator's elements if the number of them matches **exactly**.
+ - Implement ``fold`` and ``collect`` for ``.map_results()`` which means
+ it reuses the code of the standard ``.map()`` for these methods.
+
+- 0.7.2
+
+ - Add new adaptor ``.merge_join_by`` by @srijs; a heterogeneous merge join
+ for two ordered sequences.
+
+- 0.7.1
+
+ - Iterator adaptors and iterators in itertools now use the same ``must_use``
+ reminder that the standard library adaptors do, by @matematikaedit and @bluss
+ *“iterator adaptors are lazy and do nothing unless consumed”*.
+
+- 0.7.0
+
+ - Faster ``izip!()`` by @krdln
+
+ - ``izip!()`` is now a wrapper for repeated regular ``.zip()`` and
+ a single ``.map()``. This means it optimizes as well as the standard
+ library ``.zip()`` it uses.
+ **Note:** ``multizip`` and ``izip!()`` are now different! The former
+ has a named type but the latter optimizes better.
+
+ - Faster ``.unique()``
+
+ - ``no_std`` support, which is opt-in!
+
+ - Many lovable features are still there without std, like ``izip!()``
+ or ``.format()`` or ``.merge()``, but not those that use collections.
+
+ - Trait bounds were required up front instead of just on the type:
+ ``group_by``'s ``PartialEq`` by @Phlosioneer and ``repeat_call``'s
+ ``FnMut``.
+ - Removed deprecated constructor ``Zip::new`` — use ``izip!()`` or ``multizip()``
+
+- 0.6.5
+
+ - Fix bug in ``.cartesian_product()``'s fold (which only was visible for
+ unfused iterators).
+
+- 0.6.4
+
+ - Add specific ``fold`` implementations for ``.cartesian_product()`` and
+ ``cons_tuples()``, which improves their performance in fold, foreach, and
+ iterator consumers derived from them.
+
+- 0.6.3
+
+ - Add iterator adaptor ``.positions(predicate)`` by @tmccombs
+
+- 0.6.2
+
+ - Add function ``process_results`` which can “lift” a function of the regular
+ values of an iterator so that it can process the ``Ok`` values from an
+ iterator of ``Results`` instead, by @shepmaster
+ - Add iterator method ``.concat()`` which combines all iterator elements
+ into a single collection using the ``Extend`` trait, by @srijs
+
+- 0.6.1
+
+ - Better size hint testing and subsequent size hint bugfixes by @rkarp.
+ Fixes bugs in product, interleave_shortest size hints.
+ - New iterator method ``.all_equal()`` by @phimuemue
+
+- 0.6.0
+
+ - Deprecated names were removed in favour of their replacements
+ - ``.flatten()`` does not implement double ended iteration anymore
+ - ``.fold_while()`` uses ``&mut self`` and returns ``FoldWhile<T>``, for
+ composability (#168)
+ - ``.foreach()`` and ``.fold1()`` use ``self``, like ``.fold()`` does.
+ - ``.combinations(0)`` now produces a single empty vector. (#174)
+
+- 0.5.10
+
+ - Add itertools method ``.kmerge_by()`` (and corresponding free function)
+ - Relaxed trait requirement of ``.kmerge()`` and ``.minmax()`` to PartialOrd.
+
+- 0.5.9
+
+ - Add multipeek method ``.reset_peek()``
+ - Add categories
+
+- 0.5.8
+
+ - Add iterator adaptor ``.peeking_take_while()`` and its trait ``PeekingNext``.
+
+- 0.5.7
+
+ - Add iterator adaptor ``.with_position()``
+ - Fix multipeek's performance for long peeks by using ``VecDeque``.
+
+- 0.5.6
+
+ - Add ``.map_results()``
+
+- 0.5.5
+
+ - Many more adaptors now implement ``Debug``
+ - Add free function constructor ``repeat_n``. ``RepeatN::new`` is now
+ deprecated.
+
+- 0.5.4
+
+ - Add infinite generator function ``iterate``, that takes a seed and a
+ closure.
+
+- 0.5.3
+
+ - Special-cased ``.fold()`` for flatten and put back. ``.foreach()``
+ now uses fold on the iterator, to pick up any iterator specific loop
+ implementation.
+ - ``.combinations(n)`` asserts up front that ``n != 0``, instead of
+ running into an error on the second iterator element.
+
+- 0.5.2
+
+ - Add ``.tuples::<T>()`` that iterates by two, three or four elements at
+ a time (where ``T`` is a tuple type).
+ - Add ``.tuple_windows::<T>()`` that iterates using a window of the
+ two, three or four most recent elements.
+ - Add ``.next_tuple::<T>()`` method, that picks the next two, three or four
+ elements in one go.
+ - ``.interleave()`` now has an accurate size hint.
+
+- 0.5.1
+
+ - Workaround module/function name clash that made racer crash on completing
+ itertools. Only internal changes needed.
+
+- 0.5.0
+
+ - `Release announcement <http://bluss.github.io/rust/2016/09/26/itertools-0.5.0/>`_
+ - Renamed:
+
+ - combinations is now tuple_combinations
+ - combinations_n to combinations
+ - group_by_lazy, chunks_lazy to group_by, chunks
+ - Unfold::new to unfold()
+ - RepeatCall::new to repeat_call()
+ - Zip::new to multizip
+ - PutBack::new, PutBackN::new to put_back, put_back_n
+ - PutBack::with_value is now a builder setter, not a constructor
+ - MultiPeek::new, .multipeek() to multipeek()
+ - format to format_with and format_default to format
+ - .into_rc() to rciter
+ - ``Partition`` enum is now ``Either``
+
+ - Module reorganization:
+
+ - All iterator structs are under ``itertools::structs`` but also
+ reexported to the top level, for backwards compatibility
+ - All free functions are reexported at the root, ``itertools::free`` will
+ be removed in the next version
+
+ - Removed:
+
+ - ZipSlices, use .zip() instead
+ - .enumerate_from(), ZipTrusted, due to being unstable
+ - .mend_slices(), moved to crate odds
+ - Stride, StrideMut, moved to crate odds
+ - linspace(), moved to crate itertools-num
+ - .sort_by(), use .sorted_by()
+ - .is_empty_hint(), use .size_hint()
+ - .dropn(), use .dropping()
+ - .map_fn(), use .map()
+ - .slice(), use .take() / .skip()
+ - helper traits in misc
+ - ``new`` constructors on iterator structs, use Itertools trait or free
+ functions instead
+ - ``itertools::size_hint`` is now private
+
+ - Behaviour changes:
+
+ - format and format_with helpers now panic if you try to format them more
+ than once.
+ - ``repeat_call`` is not double ended anymore
+
+ - New features:
+
+ - tuple flattening iterator is constructible with ``cons_tuples``
+ - itertools reexports ``Either`` from the ``either`` crate. ``Either<L, R>``
+ is an iterator when ``L, R`` are.
+ - ``MinMaxResult`` now implements Copy and Clone
+ - tuple_combinations supports 1-4 tuples of combinations (previously just 2)
+
+- 0.4.19
+
+ - Add ``.minmax_by()``
+ - Add ``itertools::free::cloned``
+ - Add ``itertools::free::rciter``
+ - Improve ``.step(n)`` slightly to take advantage of specialized Fuse better.
+
+- 0.4.18
+
+ - Only changes related to the "unstable" crate feature. This feature is more
+ or less deprecated.
+
+ - Use deprecated warnings when unstable is enabled. .enumerate_from() will
+ be removed imminently since it's using a deprecated libstd trait.
+
+- 0.4.17
+
+ - Fix bug in .kmerge() that caused it to often produce the wrong order (#134)
+
+- 0.4.16
+
+ - Improve precision of the interleave_shortest adaptor's size hint (it is
+ now computed exactly when possible).
+
+- 0.4.15
+
+ - Fixup on top of the workaround in 0.4.14. A function in itertools::free was
+ removed by mistake and now it is added back again.
+
+- 0.4.14
+
+ - Workaround an upstream regression in a rust nightly build that broke
+ compilation of of itertools::free::{interleave, merge}
+
+- 0.4.13
+
+ - Add .minmax() and .minmax_by_key(), iterator methods for finding both minimum
+ and maximum in one scan.
+ - Add .format_default(), a simpler version of .format() (lazy formatting
+ for iterators).
+
+- 0.4.12
+
+ - Add .zip_eq(), an adaptor like .zip() except it ensures iterators
+ of inequal length don't pass silently (instead it panics).
+ - Add .fold_while(), an iterator method that is a fold that
+ can short-circuit.
+ - Add .partition_map(), an iterator method that can separate elements
+ into two collections.
+
+- 0.4.11
+
+ - Add .get() for Stride{,Mut} and .get_mut() for StrideMut
+
+- 0.4.10
+
+ - Improve performance of .kmerge()
+
+- 0.4.9
+
+ - Add k-ary merge adaptor .kmerge()
+ - Fix a bug in .islice() with ranges a..b where a > b.
+
+- 0.4.8
+
+ - Implement Clone, Debug for Linspace
+
+- 0.4.7
+
+ - Add function diff_with() that compares two iterators
+ - Add .combinations_n(), an n-ary combinations iterator
+ - Add methods PutBack::with_value and PutBack::into_parts.
+
+- 0.4.6
+
+ - Add method .sorted()
+ - Add module ``itertools::free`` with free function variants of common
+ iterator adaptors and methods.
+ For example ``enumerate(iterable)``, ``rev(iterable)``, and so on.
+
+- 0.4.5
+
+ - Add .flatten()
+
+- 0.4.4
+
+ - Allow composing ZipSlices with itself
+
+- 0.4.3
+
+ - Write iproduct!() as a single expression; this allows temporary values
+ in its arguments.
+
+- 0.4.2
+
+ - Add .fold_options()
+ - Require Rust 1.1 or later
+
+- 0.4.1
+
+ - Update .dropping() to take advantage of .nth()
+
+- 0.4.0
+
+ - .merge(), .unique() and .dedup() now perform better due to not using
+ function pointers
+ - Add free functions enumerate() and rev()
+ - Breaking changes:
+
+ - Return types of .merge() and .merge_by() renamed and changed
+ - Method Merge::new removed
+ - .merge_by() now takes a closure that returns bool.
+ - Return type of .dedup() changed
+ - Return type of .mend_slices() changed
+ - Return type of .unique() changed
+ - Removed function times(), struct Times: use a range instead
+ - Removed deprecated macro icompr!()
+ - Removed deprecated FnMap and method .fn_map(): use .map_fn()
+ - .interleave_shortest() is no longer guaranteed to act like fused
+
+- 0.3.25
+
+ - Rename .sort_by() to .sorted_by(). Old name is deprecated.
+ - Fix well-formedness warnings from RFC 1214, no user visible impact
+
+- 0.3.24
+
+ - Improve performance of .merge()'s ordering function slightly
+
+- 0.3.23
+
+ - Added .chunks(), similar to (and based on) .group_by_lazy().
+ - Tweak linspace to match numpy.linspace and make it double ended.
+
+- 0.3.22
+
+ - Added ZipSlices, a fast zip for slices
+
+- 0.3.21
+
+ - Remove `Debug` impl for `Format`, it will have different use later
+
+- 0.3.20
+
+ - Optimize .group_by_lazy()
+
+- 0.3.19
+
+ - Added .group_by_lazy(), a possibly nonallocating group by
+ - Added .format(), a nonallocating formatting helper for iterators
+ - Remove uses of RandomAccessIterator since it has been deprecated in rust.
+
+- 0.3.17
+
+ - Added (adopted) Unfold from rust
+
+- 0.3.16
+
+ - Added adaptors .unique(), .unique_by()
+
+- 0.3.15
+
+ - Added method .sort_by()
+
+- 0.3.14
+
+ - Added adaptor .while_some()
+
+- 0.3.13
+
+ - Added adaptor .interleave_shortest()
+ - Added adaptor .pad_using()
+
+- 0.3.11
+
+ - Added assert_equal function
+
+- 0.3.10
+
+ - Bugfix .combinations() size_hint.
+
+- 0.3.8
+
+ - Added source RepeatCall
+
+- 0.3.7
+
+ - Added adaptor PutBackN
+ - Added adaptor .combinations()
+
+- 0.3.6
+
+ - Added itertools::partition, partition a sequence in place based on a predicate.
+ - Deprecate icompr!() with no replacement.
+
+- 0.3.5
+
+ - .map_fn() replaces deprecated .fn_map().
+
+- 0.3.4
+
+ - .take_while_ref() *by-ref adaptor*
+ - .coalesce() *adaptor*
+ - .mend_slices() *adaptor*
+
+- 0.3.3
+
+ - .dropping_back() *method*
+ - .fold1() *method*
+ - .is_empty_hint() *method*
+
+License
+-------
+
+Dual-licensed to be compatible with the Rust project.
+
+Licensed under the Apache License, Version 2.0
+http://www.apache.org/licenses/LICENSE-2.0 or the MIT license
+http://opensource.org/licenses/MIT, at your
+option. This file may not be copied, modified, or distributed
+except according to those terms.
diff --git a/third_party/rust/itertools-0.8.0/benches/bench1.rs b/third_party/rust/itertools-0.8.0/benches/bench1.rs
new file mode 100644
index 0000000000..b9d3b4ff4b
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/benches/bench1.rs
@@ -0,0 +1,733 @@
+#![feature(test)]
+
+extern crate test;
+#[macro_use] extern crate itertools;
+
+use test::{black_box};
+use itertools::Itertools;
+
+use itertools::free::cloned;
+
+use std::iter::repeat;
+use std::cmp;
+use std::ops::Add;
+
+mod extra;
+
+use extra::ZipSlices;
+
+#[bench]
+fn slice_iter(b: &mut test::Bencher)
+{
+ let xs: Vec<_> = repeat(1i32).take(20).collect();
+ b.iter(|| for elt in xs.iter() {
+ test::black_box(elt);
+ })
+}
+
+#[bench]
+fn slice_iter_rev(b: &mut test::Bencher)
+{
+ let xs: Vec<_> = repeat(1i32).take(20).collect();
+ b.iter(|| for elt in xs.iter().rev() {
+ test::black_box(elt);
+ })
+}
+
+#[bench]
+fn zip_default_zip(b: &mut test::Bencher)
+{
+ let xs = vec![0; 1024];
+ let ys = vec![0; 768];
+ let xs = black_box(xs);
+ let ys = black_box(ys);
+
+ b.iter(|| {
+ for (&x, &y) in xs.iter().zip(&ys) {
+ test::black_box(x);
+ test::black_box(y);
+ }
+ })
+}
+
+#[bench]
+fn zipdot_i32_default_zip(b: &mut test::Bencher)
+{
+ let xs = vec![2; 1024];
+ let ys = vec![2; 768];
+ let xs = black_box(xs);
+ let ys = black_box(ys);
+
+ b.iter(|| {
+ let mut s = 0;
+ for (&x, &y) in xs.iter().zip(&ys) {
+ s += x * y;
+ }
+ s
+ })
+}
+
+#[bench]
+fn zipdot_f32_default_zip(b: &mut test::Bencher)
+{
+ let xs = vec![2f32; 1024];
+ let ys = vec![2f32; 768];
+ let xs = black_box(xs);
+ let ys = black_box(ys);
+
+ b.iter(|| {
+ let mut s = 0.;
+ for (&x, &y) in xs.iter().zip(&ys) {
+ s += x * y;
+ }
+ s
+ })
+}
+
+#[bench]
+fn zip_default_zip3(b: &mut test::Bencher)
+{
+ let xs = vec![0; 1024];
+ let ys = vec![0; 768];
+ let zs = vec![0; 766];
+ let xs = black_box(xs);
+ let ys = black_box(ys);
+ let zs = black_box(zs);
+
+ b.iter(|| {
+ for ((&x, &y), &z) in xs.iter().zip(&ys).zip(&zs) {
+ test::black_box(x);
+ test::black_box(y);
+ test::black_box(z);
+ }
+ })
+}
+
+#[bench]
+fn zip_slices_ziptuple(b: &mut test::Bencher)
+{
+ let xs = vec![0; 1024];
+ let ys = vec![0; 768];
+
+ b.iter(|| {
+ let xs = black_box(&xs);
+ let ys = black_box(&ys);
+ for (&x, &y) in itertools::multizip((xs, ys)) {
+ test::black_box(x);
+ test::black_box(y);
+ }
+ })
+}
+
+#[bench]
+fn zipslices(b: &mut test::Bencher)
+{
+ let xs = vec![0; 1024];
+ let ys = vec![0; 768];
+ let xs = black_box(xs);
+ let ys = black_box(ys);
+
+ b.iter(|| {
+ for (&x, &y) in ZipSlices::new(&xs, &ys) {
+ test::black_box(x);
+ test::black_box(y);
+ }
+ })
+}
+
+#[bench]
+fn zipslices_mut(b: &mut test::Bencher)
+{
+ let xs = vec![0; 1024];
+ let ys = vec![0; 768];
+ let xs = black_box(xs);
+ let mut ys = black_box(ys);
+
+ b.iter(|| {
+ for (&x, &mut y) in ZipSlices::from_slices(&xs[..], &mut ys[..]) {
+ test::black_box(x);
+ test::black_box(y);
+ }
+ })
+}
+
+#[bench]
+fn zipdot_i32_zipslices(b: &mut test::Bencher)
+{
+ let xs = vec![2; 1024];
+ let ys = vec![2; 768];
+ let xs = black_box(xs);
+ let ys = black_box(ys);
+
+ b.iter(|| {
+ let mut s = 0i32;
+ for (&x, &y) in ZipSlices::new(&xs, &ys) {
+ s += x * y;
+ }
+ s
+ })
+}
+
+#[bench]
+fn zipdot_f32_zipslices(b: &mut test::Bencher)
+{
+ let xs = vec![2f32; 1024];
+ let ys = vec![2f32; 768];
+ let xs = black_box(xs);
+ let ys = black_box(ys);
+
+ b.iter(|| {
+ let mut s = 0.;
+ for (&x, &y) in ZipSlices::new(&xs, &ys) {
+ s += x * y;
+ }
+ s
+ })
+}
+
+
+#[bench]
+fn zip_checked_counted_loop(b: &mut test::Bencher)
+{
+ let xs = vec![0; 1024];
+ let ys = vec![0; 768];
+ let xs = black_box(xs);
+ let ys = black_box(ys);
+
+ b.iter(|| {
+ // Must slice to equal lengths, and then bounds checks are eliminated!
+ let len = cmp::min(xs.len(), ys.len());
+ let xs = &xs[..len];
+ let ys = &ys[..len];
+
+ for i in 0..len {
+ let x = xs[i];
+ let y = ys[i];
+ test::black_box(x);
+ test::black_box(y);
+ }
+ })
+}
+
+#[bench]
+fn zipdot_i32_checked_counted_loop(b: &mut test::Bencher)
+{
+ let xs = vec![2; 1024];
+ let ys = vec![2; 768];
+ let xs = black_box(xs);
+ let ys = black_box(ys);
+
+ b.iter(|| {
+ // Must slice to equal lengths, and then bounds checks are eliminated!
+ let len = cmp::min(xs.len(), ys.len());
+ let xs = &xs[..len];
+ let ys = &ys[..len];
+
+ let mut s = 0i32;
+
+ for i in 0..len {
+ s += xs[i] * ys[i];
+ }
+ s
+ })
+}
+
+#[bench]
+fn zipdot_f32_checked_counted_loop(b: &mut test::Bencher)
+{
+ let xs = vec![2f32; 1024];
+ let ys = vec![2f32; 768];
+ let xs = black_box(xs);
+ let ys = black_box(ys);
+
+ b.iter(|| {
+ // Must slice to equal lengths, and then bounds checks are eliminated!
+ let len = cmp::min(xs.len(), ys.len());
+ let xs = &xs[..len];
+ let ys = &ys[..len];
+
+ let mut s = 0.;
+
+ for i in 0..len {
+ s += xs[i] * ys[i];
+ }
+ s
+ })
+}
+
+#[bench]
+fn zipdot_f32_checked_counted_unrolled_loop(b: &mut test::Bencher)
+{
+ let xs = vec![2f32; 1024];
+ let ys = vec![2f32; 768];
+ let xs = black_box(xs);
+ let ys = black_box(ys);
+
+ b.iter(|| {
+ // Must slice to equal lengths, and then bounds checks are eliminated!
+ let len = cmp::min(xs.len(), ys.len());
+ let mut xs = &xs[..len];
+ let mut ys = &ys[..len];
+
+ let mut s = 0.;
+ let (mut p0, mut p1, mut p2, mut p3, mut p4, mut p5, mut p6, mut p7) =
+ (0., 0., 0., 0., 0., 0., 0., 0.);
+
+ // how to unroll and have bounds checks eliminated (by cristicbz)
+ // split sum into eight parts to enable vectorization (by bluss)
+ while xs.len() >= 8 {
+ p0 += xs[0] * ys[0];
+ p1 += xs[1] * ys[1];
+ p2 += xs[2] * ys[2];
+ p3 += xs[3] * ys[3];
+ p4 += xs[4] * ys[4];
+ p5 += xs[5] * ys[5];
+ p6 += xs[6] * ys[6];
+ p7 += xs[7] * ys[7];
+
+ xs = &xs[8..];
+ ys = &ys[8..];
+ }
+ s += p0 + p4;
+ s += p1 + p5;
+ s += p2 + p6;
+ s += p3 + p7;
+
+ for i in 0..xs.len() {
+ s += xs[i] * ys[i];
+ }
+ s
+ })
+}
+
+#[bench]
+fn zip_unchecked_counted_loop(b: &mut test::Bencher)
+{
+ let xs = vec![0; 1024];
+ let ys = vec![0; 768];
+ let xs = black_box(xs);
+ let ys = black_box(ys);
+
+ b.iter(|| {
+ let len = cmp::min(xs.len(), ys.len());
+ for i in 0..len {
+ unsafe {
+ let x = *xs.get_unchecked(i);
+ let y = *ys.get_unchecked(i);
+ test::black_box(x);
+ test::black_box(y);
+ }
+ }
+ })
+}
+
+#[bench]
+fn zipdot_i32_unchecked_counted_loop(b: &mut test::Bencher)
+{
+ let xs = vec![2; 1024];
+ let ys = vec![2; 768];
+ let xs = black_box(xs);
+ let ys = black_box(ys);
+
+ b.iter(|| {
+ let len = cmp::min(xs.len(), ys.len());
+ let mut s = 0i32;
+ for i in 0..len {
+ unsafe {
+ let x = *xs.get_unchecked(i);
+ let y = *ys.get_unchecked(i);
+ s += x * y;
+ }
+ }
+ s
+ })
+}
+
+#[bench]
+fn zipdot_f32_unchecked_counted_loop(b: &mut test::Bencher)
+{
+ let xs = vec![2.; 1024];
+ let ys = vec![2.; 768];
+ let xs = black_box(xs);
+ let ys = black_box(ys);
+
+ b.iter(|| {
+ let len = cmp::min(xs.len(), ys.len());
+ let mut s = 0f32;
+ for i in 0..len {
+ unsafe {
+ let x = *xs.get_unchecked(i);
+ let y = *ys.get_unchecked(i);
+ s += x * y;
+ }
+ }
+ s
+ })
+}
+
+#[bench]
+fn zip_unchecked_counted_loop3(b: &mut test::Bencher)
+{
+ let xs = vec![0; 1024];
+ let ys = vec![0; 768];
+ let zs = vec![0; 766];
+ let xs = black_box(xs);
+ let ys = black_box(ys);
+ let zs = black_box(zs);
+
+ b.iter(|| {
+ let len = cmp::min(xs.len(), cmp::min(ys.len(), zs.len()));
+ for i in 0..len {
+ unsafe {
+ let x = *xs.get_unchecked(i);
+ let y = *ys.get_unchecked(i);
+ let z = *zs.get_unchecked(i);
+ test::black_box(x);
+ test::black_box(y);
+ test::black_box(z);
+ }
+ }
+ })
+}
+
+#[bench]
+fn group_by_lazy_1(b: &mut test::Bencher) {
+ let mut data = vec![0; 1024];
+ for (index, elt) in data.iter_mut().enumerate() {
+ *elt = index / 10;
+ }
+
+ let data = test::black_box(data);
+
+ b.iter(|| {
+ for (_key, group) in &data.iter().group_by(|elt| **elt) {
+ for elt in group {
+ test::black_box(elt);
+ }
+ }
+ })
+}
+
+#[bench]
+fn group_by_lazy_2(b: &mut test::Bencher) {
+ let mut data = vec![0; 1024];
+ for (index, elt) in data.iter_mut().enumerate() {
+ *elt = index / 2;
+ }
+
+ let data = test::black_box(data);
+
+ b.iter(|| {
+ for (_key, group) in &data.iter().group_by(|elt| **elt) {
+ for elt in group {
+ test::black_box(elt);
+ }
+ }
+ })
+}
+
+#[bench]
+fn slice_chunks(b: &mut test::Bencher) {
+ let data = vec![0; 1024];
+
+ let data = test::black_box(data);
+ let sz = test::black_box(10);
+
+ b.iter(|| {
+ for group in data.chunks(sz) {
+ for elt in group {
+ test::black_box(elt);
+ }
+ }
+ })
+}
+
+#[bench]
+fn chunks_lazy_1(b: &mut test::Bencher) {
+ let data = vec![0; 1024];
+
+ let data = test::black_box(data);
+ let sz = test::black_box(10);
+
+ b.iter(|| {
+ for group in &data.iter().chunks(sz) {
+ for elt in group {
+ test::black_box(elt);
+ }
+ }
+ })
+}
+
+#[bench]
+fn equal(b: &mut test::Bencher) {
+ let data = vec![7; 1024];
+ let l = data.len();
+ let alpha = test::black_box(&data[1..]);
+ let beta = test::black_box(&data[..l - 1]);
+ b.iter(|| {
+ itertools::equal(alpha, beta)
+ })
+}
+
+#[bench]
+fn merge_default(b: &mut test::Bencher) {
+ let mut data1 = vec![0; 1024];
+ let mut data2 = vec![0; 800];
+ let mut x = 0;
+ for (_, elt) in data1.iter_mut().enumerate() {
+ *elt = x;
+ x += 1;
+ }
+
+ let mut y = 0;
+ for (i, elt) in data2.iter_mut().enumerate() {
+ *elt += y;
+ if i % 3 == 0 {
+ y += 3;
+ } else {
+ y += 0;
+ }
+ }
+ let data1 = test::black_box(data1);
+ let data2 = test::black_box(data2);
+ b.iter(|| {
+ data1.iter().merge(&data2).count()
+ })
+}
+
+#[bench]
+fn merge_by_cmp(b: &mut test::Bencher) {
+ let mut data1 = vec![0; 1024];
+ let mut data2 = vec![0; 800];
+ let mut x = 0;
+ for (_, elt) in data1.iter_mut().enumerate() {
+ *elt = x;
+ x += 1;
+ }
+
+ let mut y = 0;
+ for (i, elt) in data2.iter_mut().enumerate() {
+ *elt += y;
+ if i % 3 == 0 {
+ y += 3;
+ } else {
+ y += 0;
+ }
+ }
+ let data1 = test::black_box(data1);
+ let data2 = test::black_box(data2);
+ b.iter(|| {
+ data1.iter().merge_by(&data2, PartialOrd::le).count()
+ })
+}
+
+#[bench]
+fn merge_by_lt(b: &mut test::Bencher) {
+ let mut data1 = vec![0; 1024];
+ let mut data2 = vec![0; 800];
+ let mut x = 0;
+ for (_, elt) in data1.iter_mut().enumerate() {
+ *elt = x;
+ x += 1;
+ }
+
+ let mut y = 0;
+ for (i, elt) in data2.iter_mut().enumerate() {
+ *elt += y;
+ if i % 3 == 0 {
+ y += 3;
+ } else {
+ y += 0;
+ }
+ }
+ let data1 = test::black_box(data1);
+ let data2 = test::black_box(data2);
+ b.iter(|| {
+ data1.iter().merge_by(&data2, |a, b| a <= b).count()
+ })
+}
+
+#[bench]
+fn kmerge_default(b: &mut test::Bencher) {
+ let mut data1 = vec![0; 1024];
+ let mut data2 = vec![0; 800];
+ let mut x = 0;
+ for (_, elt) in data1.iter_mut().enumerate() {
+ *elt = x;
+ x += 1;
+ }
+
+ let mut y = 0;
+ for (i, elt) in data2.iter_mut().enumerate() {
+ *elt += y;
+ if i % 3 == 0 {
+ y += 3;
+ } else {
+ y += 0;
+ }
+ }
+ let data1 = test::black_box(data1);
+ let data2 = test::black_box(data2);
+ let its = &[data1.iter(), data2.iter()];
+ b.iter(|| {
+ its.iter().cloned().kmerge().count()
+ })
+}
+
+#[bench]
+fn kmerge_tenway(b: &mut test::Bencher) {
+ let mut data = vec![0; 10240];
+
+ let mut state = 1729u16;
+ fn rng(state: &mut u16) -> u16 {
+ let new = state.wrapping_mul(31421) + 6927;
+ *state = new;
+ new
+ }
+
+ for elt in &mut data {
+ *elt = rng(&mut state);
+ }
+
+ let mut chunks = Vec::new();
+ let mut rest = &mut data[..];
+ while rest.len() > 0 {
+ let chunk_len = 1 + rng(&mut state) % 512;
+ let chunk_len = cmp::min(rest.len(), chunk_len as usize);
+ let (fst, tail) = {rest}.split_at_mut(chunk_len);
+ fst.sort();
+ chunks.push(fst.iter().cloned());
+ rest = tail;
+ }
+
+ // println!("Chunk lengths: {}", chunks.iter().format_with(", ", |elt, f| f(&elt.len())));
+
+ b.iter(|| {
+ chunks.iter().cloned().kmerge().count()
+ })
+}
+
+
+fn fast_integer_sum<I>(iter: I) -> I::Item
+ where I: IntoIterator,
+ I::Item: Default + Add<Output=I::Item>
+{
+ iter.into_iter().fold(<_>::default(), |x, y| x + y)
+}
+
+
+#[bench]
+fn step_vec_2(b: &mut test::Bencher) {
+ let v = vec![0; 1024];
+ b.iter(|| {
+ fast_integer_sum(cloned(v.iter().step(2)))
+ });
+}
+
+#[bench]
+fn step_vec_10(b: &mut test::Bencher) {
+ let v = vec![0; 1024];
+ b.iter(|| {
+ fast_integer_sum(cloned(v.iter().step(10)))
+ });
+}
+
+#[bench]
+fn step_range_2(b: &mut test::Bencher) {
+ let v = black_box(0..1024);
+ b.iter(|| {
+ fast_integer_sum(v.clone().step(2))
+ });
+}
+
+#[bench]
+fn step_range_10(b: &mut test::Bencher) {
+ let v = black_box(0..1024);
+ b.iter(|| {
+ fast_integer_sum(v.clone().step(10))
+ });
+}
+
+#[bench]
+fn cartesian_product_iterator(b: &mut test::Bencher)
+{
+ let xs = vec![0; 16];
+
+ b.iter(|| {
+ let mut sum = 0;
+ for (&x, &y, &z) in iproduct!(&xs, &xs, &xs) {
+ sum += x;
+ sum += y;
+ sum += z;
+ }
+ sum
+ })
+}
+
+#[bench]
+fn cartesian_product_fold(b: &mut test::Bencher)
+{
+ let xs = vec![0; 16];
+
+ b.iter(|| {
+ let mut sum = 0;
+ iproduct!(&xs, &xs, &xs).fold((), |(), (&x, &y, &z)| {
+ sum += x;
+ sum += y;
+ sum += z;
+ });
+ sum
+ })
+}
+
+#[bench]
+fn multi_cartesian_product_iterator(b: &mut test::Bencher)
+{
+ let xs = [vec![0; 16], vec![0; 16], vec![0; 16]];
+
+ b.iter(|| {
+ let mut sum = 0;
+ for x in xs.into_iter().multi_cartesian_product() {
+ sum += x[0];
+ sum += x[1];
+ sum += x[2];
+ }
+ sum
+ })
+}
+
+#[bench]
+fn multi_cartesian_product_fold(b: &mut test::Bencher)
+{
+ let xs = [vec![0; 16], vec![0; 16], vec![0; 16]];
+
+ b.iter(|| {
+ let mut sum = 0;
+ xs.into_iter().multi_cartesian_product().fold((), |(), x| {
+ sum += x[0];
+ sum += x[1];
+ sum += x[2];
+ });
+ sum
+ })
+}
+
+#[bench]
+fn cartesian_product_nested_for(b: &mut test::Bencher)
+{
+ let xs = vec![0; 16];
+
+ b.iter(|| {
+ let mut sum = 0;
+ for &x in &xs {
+ for &y in &xs {
+ for &z in &xs {
+ sum += x;
+ sum += y;
+ sum += z;
+ }
+ }
+ }
+ sum
+ })
+}
diff --git a/third_party/rust/itertools-0.8.0/benches/extra/mod.rs b/third_party/rust/itertools-0.8.0/benches/extra/mod.rs
new file mode 100644
index 0000000000..5ddb5772f4
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/benches/extra/mod.rs
@@ -0,0 +1,4 @@
+
+
+pub use self::zipslices::ZipSlices;
+mod zipslices;
diff --git a/third_party/rust/itertools-0.8.0/benches/extra/zipslices.rs b/third_party/rust/itertools-0.8.0/benches/extra/zipslices.rs
new file mode 100644
index 0000000000..493a539fd6
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/benches/extra/zipslices.rs
@@ -0,0 +1,189 @@
+use std::cmp;
+
+// Note: There are different ways to implement ZipSlices.
+// This version performed the best in benchmarks.
+//
+// I also implemented a version with three pointes (tptr, tend, uptr),
+// that mimiced slice::Iter and only checked bounds by using tptr == tend,
+// but that was inferior to this solution.
+
+/// An iterator which iterates two slices simultaneously.
+///
+/// `ZipSlices` acts like a double-ended `.zip()` iterator.
+///
+/// It was intended to be more efficient than `.zip()`, and it was, then
+/// rustc changed how it optimizes so it can not promise improved performance
+/// at this time.
+///
+/// Note that elements past the end of the shortest of the two slices are ignored.
+///
+/// Iterator element type for `ZipSlices<T, U>` is `(T::Item, U::Item)`. For example,
+/// for a `ZipSlices<&'a [A], &'b mut [B]>`, the element type is `(&'a A, &'b mut B)`.
+#[derive(Clone)]
+pub struct ZipSlices<T, U> {
+ t: T,
+ u: U,
+ len: usize,
+ index: usize,
+}
+
+impl<'a, 'b, A, B> ZipSlices<&'a [A], &'b [B]> {
+ /// Create a new `ZipSlices` from slices `a` and `b`.
+ ///
+ /// Act like a double-ended `.zip()` iterator, but more efficiently.
+ ///
+ /// Note that elements past the end of the shortest of the two slices are ignored.
+ #[inline(always)]
+ pub fn new(a: &'a [A], b: &'b [B]) -> Self {
+ let minl = cmp::min(a.len(), b.len());
+ ZipSlices {
+ t: a,
+ u: b,
+ len: minl,
+ index: 0,
+ }
+ }
+}
+
+impl<T, U> ZipSlices<T, U>
+ where T: Slice,
+ U: Slice
+{
+ /// Create a new `ZipSlices` from slices `a` and `b`.
+ ///
+ /// Act like a double-ended `.zip()` iterator, but more efficiently.
+ ///
+ /// Note that elements past the end of the shortest of the two slices are ignored.
+ #[inline(always)]
+ pub fn from_slices(a: T, b: U) -> Self {
+ let minl = cmp::min(a.len(), b.len());
+ ZipSlices {
+ t: a,
+ u: b,
+ len: minl,
+ index: 0,
+ }
+ }
+}
+
+impl<T, U> Iterator for ZipSlices<T, U>
+ where T: Slice,
+ U: Slice
+{
+ type Item = (T::Item, U::Item);
+
+ #[inline(always)]
+ fn next(&mut self) -> Option<Self::Item> {
+ unsafe {
+ if self.index >= self.len {
+ None
+ } else {
+ let i = self.index;
+ self.index += 1;
+ Some((
+ self.t.get_unchecked(i),
+ self.u.get_unchecked(i)))
+ }
+ }
+ }
+
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ let len = self.len - self.index;
+ (len, Some(len))
+ }
+}
+
+impl<T, U> DoubleEndedIterator for ZipSlices<T, U>
+ where T: Slice,
+ U: Slice
+{
+ #[inline(always)]
+ fn next_back(&mut self) -> Option<Self::Item> {
+ unsafe {
+ if self.index >= self.len {
+ None
+ } else {
+ self.len -= 1;
+ let i = self.len;
+ Some((
+ self.t.get_unchecked(i),
+ self.u.get_unchecked(i)))
+ }
+ }
+ }
+}
+
+impl<T, U> ExactSizeIterator for ZipSlices<T, U>
+ where T: Slice,
+ U: Slice
+{}
+
+unsafe impl<T, U> Slice for ZipSlices<T, U>
+ where T: Slice,
+ U: Slice
+{
+ type Item = (T::Item, U::Item);
+
+ fn len(&self) -> usize {
+ self.len - self.index
+ }
+
+ unsafe fn get_unchecked(&mut self, i: usize) -> Self::Item {
+ (self.t.get_unchecked(i),
+ self.u.get_unchecked(i))
+ }
+}
+
+/// A helper trait to let `ZipSlices` accept both `&[T]` and `&mut [T]`.
+///
+/// Unsafe trait because:
+///
+/// - Implementors must guarantee that `get_unchecked` is valid for all indices `0..len()`.
+pub unsafe trait Slice {
+ /// The type of a reference to the slice's elements
+ type Item;
+ #[doc(hidden)]
+ fn len(&self) -> usize;
+ #[doc(hidden)]
+ unsafe fn get_unchecked(&mut self, i: usize) -> Self::Item;
+}
+
+unsafe impl<'a, T> Slice for &'a [T] {
+ type Item = &'a T;
+ #[inline(always)]
+ fn len(&self) -> usize { (**self).len() }
+ #[inline(always)]
+ unsafe fn get_unchecked(&mut self, i: usize) -> &'a T {
+ debug_assert!(i < self.len());
+ (**self).get_unchecked(i)
+ }
+}
+
+unsafe impl<'a, T> Slice for &'a mut [T] {
+ type Item = &'a mut T;
+ #[inline(always)]
+ fn len(&self) -> usize { (**self).len() }
+ #[inline(always)]
+ unsafe fn get_unchecked(&mut self, i: usize) -> &'a mut T {
+ debug_assert!(i < self.len());
+ // override the lifetime constraints of &mut &'a mut [T]
+ (*(*self as *mut [T])).get_unchecked_mut(i)
+ }
+}
+
+#[test]
+fn zipslices() {
+
+ let xs = [1, 2, 3, 4, 5, 6];
+ let ys = [1, 2, 3, 7];
+ ::itertools::assert_equal(ZipSlices::new(&xs, &ys), xs.iter().zip(&ys));
+
+ let xs = [1, 2, 3, 4, 5, 6];
+ let mut ys = [0; 6];
+ for (x, y) in ZipSlices::from_slices(&xs[..], &mut ys[..]) {
+ *y = *x;
+ }
+ ::itertools::assert_equal(&xs, &ys);
+}
+
diff --git a/third_party/rust/itertools-0.8.0/benches/tree_fold1.rs b/third_party/rust/itertools-0.8.0/benches/tree_fold1.rs
new file mode 100644
index 0000000000..b71589f3fe
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/benches/tree_fold1.rs
@@ -0,0 +1,126 @@
+#![feature(test)]
+
+extern crate test;
+extern crate itertools;
+
+use itertools::Itertools;
+use itertools::cloned;
+use test::Bencher;
+
+trait IterEx : Iterator {
+ // Another efficient implementation against which to compare,
+ // but needs `std` so is less desirable.
+ fn tree_fold1_vec<F>(self, mut f: F) -> Option<Self::Item>
+ where F: FnMut(Self::Item, Self::Item) -> Self::Item,
+ Self: Sized,
+ {
+ let hint = self.size_hint().0;
+ let cap = std::mem::size_of::<usize>() * 8 - hint.leading_zeros() as usize;
+ let mut stack = Vec::with_capacity(cap);
+ self.enumerate().foreach(|(mut i, mut x)| {
+ while (i & 1) != 0 {
+ x = f(stack.pop().unwrap(), x);
+ i >>= 1;
+ }
+ stack.push(x);
+ });
+ stack.into_iter().fold1(f)
+ }
+}
+impl<T:Iterator> IterEx for T {}
+
+macro_rules! def_benchs {
+ ($N:expr,
+ $FUN:ident,
+ $BENCH_NAME:ident,
+ ) => (
+ mod $BENCH_NAME {
+ use super::*;
+
+ #[bench]
+ fn sum(b: &mut Bencher) {
+ let v: Vec<u32> = (0.. $N).collect();
+ b.iter(|| {
+ cloned(&v).$FUN(|x, y| x + y)
+ });
+ }
+
+ #[bench]
+ fn complex_iter(b: &mut Bencher) {
+ let u = (3..).take($N / 2);
+ let v = (5..).take($N / 2);
+ let it = u.chain(v);
+
+ b.iter(|| {
+ it.clone().map(|x| x as f32).$FUN(f32::atan2)
+ });
+ }
+
+ #[bench]
+ fn string_format(b: &mut Bencher) {
+ // This goes quadratic with linear `fold1`, so use a smaller
+ // size to not waste too much time in travis. The allocations
+ // in here are so expensive anyway that it'll still take
+ // way longer per iteration than the other two benchmarks.
+ let v: Vec<u32> = (0.. ($N/4)).collect();
+ b.iter(|| {
+ cloned(&v).map(|x| x.to_string()).$FUN(|x, y| format!("{} + {}", x, y))
+ });
+ }
+ }
+ )
+}
+
+def_benchs!{
+ 10_000,
+ fold1,
+ fold1_10k,
+}
+
+def_benchs!{
+ 10_000,
+ tree_fold1,
+ tree_fold1_stack_10k,
+}
+
+def_benchs!{
+ 10_000,
+ tree_fold1_vec,
+ tree_fold1_vec_10k,
+}
+
+def_benchs!{
+ 100,
+ fold1,
+ fold1_100,
+}
+
+def_benchs!{
+ 100,
+ tree_fold1,
+ tree_fold1_stack_100,
+}
+
+def_benchs!{
+ 100,
+ tree_fold1_vec,
+ tree_fold1_vec_100,
+}
+
+def_benchs!{
+ 8,
+ fold1,
+ fold1_08,
+}
+
+def_benchs!{
+ 8,
+ tree_fold1,
+ tree_fold1_stack_08,
+}
+
+def_benchs!{
+ 8,
+ tree_fold1_vec,
+ tree_fold1_vec_08,
+}
diff --git a/third_party/rust/itertools-0.8.0/benches/tuple_combinations.rs b/third_party/rust/itertools-0.8.0/benches/tuple_combinations.rs
new file mode 100644
index 0000000000..4a14b1d0bd
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/benches/tuple_combinations.rs
@@ -0,0 +1,97 @@
+#![feature(test)]
+
+extern crate test;
+extern crate itertools;
+
+use test::{black_box, Bencher};
+use itertools::Itertools;
+
+// approximate 100_000 iterations for each combination
+const N1: usize = 100_000;
+const N2: usize = 448;
+const N3: usize = 86;
+const N4: usize = 41;
+
+#[bench]
+fn comb_for1(b: &mut Bencher) {
+ b.iter(|| {
+ for i in 0..N1 {
+ black_box(i);
+ }
+ });
+}
+
+#[bench]
+fn comb_for2(b: &mut Bencher) {
+ b.iter(|| {
+ for i in 0..N2 {
+ for j in (i + 1)..N2 {
+ black_box(i + j);
+ }
+ }
+ });
+}
+
+#[bench]
+fn comb_for3(b: &mut Bencher) {
+ b.iter(|| {
+ for i in 0..N3 {
+ for j in (i + 1)..N3 {
+ for k in (j + 1)..N3 {
+ black_box(i + j + k);
+ }
+ }
+ }
+ });
+}
+
+#[bench]
+fn comb_for4(b: &mut Bencher) {
+ b.iter(|| {
+ for i in 0..N4 {
+ for j in (i + 1)..N4 {
+ for k in (j + 1)..N4 {
+ for l in (k + 1)..N4 {
+ black_box(i + j + k + l);
+ }
+ }
+ }
+ }
+ });
+}
+
+#[bench]
+fn comb_c1(b: &mut Bencher) {
+ b.iter(|| {
+ for (i,) in (0..N1).tuple_combinations() {
+ black_box(i);
+ }
+ });
+}
+
+#[bench]
+fn comb_c2(b: &mut Bencher) {
+ b.iter(|| {
+ for (i, j) in (0..N2).tuple_combinations() {
+ black_box(i + j);
+ }
+ });
+}
+
+#[bench]
+fn comb_c3(b: &mut Bencher) {
+ b.iter(|| {
+ for (i, j, k) in (0..N3).tuple_combinations() {
+ black_box(i + j + k);
+ }
+ });
+}
+
+#[bench]
+fn comb_c4(b: &mut Bencher) {
+ b.iter(|| {
+ for (i, j, k, l) in (0..N4).tuple_combinations() {
+ black_box(i + j + k + l);
+ }
+ });
+}
diff --git a/third_party/rust/itertools-0.8.0/benches/tuples.rs b/third_party/rust/itertools-0.8.0/benches/tuples.rs
new file mode 100644
index 0000000000..b0f2990fdf
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/benches/tuples.rs
@@ -0,0 +1,190 @@
+#![feature(test)]
+
+extern crate test;
+extern crate itertools;
+
+use test::Bencher;
+use itertools::Itertools;
+
+fn s1(a: u32) -> u32 {
+ a
+}
+
+fn s2(a: u32, b: u32) -> u32 {
+ a + b
+}
+
+fn s3(a: u32, b: u32, c: u32) -> u32 {
+ a + b + c
+}
+
+fn s4(a: u32, b: u32, c: u32, d: u32) -> u32 {
+ a + b + c + d
+}
+
+fn sum_s1(s: &[u32]) -> u32 {
+ s1(s[0])
+}
+
+fn sum_s2(s: &[u32]) -> u32 {
+ s2(s[0], s[1])
+}
+
+fn sum_s3(s: &[u32]) -> u32 {
+ s3(s[0], s[1], s[2])
+}
+
+fn sum_s4(s: &[u32]) -> u32 {
+ s4(s[0], s[1], s[2], s[3])
+}
+
+fn sum_t1(s: &(&u32, )) -> u32 {
+ s1(*s.0)
+}
+
+fn sum_t2(s: &(&u32, &u32)) -> u32 {
+ s2(*s.0, *s.1)
+}
+
+fn sum_t3(s: &(&u32, &u32, &u32)) -> u32 {
+ s3(*s.0, *s.1, *s.2)
+}
+
+fn sum_t4(s: &(&u32, &u32, &u32, &u32)) -> u32 {
+ s4(*s.0, *s.1, *s.2, *s.3)
+}
+
+macro_rules! def_benchs {
+ ($N:expr;
+ $TUPLE_FUN:ident,
+ $TUPLES:ident,
+ $TUPLE_WINDOWS:ident;
+ $SLICE_FUN:ident,
+ $CHUNKS:ident,
+ $WINDOWS:ident;
+ $FOR_CHUNKS:ident,
+ $FOR_WINDOWS:ident
+ ) => (
+ #[bench]
+ fn $FOR_CHUNKS(b: &mut Bencher) {
+ let v: Vec<u32> = (0.. $N * 1_000).collect();
+ let mut s = 0;
+ b.iter(|| {
+ let mut j = 0;
+ for _ in 0..1_000 {
+ s += $SLICE_FUN(&v[j..(j + $N)]);
+ j += $N;
+ }
+ s
+ });
+ }
+
+ #[bench]
+ fn $FOR_WINDOWS(b: &mut Bencher) {
+ let v: Vec<u32> = (0..1_000).collect();
+ let mut s = 0;
+ b.iter(|| {
+ for i in 0..(1_000 - $N) {
+ s += $SLICE_FUN(&v[i..(i + $N)]);
+ }
+ s
+ });
+ }
+
+ #[bench]
+ fn $TUPLES(b: &mut Bencher) {
+ let v: Vec<u32> = (0.. $N * 1_000).collect();
+ let mut s = 0;
+ b.iter(|| {
+ for x in v.iter().tuples() {
+ s += $TUPLE_FUN(&x);
+ }
+ s
+ });
+ }
+
+ #[bench]
+ fn $CHUNKS(b: &mut Bencher) {
+ let v: Vec<u32> = (0.. $N * 1_000).collect();
+ let mut s = 0;
+ b.iter(|| {
+ for x in v.chunks($N) {
+ s += $SLICE_FUN(x);
+ }
+ s
+ });
+ }
+
+ #[bench]
+ fn $TUPLE_WINDOWS(b: &mut Bencher) {
+ let v: Vec<u32> = (0..1_000).collect();
+ let mut s = 0;
+ b.iter(|| {
+ for x in v.iter().tuple_windows() {
+ s += $TUPLE_FUN(&x);
+ }
+ s
+ });
+ }
+
+ #[bench]
+ fn $WINDOWS(b: &mut Bencher) {
+ let v: Vec<u32> = (0..1_000).collect();
+ let mut s = 0;
+ b.iter(|| {
+ for x in v.windows($N) {
+ s += $SLICE_FUN(x);
+ }
+ s
+ });
+ }
+ )
+}
+
+def_benchs!{
+ 1;
+ sum_t1,
+ tuple_chunks_1,
+ tuple_windows_1;
+ sum_s1,
+ slice_chunks_1,
+ slice_windows_1;
+ for_chunks_1,
+ for_windows_1
+}
+
+def_benchs!{
+ 2;
+ sum_t2,
+ tuple_chunks_2,
+ tuple_windows_2;
+ sum_s2,
+ slice_chunks_2,
+ slice_windows_2;
+ for_chunks_2,
+ for_windows_2
+}
+
+def_benchs!{
+ 3;
+ sum_t3,
+ tuple_chunks_3,
+ tuple_windows_3;
+ sum_s3,
+ slice_chunks_3,
+ slice_windows_3;
+ for_chunks_3,
+ for_windows_3
+}
+
+def_benchs!{
+ 4;
+ sum_t4,
+ tuple_chunks_4,
+ tuple_windows_4;
+ sum_s4,
+ slice_chunks_4,
+ slice_windows_4;
+ for_chunks_4,
+ for_windows_4
+}
diff --git a/third_party/rust/itertools-0.8.0/examples/iris.data b/third_party/rust/itertools-0.8.0/examples/iris.data
new file mode 100644
index 0000000000..a3490e0e07
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/examples/iris.data
@@ -0,0 +1,150 @@
+5.1,3.5,1.4,0.2,Iris-setosa
+4.9,3.0,1.4,0.2,Iris-setosa
+4.7,3.2,1.3,0.2,Iris-setosa
+4.6,3.1,1.5,0.2,Iris-setosa
+5.0,3.6,1.4,0.2,Iris-setosa
+5.4,3.9,1.7,0.4,Iris-setosa
+4.6,3.4,1.4,0.3,Iris-setosa
+5.0,3.4,1.5,0.2,Iris-setosa
+4.4,2.9,1.4,0.2,Iris-setosa
+4.9,3.1,1.5,0.1,Iris-setosa
+5.4,3.7,1.5,0.2,Iris-setosa
+4.8,3.4,1.6,0.2,Iris-setosa
+4.8,3.0,1.4,0.1,Iris-setosa
+4.3,3.0,1.1,0.1,Iris-setosa
+5.8,4.0,1.2,0.2,Iris-setosa
+5.7,4.4,1.5,0.4,Iris-setosa
+5.4,3.9,1.3,0.4,Iris-setosa
+5.1,3.5,1.4,0.3,Iris-setosa
+5.7,3.8,1.7,0.3,Iris-setosa
+5.1,3.8,1.5,0.3,Iris-setosa
+5.4,3.4,1.7,0.2,Iris-setosa
+5.1,3.7,1.5,0.4,Iris-setosa
+4.6,3.6,1.0,0.2,Iris-setosa
+5.1,3.3,1.7,0.5,Iris-setosa
+4.8,3.4,1.9,0.2,Iris-setosa
+5.0,3.0,1.6,0.2,Iris-setosa
+5.0,3.4,1.6,0.4,Iris-setosa
+5.2,3.5,1.5,0.2,Iris-setosa
+5.2,3.4,1.4,0.2,Iris-setosa
+4.7,3.2,1.6,0.2,Iris-setosa
+4.8,3.1,1.6,0.2,Iris-setosa
+5.4,3.4,1.5,0.4,Iris-setosa
+5.2,4.1,1.5,0.1,Iris-setosa
+5.5,4.2,1.4,0.2,Iris-setosa
+4.9,3.1,1.5,0.1,Iris-setosa
+5.0,3.2,1.2,0.2,Iris-setosa
+5.5,3.5,1.3,0.2,Iris-setosa
+4.9,3.1,1.5,0.1,Iris-setosa
+4.4,3.0,1.3,0.2,Iris-setosa
+5.1,3.4,1.5,0.2,Iris-setosa
+5.0,3.5,1.3,0.3,Iris-setosa
+4.5,2.3,1.3,0.3,Iris-setosa
+4.4,3.2,1.3,0.2,Iris-setosa
+5.0,3.5,1.6,0.6,Iris-setosa
+5.1,3.8,1.9,0.4,Iris-setosa
+4.8,3.0,1.4,0.3,Iris-setosa
+5.1,3.8,1.6,0.2,Iris-setosa
+4.6,3.2,1.4,0.2,Iris-setosa
+5.3,3.7,1.5,0.2,Iris-setosa
+5.0,3.3,1.4,0.2,Iris-setosa
+7.0,3.2,4.7,1.4,Iris-versicolor
+6.4,3.2,4.5,1.5,Iris-versicolor
+6.9,3.1,4.9,1.5,Iris-versicolor
+5.5,2.3,4.0,1.3,Iris-versicolor
+6.5,2.8,4.6,1.5,Iris-versicolor
+5.7,2.8,4.5,1.3,Iris-versicolor
+6.3,3.3,4.7,1.6,Iris-versicolor
+4.9,2.4,3.3,1.0,Iris-versicolor
+6.6,2.9,4.6,1.3,Iris-versicolor
+5.2,2.7,3.9,1.4,Iris-versicolor
+5.0,2.0,3.5,1.0,Iris-versicolor
+5.9,3.0,4.2,1.5,Iris-versicolor
+6.0,2.2,4.0,1.0,Iris-versicolor
+6.1,2.9,4.7,1.4,Iris-versicolor
+5.6,2.9,3.6,1.3,Iris-versicolor
+6.7,3.1,4.4,1.4,Iris-versicolor
+5.6,3.0,4.5,1.5,Iris-versicolor
+5.8,2.7,4.1,1.0,Iris-versicolor
+6.2,2.2,4.5,1.5,Iris-versicolor
+5.6,2.5,3.9,1.1,Iris-versicolor
+5.9,3.2,4.8,1.8,Iris-versicolor
+6.1,2.8,4.0,1.3,Iris-versicolor
+6.3,2.5,4.9,1.5,Iris-versicolor
+6.1,2.8,4.7,1.2,Iris-versicolor
+6.4,2.9,4.3,1.3,Iris-versicolor
+6.6,3.0,4.4,1.4,Iris-versicolor
+6.8,2.8,4.8,1.4,Iris-versicolor
+6.7,3.0,5.0,1.7,Iris-versicolor
+6.0,2.9,4.5,1.5,Iris-versicolor
+5.7,2.6,3.5,1.0,Iris-versicolor
+5.5,2.4,3.8,1.1,Iris-versicolor
+5.5,2.4,3.7,1.0,Iris-versicolor
+5.8,2.7,3.9,1.2,Iris-versicolor
+6.0,2.7,5.1,1.6,Iris-versicolor
+5.4,3.0,4.5,1.5,Iris-versicolor
+6.0,3.4,4.5,1.6,Iris-versicolor
+6.7,3.1,4.7,1.5,Iris-versicolor
+6.3,2.3,4.4,1.3,Iris-versicolor
+5.6,3.0,4.1,1.3,Iris-versicolor
+5.5,2.5,4.0,1.3,Iris-versicolor
+5.5,2.6,4.4,1.2,Iris-versicolor
+6.1,3.0,4.6,1.4,Iris-versicolor
+5.8,2.6,4.0,1.2,Iris-versicolor
+5.0,2.3,3.3,1.0,Iris-versicolor
+5.6,2.7,4.2,1.3,Iris-versicolor
+5.7,3.0,4.2,1.2,Iris-versicolor
+5.7,2.9,4.2,1.3,Iris-versicolor
+6.2,2.9,4.3,1.3,Iris-versicolor
+5.1,2.5,3.0,1.1,Iris-versicolor
+5.7,2.8,4.1,1.3,Iris-versicolor
+6.3,3.3,6.0,2.5,Iris-virginica
+5.8,2.7,5.1,1.9,Iris-virginica
+7.1,3.0,5.9,2.1,Iris-virginica
+6.3,2.9,5.6,1.8,Iris-virginica
+6.5,3.0,5.8,2.2,Iris-virginica
+7.6,3.0,6.6,2.1,Iris-virginica
+4.9,2.5,4.5,1.7,Iris-virginica
+7.3,2.9,6.3,1.8,Iris-virginica
+6.7,2.5,5.8,1.8,Iris-virginica
+7.2,3.6,6.1,2.5,Iris-virginica
+6.5,3.2,5.1,2.0,Iris-virginica
+6.4,2.7,5.3,1.9,Iris-virginica
+6.8,3.0,5.5,2.1,Iris-virginica
+5.7,2.5,5.0,2.0,Iris-virginica
+5.8,2.8,5.1,2.4,Iris-virginica
+6.4,3.2,5.3,2.3,Iris-virginica
+6.5,3.0,5.5,1.8,Iris-virginica
+7.7,3.8,6.7,2.2,Iris-virginica
+7.7,2.6,6.9,2.3,Iris-virginica
+6.0,2.2,5.0,1.5,Iris-virginica
+6.9,3.2,5.7,2.3,Iris-virginica
+5.6,2.8,4.9,2.0,Iris-virginica
+7.7,2.8,6.7,2.0,Iris-virginica
+6.3,2.7,4.9,1.8,Iris-virginica
+6.7,3.3,5.7,2.1,Iris-virginica
+7.2,3.2,6.0,1.8,Iris-virginica
+6.2,2.8,4.8,1.8,Iris-virginica
+6.1,3.0,4.9,1.8,Iris-virginica
+6.4,2.8,5.6,2.1,Iris-virginica
+7.2,3.0,5.8,1.6,Iris-virginica
+7.4,2.8,6.1,1.9,Iris-virginica
+7.9,3.8,6.4,2.0,Iris-virginica
+6.4,2.8,5.6,2.2,Iris-virginica
+6.3,2.8,5.1,1.5,Iris-virginica
+6.1,2.6,5.6,1.4,Iris-virginica
+7.7,3.0,6.1,2.3,Iris-virginica
+6.3,3.4,5.6,2.4,Iris-virginica
+6.4,3.1,5.5,1.8,Iris-virginica
+6.0,3.0,4.8,1.8,Iris-virginica
+6.9,3.1,5.4,2.1,Iris-virginica
+6.7,3.1,5.6,2.4,Iris-virginica
+6.9,3.1,5.1,2.3,Iris-virginica
+5.8,2.7,5.1,1.9,Iris-virginica
+6.8,3.2,5.9,2.3,Iris-virginica
+6.7,3.3,5.7,2.5,Iris-virginica
+6.7,3.0,5.2,2.3,Iris-virginica
+6.3,2.5,5.0,1.9,Iris-virginica
+6.5,3.0,5.2,2.0,Iris-virginica
+6.2,3.4,5.4,2.3,Iris-virginica
+5.9,3.0,5.1,1.8,Iris-virginica
diff --git a/third_party/rust/itertools-0.8.0/examples/iris.rs b/third_party/rust/itertools-0.8.0/examples/iris.rs
new file mode 100644
index 0000000000..c09afbea0d
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/examples/iris.rs
@@ -0,0 +1,141 @@
+///
+/// This example parses, sorts and groups the iris dataset
+/// and does some simple manipulations.
+///
+/// Iterators and itertools functionality are used throughout.
+///
+///
+
+extern crate itertools;
+
+use itertools::Itertools;
+use std::collections::HashMap;
+use std::iter::repeat;
+use std::num::ParseFloatError;
+use std::str::FromStr;
+
+static DATA: &'static str = include_str!("iris.data");
+
+#[derive(Clone, Debug)]
+struct Iris {
+ name: String,
+ data: [f32; 4],
+}
+
+#[derive(Clone, Debug)]
+enum ParseError {
+ Numeric(ParseFloatError),
+ Other(&'static str),
+}
+
+impl From<ParseFloatError> for ParseError {
+ fn from(err: ParseFloatError) -> Self {
+ ParseError::Numeric(err)
+ }
+}
+
+/// Parse an Iris from a comma-separated line
+impl FromStr for Iris {
+ type Err = ParseError;
+
+ fn from_str(s: &str) -> Result<Self, Self::Err> {
+ let mut iris = Iris { name: "".into(), data: [0.; 4] };
+ let mut parts = s.split(",").map(str::trim);
+
+ // using Iterator::by_ref()
+ for (index, part) in parts.by_ref().take(4).enumerate() {
+ iris.data[index] = try!(part.parse::<f32>());
+ }
+ if let Some(name) = parts.next() {
+ iris.name = name.into();
+ } else {
+ return Err(ParseError::Other("Missing name"))
+ }
+ Ok(iris)
+ }
+}
+
+fn main() {
+ // using Itertools::fold_results to create the result of parsing
+ let irises = DATA.lines()
+ .map(str::parse)
+ .fold_results(Vec::new(), |mut v, iris: Iris| {
+ v.push(iris);
+ v
+ });
+ let mut irises = match irises {
+ Err(e) => {
+ println!("Error parsing: {:?}", e);
+ std::process::exit(1);
+ }
+ Ok(data) => data,
+ };
+
+ // Sort them and group them
+ irises.sort_by(|a, b| Ord::cmp(&a.name, &b.name));
+
+ // using Iterator::cycle()
+ let mut plot_symbols = "+ox".chars().cycle();
+ let mut symbolmap = HashMap::new();
+
+ // using Itertools::group_by
+ for (species, species_group) in &irises.iter().group_by(|iris| &iris.name) {
+ // assign a plot symbol
+ symbolmap.entry(species).or_insert_with(|| {
+ plot_symbols.next().unwrap()
+ });
+ println!("{} (symbol={})", species, symbolmap[species]);
+
+ for iris in species_group {
+ // using Itertools::format for lazy formatting
+ println!("{:>3.1}", iris.data.iter().format(", "));
+ }
+
+ }
+
+ // Look at all combinations of the four columns
+ //
+ // See https://en.wikipedia.org/wiki/Iris_flower_data_set
+ //
+ let n = 30; // plot size
+ let mut plot = vec![' '; n * n];
+
+ // using Itertools::tuple_combinations
+ for (a, b) in (0..4).tuple_combinations() {
+ println!("Column {} vs {}:", a, b);
+
+ // Clear plot
+ //
+ // using std::iter::repeat;
+ // using Itertools::set_from
+ plot.iter_mut().set_from(repeat(' '));
+
+ // using Itertools::minmax
+ let min_max = |data: &[Iris], col| {
+ data.iter()
+ .map(|iris| iris.data[col])
+ .minmax()
+ .into_option()
+ .expect("Can't find min/max of empty iterator")
+ };
+ let (min_x, max_x) = min_max(&irises, a);
+ let (min_y, max_y) = min_max(&irises, b);
+
+ // Plot the data points
+ let round_to_grid = |x, min, max| ((x - min) / (max - min) * ((n - 1) as f32)) as usize;
+ let flip = |ix| n - 1 - ix; // reverse axis direction
+
+ for iris in &irises {
+ let ix = round_to_grid(iris.data[a], min_x, max_x);
+ let iy = flip(round_to_grid(iris.data[b], min_y, max_y));
+ plot[n * iy + ix] = symbolmap[&iris.name];
+ }
+
+ // render plot
+ //
+ // using Itertools::join
+ for line in plot.chunks(n) {
+ println!("{}", line.iter().join(" "))
+ }
+ }
+}
diff --git a/third_party/rust/itertools-0.8.0/src/adaptors/mod.rs b/third_party/rust/itertools-0.8.0/src/adaptors/mod.rs
new file mode 100644
index 0000000000..59aebfaf06
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/src/adaptors/mod.rs
@@ -0,0 +1,1278 @@
+//! Licensed under the Apache License, Version 2.0
+//! http://www.apache.org/licenses/LICENSE-2.0 or the MIT license
+//! http://opensource.org/licenses/MIT, at your
+//! option. This file may not be copied, modified, or distributed
+//! except according to those terms.
+
+mod multi_product;
+#[cfg(feature = "use_std")]
+pub use self::multi_product::*;
+
+use std::fmt;
+use std::mem::replace;
+use std::iter::{Fuse, Peekable, FromIterator};
+use std::marker::PhantomData;
+use size_hint;
+
+macro_rules! clone_fields {
+ ($name:ident, $base:expr, $($field:ident),+) => (
+ $name {
+ $(
+ $field : $base . $field .clone()
+ ),*
+ }
+ );
+}
+
+/// An iterator adaptor that alternates elements from two iterators until both
+/// run out.
+///
+/// This iterator is *fused*.
+///
+/// See [`.interleave()`](../trait.Itertools.html#method.interleave) for more information.
+#[derive(Clone, Debug)]
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct Interleave<I, J> {
+ a: Fuse<I>,
+ b: Fuse<J>,
+ flag: bool,
+}
+
+/// Create an iterator that interleaves elements in `i` and `j`.
+///
+/// `IntoIterator` enabled version of `i.interleave(j)`.
+///
+/// ```
+/// use itertools::interleave;
+///
+/// for elt in interleave(&[1, 2, 3], &[2, 3, 4]) {
+/// /* loop body */
+/// }
+/// ```
+pub fn interleave<I, J>(i: I, j: J) -> Interleave<<I as IntoIterator>::IntoIter, <J as IntoIterator>::IntoIter>
+ where I: IntoIterator,
+ J: IntoIterator<Item = I::Item>
+{
+ Interleave {
+ a: i.into_iter().fuse(),
+ b: j.into_iter().fuse(),
+ flag: false,
+ }
+}
+
+impl<I, J> Iterator for Interleave<I, J>
+ where I: Iterator,
+ J: Iterator<Item = I::Item>
+{
+ type Item = I::Item;
+ #[inline]
+ fn next(&mut self) -> Option<I::Item> {
+ self.flag = !self.flag;
+ if self.flag {
+ match self.a.next() {
+ None => self.b.next(),
+ r => r,
+ }
+ } else {
+ match self.b.next() {
+ None => self.a.next(),
+ r => r,
+ }
+ }
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ size_hint::add(self.a.size_hint(), self.b.size_hint())
+ }
+}
+
+/// An iterator adaptor that alternates elements from the two iterators until
+/// one of them runs out.
+///
+/// This iterator is *fused*.
+///
+/// See [`.interleave_shortest()`](../trait.Itertools.html#method.interleave_shortest)
+/// for more information.
+#[derive(Clone, Debug)]
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct InterleaveShortest<I, J>
+ where I: Iterator,
+ J: Iterator<Item = I::Item>
+{
+ it0: I,
+ it1: J,
+ phase: bool, // false ==> it0, true ==> it1
+}
+
+/// Create a new `InterleaveShortest` iterator.
+pub fn interleave_shortest<I, J>(a: I, b: J) -> InterleaveShortest<I, J>
+ where I: Iterator,
+ J: Iterator<Item = I::Item>
+{
+ InterleaveShortest {
+ it0: a,
+ it1: b,
+ phase: false,
+ }
+}
+
+impl<I, J> Iterator for InterleaveShortest<I, J>
+ where I: Iterator,
+ J: Iterator<Item = I::Item>
+{
+ type Item = I::Item;
+
+ #[inline]
+ fn next(&mut self) -> Option<I::Item> {
+ match self.phase {
+ false => match self.it0.next() {
+ None => None,
+ e => {
+ self.phase = true;
+ e
+ }
+ },
+ true => match self.it1.next() {
+ None => None,
+ e => {
+ self.phase = false;
+ e
+ }
+ },
+ }
+ }
+
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ let (curr_hint, next_hint) = {
+ let it0_hint = self.it0.size_hint();
+ let it1_hint = self.it1.size_hint();
+ if self.phase {
+ (it1_hint, it0_hint)
+ } else {
+ (it0_hint, it1_hint)
+ }
+ };
+ let (curr_lower, curr_upper) = curr_hint;
+ let (next_lower, next_upper) = next_hint;
+ let (combined_lower, combined_upper) =
+ size_hint::mul_scalar(size_hint::min(curr_hint, next_hint), 2);
+ let lower =
+ if curr_lower > next_lower {
+ combined_lower + 1
+ } else {
+ combined_lower
+ };
+ let upper = {
+ let extra_elem = match (curr_upper, next_upper) {
+ (_, None) => false,
+ (None, Some(_)) => true,
+ (Some(curr_max), Some(next_max)) => curr_max > next_max,
+ };
+ if extra_elem {
+ combined_upper.and_then(|x| x.checked_add(1))
+ } else {
+ combined_upper
+ }
+ };
+ (lower, upper)
+ }
+}
+
+#[derive(Clone, Debug)]
+/// An iterator adaptor that allows putting back a single
+/// item to the front of the iterator.
+///
+/// Iterator element type is `I::Item`.
+pub struct PutBack<I>
+ where I: Iterator
+{
+ top: Option<I::Item>,
+ iter: I,
+}
+
+/// Create an iterator where you can put back a single item
+pub fn put_back<I>(iterable: I) -> PutBack<I::IntoIter>
+ where I: IntoIterator
+{
+ PutBack {
+ top: None,
+ iter: iterable.into_iter(),
+ }
+}
+
+impl<I> PutBack<I>
+ where I: Iterator
+{
+ /// put back value `value` (builder method)
+ pub fn with_value(mut self, value: I::Item) -> Self {
+ self.put_back(value);
+ self
+ }
+
+ /// Split the `PutBack` into its parts.
+ #[inline]
+ pub fn into_parts(self) -> (Option<I::Item>, I) {
+ let PutBack{top, iter} = self;
+ (top, iter)
+ }
+
+ /// Put back a single value to the front of the iterator.
+ ///
+ /// If a value is already in the put back slot, it is overwritten.
+ #[inline]
+ pub fn put_back(&mut self, x: I::Item) {
+ self.top = Some(x)
+ }
+}
+
+impl<I> Iterator for PutBack<I>
+ where I: Iterator
+{
+ type Item = I::Item;
+ #[inline]
+ fn next(&mut self) -> Option<I::Item> {
+ match self.top {
+ None => self.iter.next(),
+ ref mut some => some.take(),
+ }
+ }
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ // Not ExactSizeIterator because size may be larger than usize
+ size_hint::add_scalar(self.iter.size_hint(), self.top.is_some() as usize)
+ }
+
+ fn all<G>(&mut self, mut f: G) -> bool
+ where G: FnMut(Self::Item) -> bool
+ {
+ if let Some(elt) = self.top.take() {
+ if !f(elt) {
+ return false;
+ }
+ }
+ self.iter.all(f)
+ }
+
+ fn fold<Acc, G>(mut self, init: Acc, mut f: G) -> Acc
+ where G: FnMut(Acc, Self::Item) -> Acc,
+ {
+ let mut accum = init;
+ if let Some(elt) = self.top.take() {
+ accum = f(accum, elt);
+ }
+ self.iter.fold(accum, f)
+ }
+}
+
+#[derive(Debug, Clone)]
+/// An iterator adaptor that iterates over the cartesian product of
+/// the element sets of two iterators `I` and `J`.
+///
+/// Iterator element type is `(I::Item, J::Item)`.
+///
+/// See [`.cartesian_product()`](../trait.Itertools.html#method.cartesian_product) for more information.
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct Product<I, J>
+ where I: Iterator
+{
+ a: I,
+ a_cur: Option<I::Item>,
+ b: J,
+ b_orig: J,
+}
+
+/// Create a new cartesian product iterator
+///
+/// Iterator element type is `(I::Item, J::Item)`.
+pub fn cartesian_product<I, J>(mut i: I, j: J) -> Product<I, J>
+ where I: Iterator,
+ J: Clone + Iterator,
+ I::Item: Clone
+{
+ Product {
+ a_cur: i.next(),
+ a: i,
+ b: j.clone(),
+ b_orig: j,
+ }
+}
+
+
+impl<I, J> Iterator for Product<I, J>
+ where I: Iterator,
+ J: Clone + Iterator,
+ I::Item: Clone
+{
+ type Item = (I::Item, J::Item);
+ fn next(&mut self) -> Option<(I::Item, J::Item)> {
+ let elt_b = match self.b.next() {
+ None => {
+ self.b = self.b_orig.clone();
+ match self.b.next() {
+ None => return None,
+ Some(x) => {
+ self.a_cur = self.a.next();
+ x
+ }
+ }
+ }
+ Some(x) => x
+ };
+ match self.a_cur {
+ None => None,
+ Some(ref a) => {
+ Some((a.clone(), elt_b))
+ }
+ }
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ let has_cur = self.a_cur.is_some() as usize;
+ // Not ExactSizeIterator because size may be larger than usize
+ let (b_min, b_max) = self.b.size_hint();
+
+ // Compute a * b_orig + b for both lower and upper bound
+ size_hint::add(
+ size_hint::mul(self.a.size_hint(), self.b_orig.size_hint()),
+ (b_min * has_cur, b_max.map(move |x| x * has_cur)))
+ }
+
+ fn fold<Acc, G>(mut self, mut accum: Acc, mut f: G) -> Acc
+ where G: FnMut(Acc, Self::Item) -> Acc,
+ {
+ // use a split loop to handle the loose a_cur as well as avoiding to
+ // clone b_orig at the end.
+ if let Some(mut a) = self.a_cur.take() {
+ let mut b = self.b;
+ loop {
+ accum = b.fold(accum, |acc, elt| f(acc, (a.clone(), elt)));
+
+ // we can only continue iterating a if we had a first element;
+ if let Some(next_a) = self.a.next() {
+ b = self.b_orig.clone();
+ a = next_a;
+ } else {
+ break;
+ }
+ }
+ }
+ accum
+ }
+}
+
+/// A “meta iterator adaptor”. Its closure receives a reference to the iterator
+/// and may pick off as many elements as it likes, to produce the next iterator element.
+///
+/// Iterator element type is *X*, if the return type of `F` is *Option\<X\>*.
+///
+/// See [`.batching()`](../trait.Itertools.html#method.batching) for more information.
+#[derive(Clone)]
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct Batching<I, F> {
+ f: F,
+ iter: I,
+}
+
+impl<I, F> fmt::Debug for Batching<I, F> where I: fmt::Debug {
+ debug_fmt_fields!(Batching, iter);
+}
+
+/// Create a new Batching iterator.
+pub fn batching<I, F>(iter: I, f: F) -> Batching<I, F> {
+ Batching { f: f, iter: iter }
+}
+
+impl<B, F, I> Iterator for Batching<I, F>
+ where I: Iterator,
+ F: FnMut(&mut I) -> Option<B>
+{
+ type Item = B;
+ #[inline]
+ fn next(&mut self) -> Option<B> {
+ (self.f)(&mut self.iter)
+ }
+
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ // No information about closue behavior
+ (0, None)
+ }
+}
+
+/// An iterator adaptor that steps a number elements in the base iterator
+/// for each iteration.
+///
+/// The iterator steps by yielding the next element from the base iterator,
+/// then skipping forward *n-1* elements.
+///
+/// See [`.step()`](../trait.Itertools.html#method.step) for more information.
+#[deprecated(note="Use std .step_by() instead", since="0.8")]
+#[allow(deprecated)]
+#[derive(Clone, Debug)]
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct Step<I> {
+ iter: Fuse<I>,
+ skip: usize,
+}
+
+/// Create a `Step` iterator.
+///
+/// **Panics** if the step is 0.
+#[allow(deprecated)]
+pub fn step<I>(iter: I, step: usize) -> Step<I>
+ where I: Iterator
+{
+ assert!(step != 0);
+ Step {
+ iter: iter.fuse(),
+ skip: step - 1,
+ }
+}
+
+#[allow(deprecated)]
+impl<I> Iterator for Step<I>
+ where I: Iterator
+{
+ type Item = I::Item;
+ #[inline]
+ fn next(&mut self) -> Option<I::Item> {
+ let elt = self.iter.next();
+ if self.skip > 0 {
+ self.iter.nth(self.skip - 1);
+ }
+ elt
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ let (low, high) = self.iter.size_hint();
+ let div = |x: usize| {
+ if x == 0 {
+ 0
+ } else {
+ 1 + (x - 1) / (self.skip + 1)
+ }
+ };
+ (div(low), high.map(div))
+ }
+}
+
+// known size
+#[allow(deprecated)]
+impl<I> ExactSizeIterator for Step<I>
+ where I: ExactSizeIterator
+{}
+
+
+struct MergeCore<I, J>
+ where I: Iterator,
+ J: Iterator<Item = I::Item>
+{
+ a: Peekable<I>,
+ b: Peekable<J>,
+ fused: Option<bool>,
+}
+
+
+impl<I, J> Clone for MergeCore<I, J>
+ where I: Iterator,
+ J: Iterator<Item = I::Item>,
+ Peekable<I>: Clone,
+ Peekable<J>: Clone
+{
+ fn clone(&self) -> Self {
+ clone_fields!(MergeCore, self, a, b, fused)
+ }
+}
+
+impl<I, J> MergeCore<I, J>
+ where I: Iterator,
+ J: Iterator<Item = I::Item>
+{
+ fn next_with<F>(&mut self, mut less_than: F) -> Option<I::Item>
+ where F: FnMut(&I::Item, &I::Item) -> bool
+ {
+ let less_than = match self.fused {
+ Some(lt) => lt,
+ None => match (self.a.peek(), self.b.peek()) {
+ (Some(a), Some(b)) => less_than(a, b),
+ (Some(_), None) => {
+ self.fused = Some(true);
+ true
+ }
+ (None, Some(_)) => {
+ self.fused = Some(false);
+ false
+ }
+ (None, None) => return None,
+ }
+ };
+
+ if less_than {
+ self.a.next()
+ } else {
+ self.b.next()
+ }
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ // Not ExactSizeIterator because size may be larger than usize
+ size_hint::add(self.a.size_hint(), self.b.size_hint())
+ }
+}
+
+/// An iterator adaptor that merges the two base iterators in ascending order.
+/// If both base iterators are sorted (ascending), the result is sorted.
+///
+/// Iterator element type is `I::Item`.
+///
+/// See [`.merge()`](../trait.Itertools.html#method.merge_by) for more information.
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct Merge<I, J>
+ where I: Iterator,
+ J: Iterator<Item = I::Item>
+{
+ merge: MergeCore<I, J>,
+}
+
+impl<I, J> Clone for Merge<I, J>
+ where I: Iterator,
+ J: Iterator<Item = I::Item>,
+ Peekable<I>: Clone,
+ Peekable<J>: Clone
+{
+ fn clone(&self) -> Self {
+ clone_fields!(Merge, self, merge)
+ }
+}
+
+impl<I, J> fmt::Debug for Merge<I, J>
+ where I: Iterator + fmt::Debug, J: Iterator<Item = I::Item> + fmt::Debug,
+ I::Item: fmt::Debug,
+{
+ debug_fmt_fields!(Merge, merge.a, merge.b);
+}
+
+/// Create an iterator that merges elements in `i` and `j`.
+///
+/// `IntoIterator` enabled version of `i.merge(j)`.
+///
+/// ```
+/// use itertools::merge;
+///
+/// for elt in merge(&[1, 2, 3], &[2, 3, 4]) {
+/// /* loop body */
+/// }
+/// ```
+pub fn merge<I, J>(i: I, j: J) -> Merge<<I as IntoIterator>::IntoIter, <J as IntoIterator>::IntoIter>
+ where I: IntoIterator,
+ J: IntoIterator<Item = I::Item>,
+ I::Item: PartialOrd
+{
+ Merge {
+ merge: MergeCore {
+ a: i.into_iter().peekable(),
+ b: j.into_iter().peekable(),
+ fused: None,
+ },
+ }
+}
+
+impl<I, J> Iterator for Merge<I, J>
+ where I: Iterator,
+ J: Iterator<Item = I::Item>,
+ I::Item: PartialOrd
+{
+ type Item = I::Item;
+
+ fn next(&mut self) -> Option<I::Item> {
+ self.merge.next_with(|a, b| a <= b)
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.merge.size_hint()
+ }
+}
+
+/// An iterator adaptor that merges the two base iterators in ascending order.
+/// If both base iterators are sorted (ascending), the result is sorted.
+///
+/// Iterator element type is `I::Item`.
+///
+/// See [`.merge_by()`](../trait.Itertools.html#method.merge_by) for more information.
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct MergeBy<I, J, F>
+ where I: Iterator,
+ J: Iterator<Item = I::Item>
+{
+ merge: MergeCore<I, J>,
+ cmp: F,
+}
+
+impl<I, J, F> fmt::Debug for MergeBy<I, J, F>
+ where I: Iterator + fmt::Debug, J: Iterator<Item = I::Item> + fmt::Debug,
+ I::Item: fmt::Debug,
+{
+ debug_fmt_fields!(MergeBy, merge.a, merge.b);
+}
+
+/// Create a `MergeBy` iterator.
+pub fn merge_by_new<I, J, F>(a: I, b: J, cmp: F) -> MergeBy<I, J, F>
+ where I: Iterator,
+ J: Iterator<Item = I::Item>
+{
+ MergeBy {
+ merge: MergeCore {
+ a: a.peekable(),
+ b: b.peekable(),
+ fused: None,
+ },
+ cmp: cmp,
+ }
+}
+
+impl<I, J, F> Clone for MergeBy<I, J, F>
+ where I: Iterator,
+ J: Iterator<Item = I::Item>,
+ Peekable<I>: Clone,
+ Peekable<J>: Clone,
+ F: Clone
+{
+ fn clone(&self) -> Self {
+ clone_fields!(MergeBy, self, merge, cmp)
+ }
+}
+
+impl<I, J, F> Iterator for MergeBy<I, J, F>
+ where I: Iterator,
+ J: Iterator<Item = I::Item>,
+ F: FnMut(&I::Item, &I::Item) -> bool
+{
+ type Item = I::Item;
+
+ fn next(&mut self) -> Option<I::Item> {
+ self.merge.next_with(&mut self.cmp)
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.merge.size_hint()
+ }
+}
+
+#[derive(Clone, Debug)]
+pub struct CoalesceCore<I>
+ where I: Iterator
+{
+ iter: I,
+ last: Option<I::Item>,
+}
+
+impl<I> CoalesceCore<I>
+ where I: Iterator
+{
+ fn next_with<F>(&mut self, mut f: F) -> Option<I::Item>
+ where F: FnMut(I::Item, I::Item) -> Result<I::Item, (I::Item, I::Item)>
+ {
+ // this fuses the iterator
+ let mut last = match self.last.take() {
+ None => return None,
+ Some(x) => x,
+ };
+ for next in &mut self.iter {
+ match f(last, next) {
+ Ok(joined) => last = joined,
+ Err((last_, next_)) => {
+ self.last = Some(next_);
+ return Some(last_);
+ }
+ }
+ }
+
+ Some(last)
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ let (low, hi) = size_hint::add_scalar(self.iter.size_hint(),
+ self.last.is_some() as usize);
+ ((low > 0) as usize, hi)
+ }
+}
+
+/// An iterator adaptor that may join together adjacent elements.
+///
+/// See [`.coalesce()`](../trait.Itertools.html#method.coalesce) for more information.
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct Coalesce<I, F>
+ where I: Iterator
+{
+ iter: CoalesceCore<I>,
+ f: F,
+}
+
+impl<I: Clone, F: Clone> Clone for Coalesce<I, F>
+ where I: Iterator,
+ I::Item: Clone
+{
+ fn clone(&self) -> Self {
+ clone_fields!(Coalesce, self, iter, f)
+ }
+}
+
+impl<I, F> fmt::Debug for Coalesce<I, F>
+ where I: Iterator + fmt::Debug,
+ I::Item: fmt::Debug,
+{
+ debug_fmt_fields!(Coalesce, iter);
+}
+
+/// Create a new `Coalesce`.
+pub fn coalesce<I, F>(mut iter: I, f: F) -> Coalesce<I, F>
+ where I: Iterator
+{
+ Coalesce {
+ iter: CoalesceCore {
+ last: iter.next(),
+ iter: iter,
+ },
+ f: f,
+ }
+}
+
+impl<I, F> Iterator for Coalesce<I, F>
+ where I: Iterator,
+ F: FnMut(I::Item, I::Item) -> Result<I::Item, (I::Item, I::Item)>
+{
+ type Item = I::Item;
+
+ fn next(&mut self) -> Option<I::Item> {
+ self.iter.next_with(&mut self.f)
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.iter.size_hint()
+ }
+}
+
+/// An iterator adaptor that removes repeated duplicates.
+///
+/// See [`.dedup()`](../trait.Itertools.html#method.dedup) for more information.
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct Dedup<I>
+ where I: Iterator
+{
+ iter: CoalesceCore<I>,
+}
+
+impl<I: Clone> Clone for Dedup<I>
+ where I: Iterator,
+ I::Item: Clone
+{
+ fn clone(&self) -> Self {
+ clone_fields!(Dedup, self, iter)
+ }
+}
+
+/// Create a new `Dedup`.
+pub fn dedup<I>(mut iter: I) -> Dedup<I>
+ where I: Iterator
+{
+ Dedup {
+ iter: CoalesceCore {
+ last: iter.next(),
+ iter: iter,
+ },
+ }
+}
+
+impl<I> fmt::Debug for Dedup<I>
+ where I: Iterator + fmt::Debug,
+ I::Item: fmt::Debug,
+{
+ debug_fmt_fields!(Dedup, iter);
+}
+
+impl<I> Iterator for Dedup<I>
+ where I: Iterator,
+ I::Item: PartialEq
+{
+ type Item = I::Item;
+
+ fn next(&mut self) -> Option<I::Item> {
+ self.iter.next_with(|x, y| {
+ if x == y { Ok(x) } else { Err((x, y)) }
+ })
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.iter.size_hint()
+ }
+
+ fn fold<Acc, G>(self, mut accum: Acc, mut f: G) -> Acc
+ where G: FnMut(Acc, Self::Item) -> Acc,
+ {
+ if let Some(mut last) = self.iter.last {
+ accum = self.iter.iter.fold(accum, |acc, elt| {
+ if elt == last {
+ acc
+ } else {
+ f(acc, replace(&mut last, elt))
+ }
+ });
+ f(accum, last)
+ } else {
+ accum
+ }
+ }
+}
+
+/// An iterator adaptor that borrows from a `Clone`-able iterator
+/// to only pick off elements while the predicate returns `true`.
+///
+/// See [`.take_while_ref()`](../trait.Itertools.html#method.take_while_ref) for more information.
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct TakeWhileRef<'a, I: 'a, F> {
+ iter: &'a mut I,
+ f: F,
+}
+
+impl<'a, I, F> fmt::Debug for TakeWhileRef<'a, I, F>
+ where I: Iterator + fmt::Debug,
+{
+ debug_fmt_fields!(TakeWhileRef, iter);
+}
+
+/// Create a new `TakeWhileRef` from a reference to clonable iterator.
+pub fn take_while_ref<I, F>(iter: &mut I, f: F) -> TakeWhileRef<I, F>
+ where I: Iterator + Clone
+{
+ TakeWhileRef { iter: iter, f: f }
+}
+
+impl<'a, I, F> Iterator for TakeWhileRef<'a, I, F>
+ where I: Iterator + Clone,
+ F: FnMut(&I::Item) -> bool
+{
+ type Item = I::Item;
+
+ fn next(&mut self) -> Option<I::Item> {
+ let old = self.iter.clone();
+ match self.iter.next() {
+ None => None,
+ Some(elt) => {
+ if (self.f)(&elt) {
+ Some(elt)
+ } else {
+ *self.iter = old;
+ None
+ }
+ }
+ }
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ let (_, hi) = self.iter.size_hint();
+ (0, hi)
+ }
+}
+
+/// An iterator adaptor that filters `Option<A>` iterator elements
+/// and produces `A`. Stops on the first `None` encountered.
+///
+/// See [`.while_some()`](../trait.Itertools.html#method.while_some) for more information.
+#[derive(Clone, Debug)]
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct WhileSome<I> {
+ iter: I,
+}
+
+/// Create a new `WhileSome<I>`.
+pub fn while_some<I>(iter: I) -> WhileSome<I> {
+ WhileSome { iter: iter }
+}
+
+impl<I, A> Iterator for WhileSome<I>
+ where I: Iterator<Item = Option<A>>
+{
+ type Item = A;
+
+ fn next(&mut self) -> Option<A> {
+ match self.iter.next() {
+ None | Some(None) => None,
+ Some(elt) => elt,
+ }
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ let sh = self.iter.size_hint();
+ (0, sh.1)
+ }
+}
+
+/// An iterator to iterate through all combinations in a `Clone`-able iterator that produces tuples
+/// of a specific size.
+///
+/// See [`.tuple_combinations()`](../trait.Itertools.html#method.tuple_combinations) for more
+/// information.
+#[derive(Debug)]
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct TupleCombinations<I, T>
+ where I: Iterator,
+ T: HasCombination<I>
+{
+ iter: T::Combination,
+ _mi: PhantomData<I>,
+ _mt: PhantomData<T>
+}
+
+pub trait HasCombination<I>: Sized {
+ type Combination: From<I> + Iterator<Item = Self>;
+}
+
+/// Create a new `TupleCombinations` from a clonable iterator.
+pub fn tuple_combinations<T, I>(iter: I) -> TupleCombinations<I, T>
+ where I: Iterator + Clone,
+ I::Item: Clone,
+ T: HasCombination<I>,
+{
+ TupleCombinations {
+ iter: T::Combination::from(iter),
+ _mi: PhantomData,
+ _mt: PhantomData,
+ }
+}
+
+impl<I, T> Iterator for TupleCombinations<I, T>
+ where I: Iterator,
+ T: HasCombination<I>,
+{
+ type Item = T;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ self.iter.next()
+ }
+}
+
+#[derive(Debug)]
+pub struct Tuple1Combination<I> {
+ iter: I,
+}
+
+impl<I> From<I> for Tuple1Combination<I> {
+ fn from(iter: I) -> Self {
+ Tuple1Combination { iter: iter }
+ }
+}
+
+impl<I: Iterator> Iterator for Tuple1Combination<I> {
+ type Item = (I::Item,);
+
+ fn next(&mut self) -> Option<Self::Item> {
+ self.iter.next().map(|x| (x,))
+ }
+}
+
+impl<I: Iterator> HasCombination<I> for (I::Item,) {
+ type Combination = Tuple1Combination<I>;
+}
+
+macro_rules! impl_tuple_combination {
+ ($C:ident $P:ident ; $A:ident, $($I:ident),* ; $($X:ident)*) => (
+ #[derive(Debug)]
+ pub struct $C<I: Iterator> {
+ item: Option<I::Item>,
+ iter: I,
+ c: $P<I>,
+ }
+
+ impl<I: Iterator + Clone> From<I> for $C<I> {
+ fn from(mut iter: I) -> Self {
+ $C {
+ item: iter.next(),
+ iter: iter.clone(),
+ c: $P::from(iter),
+ }
+ }
+ }
+
+ impl<I: Iterator + Clone> From<I> for $C<Fuse<I>> {
+ fn from(iter: I) -> Self {
+ let mut iter = iter.fuse();
+ $C {
+ item: iter.next(),
+ iter: iter.clone(),
+ c: $P::from(iter),
+ }
+ }
+ }
+
+ impl<I, $A> Iterator for $C<I>
+ where I: Iterator<Item = $A> + Clone,
+ I::Item: Clone
+ {
+ type Item = ($($I),*);
+
+ fn next(&mut self) -> Option<Self::Item> {
+ if let Some(($($X),*,)) = self.c.next() {
+ let z = self.item.clone().unwrap();
+ Some((z, $($X),*))
+ } else {
+ self.item = self.iter.next();
+ self.item.clone().and_then(|z| {
+ self.c = $P::from(self.iter.clone());
+ self.c.next().map(|($($X),*,)| (z, $($X),*))
+ })
+ }
+ }
+ }
+
+ impl<I, $A> HasCombination<I> for ($($I),*)
+ where I: Iterator<Item = $A> + Clone,
+ I::Item: Clone
+ {
+ type Combination = $C<Fuse<I>>;
+ }
+ )
+}
+
+impl_tuple_combination!(Tuple2Combination Tuple1Combination ; A, A, A ; a);
+impl_tuple_combination!(Tuple3Combination Tuple2Combination ; A, A, A, A ; a b);
+impl_tuple_combination!(Tuple4Combination Tuple3Combination ; A, A, A, A, A; a b c);
+
+/// An iterator adapter to apply `Into` conversion to each element.
+///
+/// See [`.map_into()`](../trait.Itertools.html#method.map_into) for more information.
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct MapInto<I, R> {
+ iter: I,
+ _res: PhantomData<fn() -> R>,
+}
+
+/// Create a new [`MapInto`](struct.MapInto.html) iterator.
+pub fn map_into<I, R>(iter: I) -> MapInto<I, R> {
+ MapInto {
+ iter: iter,
+ _res: PhantomData,
+ }
+}
+
+impl<I, R> Iterator for MapInto<I, R>
+ where I: Iterator,
+ I::Item: Into<R>,
+{
+ type Item = R;
+
+ fn next(&mut self) -> Option<R> {
+ self.iter
+ .next()
+ .map(|i| i.into())
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.iter.size_hint()
+ }
+
+ fn fold<Acc, Fold>(self, init: Acc, mut fold_f: Fold) -> Acc
+ where Fold: FnMut(Acc, Self::Item) -> Acc,
+ {
+ self.iter.fold(init, move |acc, v| fold_f(acc, v.into()))
+ }
+}
+
+impl<I, R> DoubleEndedIterator for MapInto<I, R>
+ where I: DoubleEndedIterator,
+ I::Item: Into<R>,
+{
+ fn next_back(&mut self) -> Option<Self::Item> {
+ self.iter
+ .next_back()
+ .map(|i| i.into())
+ }
+}
+
+impl<I, R> ExactSizeIterator for MapInto<I, R>
+where
+ I: ExactSizeIterator,
+ I::Item: Into<R>,
+{}
+
+/// An iterator adapter to apply a transformation within a nested `Result`.
+///
+/// See [`.map_results()`](../trait.Itertools.html#method.map_results) for more information.
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct MapResults<I, F> {
+ iter: I,
+ f: F
+}
+
+/// Create a new `MapResults` iterator.
+pub fn map_results<I, F, T, U, E>(iter: I, f: F) -> MapResults<I, F>
+ where I: Iterator<Item = Result<T, E>>,
+ F: FnMut(T) -> U,
+{
+ MapResults {
+ iter: iter,
+ f: f,
+ }
+}
+
+impl<I, F, T, U, E> Iterator for MapResults<I, F>
+ where I: Iterator<Item = Result<T, E>>,
+ F: FnMut(T) -> U,
+{
+ type Item = Result<U, E>;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ self.iter.next().map(|v| v.map(&mut self.f))
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.iter.size_hint()
+ }
+
+ fn fold<Acc, Fold>(self, init: Acc, mut fold_f: Fold) -> Acc
+ where Fold: FnMut(Acc, Self::Item) -> Acc,
+ {
+ let mut f = self.f;
+ self.iter.fold(init, move |acc, v| fold_f(acc, v.map(&mut f)))
+ }
+
+ fn collect<C>(self) -> C
+ where C: FromIterator<Self::Item>
+ {
+ let mut f = self.f;
+ self.iter.map(move |v| v.map(&mut f)).collect()
+ }
+}
+
+/// An iterator adapter to get the positions of each element that matches a predicate.
+///
+/// See [`.positions()`](../trait.Itertools.html#method.positions) for more information.
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct Positions<I, F> {
+ iter: I,
+ f: F,
+ count: usize,
+}
+
+/// Create a new `Positions` iterator.
+pub fn positions<I, F>(iter: I, f: F) -> Positions<I, F>
+ where I: Iterator,
+ F: FnMut(I::Item) -> bool,
+{
+ Positions {
+ iter: iter,
+ f: f,
+ count: 0
+ }
+}
+
+impl<I, F> Iterator for Positions<I, F>
+ where I: Iterator,
+ F: FnMut(I::Item) -> bool,
+{
+ type Item = usize;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ while let Some(v) = self.iter.next() {
+ let i = self.count;
+ self.count = i + 1;
+ if (self.f)(v) {
+ return Some(i);
+ }
+ }
+ None
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ (0, self.iter.size_hint().1)
+ }
+}
+
+impl<I, F> DoubleEndedIterator for Positions<I, F>
+ where I: DoubleEndedIterator + ExactSizeIterator,
+ F: FnMut(I::Item) -> bool,
+{
+ fn next_back(&mut self) -> Option<Self::Item> {
+ while let Some(v) = self.iter.next_back() {
+ if (self.f)(v) {
+ return Some(self.count + self.iter.len())
+ }
+ }
+ None
+ }
+}
+
+/// An iterator adapter to apply a mutating function to each element before yielding it.
+///
+/// See [`.update()`](../trait.Itertools.html#method.update) for more information.
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct Update<I, F> {
+ iter: I,
+ f: F,
+}
+
+/// Create a new `Update` iterator.
+pub fn update<I, F>(iter: I, f: F) -> Update<I, F>
+where
+ I: Iterator,
+ F: FnMut(&mut I::Item),
+{
+ Update { iter: iter, f: f }
+}
+
+impl<I, F> Iterator for Update<I, F>
+where
+ I: Iterator,
+ F: FnMut(&mut I::Item),
+{
+ type Item = I::Item;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ if let Some(mut v) = self.iter.next() {
+ (self.f)(&mut v);
+ Some(v)
+ } else {
+ None
+ }
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.iter.size_hint()
+ }
+
+ fn fold<Acc, G>(self, init: Acc, mut g: G) -> Acc
+ where G: FnMut(Acc, Self::Item) -> Acc,
+ {
+ let mut f = self.f;
+ self.iter.fold(init, move |acc, mut v| { f(&mut v); g(acc, v) })
+ }
+
+ // if possible, re-use inner iterator specializations in collect
+ fn collect<C>(self) -> C
+ where C: FromIterator<Self::Item>
+ {
+ let mut f = self.f;
+ self.iter.map(move |mut v| { f(&mut v); v }).collect()
+ }
+}
+
+impl<I, F> ExactSizeIterator for Update<I, F>
+where
+ I: ExactSizeIterator,
+ F: FnMut(&mut I::Item),
+{}
+
+impl<I, F> DoubleEndedIterator for Update<I, F>
+where
+ I: DoubleEndedIterator,
+ F: FnMut(&mut I::Item),
+{
+ fn next_back(&mut self) -> Option<Self::Item> {
+ if let Some(mut v) = self.iter.next_back() {
+ (self.f)(&mut v);
+ Some(v)
+ } else {
+ None
+ }
+ }
+}
diff --git a/third_party/rust/itertools-0.8.0/src/adaptors/multi_product.rs b/third_party/rust/itertools-0.8.0/src/adaptors/multi_product.rs
new file mode 100644
index 0000000000..a6796386ed
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/src/adaptors/multi_product.rs
@@ -0,0 +1,220 @@
+#![cfg(feature = "use_std")]
+
+use size_hint;
+use Itertools;
+
+#[derive(Clone)]
+/// An iterator adaptor that iterates over the cartesian product of
+/// multiple iterators of type `I`.
+///
+/// An iterator element type is `Vec<I>`.
+///
+/// See [`.multi_cartesian_product()`](../trait.Itertools.html#method.multi_cartesian_product)
+/// for more information.
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct MultiProduct<I>(Vec<MultiProductIter<I>>)
+ where I: Iterator + Clone,
+ I::Item: Clone;
+
+/// Create a new cartesian product iterator over an arbitrary number
+/// of iterators of the same type.
+///
+/// Iterator element is of type `Vec<H::Item::Item>`.
+pub fn multi_cartesian_product<H>(iters: H) -> MultiProduct<<H::Item as IntoIterator>::IntoIter>
+ where H: Iterator,
+ H::Item: IntoIterator,
+ <H::Item as IntoIterator>::IntoIter: Clone,
+ <H::Item as IntoIterator>::Item: Clone
+{
+ MultiProduct(iters.map(|i| MultiProductIter::new(i.into_iter())).collect())
+}
+
+#[derive(Clone, Debug)]
+/// Holds the state of a single iterator within a MultiProduct.
+struct MultiProductIter<I>
+ where I: Iterator + Clone,
+ I::Item: Clone
+{
+ cur: Option<I::Item>,
+ iter: I,
+ iter_orig: I,
+}
+
+/// Holds the current state during an iteration of a MultiProduct.
+#[derive(Debug)]
+enum MultiProductIterState {
+ StartOfIter,
+ MidIter { on_first_iter: bool },
+}
+
+impl<I> MultiProduct<I>
+ where I: Iterator + Clone,
+ I::Item: Clone
+{
+ /// Iterates the rightmost iterator, then recursively iterates iterators
+ /// to the left if necessary.
+ ///
+ /// Returns true if the iteration succeeded, else false.
+ fn iterate_last(
+ multi_iters: &mut [MultiProductIter<I>],
+ mut state: MultiProductIterState
+ ) -> bool {
+ use self::MultiProductIterState::*;
+
+ if let Some((last, rest)) = multi_iters.split_last_mut() {
+ let on_first_iter = match state {
+ StartOfIter => {
+ let on_first_iter = !last.in_progress();
+ state = MidIter { on_first_iter: on_first_iter };
+ on_first_iter
+ },
+ MidIter { on_first_iter } => on_first_iter
+ };
+
+ if !on_first_iter {
+ last.iterate();
+ }
+
+ if last.in_progress() {
+ true
+ } else if MultiProduct::iterate_last(rest, state) {
+ last.reset();
+ last.iterate();
+ // If iterator is None twice consecutively, then iterator is
+ // empty; whole product is empty.
+ last.in_progress()
+ } else {
+ false
+ }
+ } else {
+ // Reached end of iterator list. On initialisation, return true.
+ // At end of iteration (final iterator finishes), finish.
+ match state {
+ StartOfIter => false,
+ MidIter { on_first_iter } => on_first_iter
+ }
+ }
+ }
+
+ /// Returns the unwrapped value of the next iteration.
+ fn curr_iterator(&self) -> Vec<I::Item> {
+ self.0.iter().map(|multi_iter| {
+ multi_iter.cur.clone().unwrap()
+ }).collect()
+ }
+
+ /// Returns true if iteration has started and has not yet finished; false
+ /// otherwise.
+ fn in_progress(&self) -> bool {
+ if let Some(last) = self.0.last() {
+ last.in_progress()
+ } else {
+ false
+ }
+ }
+}
+
+impl<I> MultiProductIter<I>
+ where I: Iterator + Clone,
+ I::Item: Clone
+{
+ fn new(iter: I) -> Self {
+ MultiProductIter {
+ cur: None,
+ iter: iter.clone(),
+ iter_orig: iter
+ }
+ }
+
+ /// Iterate the managed iterator.
+ fn iterate(&mut self) {
+ self.cur = self.iter.next();
+ }
+
+ /// Reset the managed iterator.
+ fn reset(&mut self) {
+ self.iter = self.iter_orig.clone();
+ }
+
+ /// Returns true if the current iterator has been started and has not yet
+ /// finished; false otherwise.
+ fn in_progress(&self) -> bool {
+ self.cur.is_some()
+ }
+}
+
+impl<I> Iterator for MultiProduct<I>
+ where I: Iterator + Clone,
+ I::Item: Clone
+{
+ type Item = Vec<I::Item>;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ if MultiProduct::iterate_last(
+ &mut self.0,
+ MultiProductIterState::StartOfIter
+ ) {
+ Some(self.curr_iterator())
+ } else {
+ None
+ }
+ }
+
+ fn count(self) -> usize {
+ if self.0.len() == 0 {
+ return 0;
+ }
+
+ if !self.in_progress() {
+ return self.0.into_iter().fold(1, |acc, multi_iter| {
+ acc * multi_iter.iter.count()
+ });
+ }
+
+ self.0.into_iter().fold(
+ 0,
+ |acc, MultiProductIter { iter, iter_orig, cur: _ }| {
+ let total_count = iter_orig.count();
+ let cur_count = iter.count();
+ acc * total_count + cur_count
+ }
+ )
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ // Not ExactSizeIterator because size may be larger than usize
+ if self.0.len() == 0 {
+ return (0, Some(0));
+ }
+
+ if !self.in_progress() {
+ return self.0.iter().fold((1, Some(1)), |acc, multi_iter| {
+ size_hint::mul(acc, multi_iter.iter.size_hint())
+ });
+ }
+
+ self.0.iter().fold(
+ (0, Some(0)),
+ |acc, &MultiProductIter { ref iter, ref iter_orig, cur: _ }| {
+ let cur_size = iter.size_hint();
+ let total_size = iter_orig.size_hint();
+ size_hint::add(size_hint::mul(acc, total_size), cur_size)
+ }
+ )
+ }
+
+ fn last(self) -> Option<Self::Item> {
+ let iter_count = self.0.len();
+
+ let lasts: Self::Item = self.0.into_iter()
+ .map(|multi_iter| multi_iter.iter.last())
+ .while_some()
+ .collect();
+
+ if lasts.len() == iter_count {
+ Some(lasts)
+ } else {
+ None
+ }
+ }
+}
diff --git a/third_party/rust/itertools-0.8.0/src/combinations.rs b/third_party/rust/itertools-0.8.0/src/combinations.rs
new file mode 100644
index 0000000000..a7744151c9
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/src/combinations.rs
@@ -0,0 +1,165 @@
+
+use std::ops::Index;
+use std::fmt;
+
+/// An iterator to iterate through all the `n`-length combinations in an iterator.
+///
+/// See [`.combinations()`](../trait.Itertools.html#method.combinations) for more information.
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct Combinations<I: Iterator> {
+ n: usize,
+ indices: Vec<usize>,
+ pool: LazyBuffer<I>,
+ first: bool,
+}
+
+impl<I> fmt::Debug for Combinations<I>
+ where I: Iterator + fmt::Debug,
+ I::Item: fmt::Debug,
+{
+ debug_fmt_fields!(Combinations, n, indices, pool, first);
+}
+
+/// Create a new `Combinations` from a clonable iterator.
+pub fn combinations<I>(iter: I, n: usize) -> Combinations<I>
+ where I: Iterator
+{
+ let mut indices: Vec<usize> = Vec::with_capacity(n);
+ for i in 0..n {
+ indices.push(i);
+ }
+ let mut pool: LazyBuffer<I> = LazyBuffer::new(iter);
+
+ for _ in 0..n {
+ if !pool.get_next() {
+ break;
+ }
+ }
+
+ Combinations {
+ n: n,
+ indices: indices,
+ pool: pool,
+ first: true,
+ }
+}
+
+impl<I> Iterator for Combinations<I>
+ where I: Iterator,
+ I::Item: Clone
+{
+ type Item = Vec<I::Item>;
+ fn next(&mut self) -> Option<Self::Item> {
+ let mut pool_len = self.pool.len();
+ if self.pool.is_done() {
+ if pool_len == 0 || self.n > pool_len {
+ return None;
+ }
+ }
+
+ if self.first {
+ self.first = false;
+ } else if self.n == 0 {
+ return None;
+ } else {
+ // Scan from the end, looking for an index to increment
+ let mut i: usize = self.n - 1;
+
+ // Check if we need to consume more from the iterator
+ if self.indices[i] == pool_len - 1 && !self.pool.is_done() {
+ if self.pool.get_next() {
+ pool_len += 1;
+ }
+ }
+
+ while self.indices[i] == i + pool_len - self.n {
+ if i > 0 {
+ i -= 1;
+ } else {
+ // Reached the last combination
+ return None;
+ }
+ }
+
+ // Increment index, and reset the ones to its right
+ self.indices[i] += 1;
+ let mut j = i + 1;
+ while j < self.n {
+ self.indices[j] = self.indices[j - 1] + 1;
+ j += 1;
+ }
+ }
+
+ // Create result vector based on the indices
+ let mut result = Vec::with_capacity(self.n);
+ for i in self.indices.iter() {
+ result.push(self.pool[*i].clone());
+ }
+ Some(result)
+ }
+}
+
+#[derive(Debug)]
+struct LazyBuffer<I: Iterator> {
+ it: I,
+ done: bool,
+ buffer: Vec<I::Item>,
+}
+
+impl<I> LazyBuffer<I>
+ where I: Iterator
+{
+ pub fn new(it: I) -> LazyBuffer<I> {
+ let mut it = it;
+ let mut buffer = Vec::new();
+ let done;
+ if let Some(first) = it.next() {
+ buffer.push(first);
+ done = false;
+ } else {
+ done = true;
+ }
+ LazyBuffer {
+ it: it,
+ done: done,
+ buffer: buffer,
+ }
+ }
+
+ pub fn len(&self) -> usize {
+ self.buffer.len()
+ }
+
+ pub fn is_done(&self) -> bool {
+ self.done
+ }
+
+ pub fn get_next(&mut self) -> bool {
+ if self.done {
+ return false;
+ }
+ let next_item = self.it.next();
+ match next_item {
+ Some(x) => {
+ self.buffer.push(x);
+ true
+ }
+ None => {
+ self.done = true;
+ false
+ }
+ }
+ }
+}
+
+impl<I> Index<usize> for LazyBuffer<I>
+ where I: Iterator,
+ I::Item: Sized
+{
+ type Output = I::Item;
+
+ fn index<'b>(&'b self, _index: usize) -> &'b I::Item {
+ self.buffer.index(_index)
+ }
+}
+
diff --git a/third_party/rust/itertools-0.8.0/src/concat_impl.rs b/third_party/rust/itertools-0.8.0/src/concat_impl.rs
new file mode 100644
index 0000000000..05b370e1c6
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/src/concat_impl.rs
@@ -0,0 +1,22 @@
+use Itertools;
+
+/// Combine all an iterator's elements into one element by using `Extend`.
+///
+/// `IntoIterator`-enabled version of `.concat()`
+///
+/// This combinator will extend the first item with each of the rest of the
+/// items of the iterator. If the iterator is empty, the default value of
+/// `I::Item` is returned.
+///
+/// ```rust
+/// use itertools::concat;
+///
+/// let input = vec![vec![1], vec![2, 3], vec![4, 5, 6]];
+/// assert_eq!(concat(input), vec![1, 2, 3, 4, 5, 6]);
+/// ```
+pub fn concat<I>(iterable: I) -> I::Item
+ where I: IntoIterator,
+ I::Item: Extend<<<I as IntoIterator>::Item as IntoIterator>::Item> + IntoIterator + Default
+{
+ iterable.into_iter().fold1(|mut a, b| { a.extend(b); a }).unwrap_or_else(|| <_>::default())
+}
diff --git a/third_party/rust/itertools-0.8.0/src/cons_tuples_impl.rs b/third_party/rust/itertools-0.8.0/src/cons_tuples_impl.rs
new file mode 100644
index 0000000000..9b27e7580f
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/src/cons_tuples_impl.rs
@@ -0,0 +1,68 @@
+
+macro_rules! impl_cons_iter(
+ ($_A:ident, $_B:ident, ) => (); // stop
+
+ ($A:ident, $($B:ident,)*) => (
+ impl_cons_iter!($($B,)*);
+ #[allow(non_snake_case)]
+ impl<X, Iter, $($B),*> Iterator for ConsTuples<Iter, (($($B,)*), X)>
+ where Iter: Iterator<Item = (($($B,)*), X)>,
+ {
+ type Item = ($($B,)* X, );
+ fn next(&mut self) -> Option<Self::Item> {
+ self.iter.next().map(|(($($B,)*), x)| ($($B,)* x, ))
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.iter.size_hint()
+ }
+ fn fold<Acc, Fold>(self, accum: Acc, mut f: Fold) -> Acc
+ where Fold: FnMut(Acc, Self::Item) -> Acc,
+ {
+ self.iter.fold(accum, move |acc, (($($B,)*), x)| f(acc, ($($B,)* x, )))
+ }
+ }
+
+ #[allow(non_snake_case)]
+ impl<X, Iter, $($B),*> DoubleEndedIterator for ConsTuples<Iter, (($($B,)*), X)>
+ where Iter: DoubleEndedIterator<Item = (($($B,)*), X)>,
+ {
+ fn next_back(&mut self) -> Option<Self::Item> {
+ self.iter.next().map(|(($($B,)*), x)| ($($B,)* x, ))
+ }
+ }
+
+ );
+);
+
+impl_cons_iter!(A, B, C, D, E, F, G, H,);
+
+/// An iterator that maps an iterator of tuples like
+/// `((A, B), C)` to an iterator of `(A, B, C)`.
+///
+/// Used by the `iproduct!()` macro.
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+#[derive(Debug)]
+pub struct ConsTuples<I, J>
+ where I: Iterator<Item=J>,
+{
+ iter: I,
+}
+
+impl<I, J> Clone for ConsTuples<I, J>
+ where I: Clone + Iterator<Item=J>,
+{
+ fn clone(&self) -> Self {
+ ConsTuples {
+ iter: self.iter.clone(),
+ }
+ }
+}
+
+/// Create an iterator that maps for example iterators of
+/// `((A, B), C)` to `(A, B, C)`.
+pub fn cons_tuples<I, J>(iterable: I) -> ConsTuples<I, J>
+ where I: Iterator<Item=J>
+{
+ ConsTuples { iter: iterable.into_iter() }
+}
diff --git a/third_party/rust/itertools-0.8.0/src/diff.rs b/third_party/rust/itertools-0.8.0/src/diff.rs
new file mode 100644
index 0000000000..2951bc422e
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/src/diff.rs
@@ -0,0 +1,61 @@
+//! "Diff"ing iterators for caching elements to sequential collections without requiring the new
+//! elements' iterator to be `Clone`.
+//!
+//! - [**Diff**](./enum.Diff.html) (produced by the [**diff_with**](./fn.diff_with.html) function)
+//! describes the difference between two non-`Clone` iterators `I` and `J` after breaking ASAP from
+//! a lock-step comparison.
+
+use free::put_back;
+use structs::PutBack;
+
+/// A type returned by the [`diff_with`](./fn.diff_with.html) function.
+///
+/// `Diff` represents the way in which the elements yielded by the iterator `I` differ to some
+/// iterator `J`.
+pub enum Diff<I, J>
+ where I: Iterator,
+ J: Iterator
+{
+ /// The index of the first non-matching element along with both iterator's remaining elements
+ /// starting with the first mis-match.
+ FirstMismatch(usize, PutBack<I>, PutBack<J>),
+ /// The total number of elements that were in `J` along with the remaining elements of `I`.
+ Shorter(usize, PutBack<I>),
+ /// The total number of elements that were in `I` along with the remaining elements of `J`.
+ Longer(usize, PutBack<J>),
+}
+
+/// Compares every element yielded by both `i` and `j` with the given function in lock-step and
+/// returns a `Diff` which describes how `j` differs from `i`.
+///
+/// If the number of elements yielded by `j` is less than the number of elements yielded by `i`,
+/// the number of `j` elements yielded will be returned along with `i`'s remaining elements as
+/// `Diff::Shorter`.
+///
+/// If the two elements of a step differ, the index of those elements along with the remaining
+/// elements of both `i` and `j` are returned as `Diff::FirstMismatch`.
+///
+/// If `i` becomes exhausted before `j` becomes exhausted, the number of elements in `i` along with
+/// the remaining `j` elements will be returned as `Diff::Longer`.
+pub fn diff_with<I, J, F>(i: I, j: J, is_equal: F)
+ -> Option<Diff<I::IntoIter, J::IntoIter>>
+ where I: IntoIterator,
+ J: IntoIterator,
+ F: Fn(&I::Item, &J::Item) -> bool
+{
+ let mut i = i.into_iter();
+ let mut j = j.into_iter();
+ let mut idx = 0;
+ while let Some(i_elem) = i.next() {
+ match j.next() {
+ None => return Some(Diff::Shorter(idx, put_back(i).with_value(i_elem))),
+ Some(j_elem) => if !is_equal(&i_elem, &j_elem) {
+ let remaining_i = put_back(i).with_value(i_elem);
+ let remaining_j = put_back(j).with_value(j_elem);
+ return Some(Diff::FirstMismatch(idx, remaining_i, remaining_j));
+ },
+ }
+ idx += 1;
+ }
+ j.next().map(|j_elem| Diff::Longer(idx, put_back(j).with_value(j_elem)))
+}
diff --git a/third_party/rust/itertools-0.8.0/src/either_or_both.rs b/third_party/rust/itertools-0.8.0/src/either_or_both.rs
new file mode 100644
index 0000000000..55ae06c6b4
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/src/either_or_both.rs
@@ -0,0 +1,58 @@
+use EitherOrBoth::*;
+
+/// Value that either holds a single A or B, or both.
+#[derive(Clone, PartialEq, Eq, Debug)]
+pub enum EitherOrBoth<A, B> {
+ /// Both values are present.
+ Both(A, B),
+ /// Only the left value of type `A` is present.
+ Left(A),
+ /// Only the right value of type `B` is present.
+ Right(B),
+}
+
+impl<A, B> EitherOrBoth<A, B> {
+ /// If `Left`, or `Both`, return true, otherwise, return false.
+ pub fn has_left(&self) -> bool {
+ self.as_ref().left().is_some()
+ }
+
+ /// If `Right`, or `Both`, return true, otherwise, return false.
+ pub fn has_right(&self) -> bool {
+ self.as_ref().right().is_some()
+ }
+
+ /// If `Left`, or `Both`, return `Some` with the left value, otherwise, return `None`.
+ pub fn left(self) -> Option<A> {
+ match self {
+ Left(left) | Both(left, _) => Some(left),
+ _ => None
+ }
+ }
+
+ /// If `Right`, or `Both`, return `Some` with the right value, otherwise, return `None`.
+ pub fn right(self) -> Option<B> {
+ match self {
+ Right(right) | Both(_, right) => Some(right),
+ _ => None
+ }
+ }
+
+ /// Converts from `&EitherOrBoth<A, B>` to `EitherOrBoth<&A, &B>`.
+ pub fn as_ref(&self) -> EitherOrBoth<&A, &B> {
+ match *self {
+ Left(ref left) => Left(left),
+ Right(ref right) => Right(right),
+ Both(ref left, ref right) => Both(left, right),
+ }
+ }
+
+ /// Converts from `&mut EitherOrBoth<A, B>` to `EitherOrBoth<&mut A, &mut B>`.
+ pub fn as_mut(&mut self) -> EitherOrBoth<&mut A, &mut B> {
+ match *self {
+ Left(ref mut left) => Left(left),
+ Right(ref mut right) => Right(right),
+ Both(ref mut left, ref mut right) => Both(left, right),
+ }
+ }
+}
diff --git a/third_party/rust/itertools-0.8.0/src/format.rs b/third_party/rust/itertools-0.8.0/src/format.rs
new file mode 100644
index 0000000000..c42806b01c
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/src/format.rs
@@ -0,0 +1,113 @@
+use std::fmt;
+use std::cell::RefCell;
+
+/// Format all iterator elements lazily, separated by `sep`.
+///
+/// The format value can only be formatted once, after that the iterator is
+/// exhausted.
+///
+/// See [`.format_with()`](../trait.Itertools.html#method.format_with) for more information.
+pub struct FormatWith<'a, I, F> {
+ sep: &'a str,
+ /// FormatWith uses interior mutability because Display::fmt takes &self.
+ inner: RefCell<Option<(I, F)>>,
+}
+
+/// Format all iterator elements lazily, separated by `sep`.
+///
+/// The format value can only be formatted once, after that the iterator is
+/// exhausted.
+///
+/// See [`.format()`](../trait.Itertools.html#method.format)
+/// for more information.
+#[derive(Clone)]
+pub struct Format<'a, I> {
+ sep: &'a str,
+ /// Format uses interior mutability because Display::fmt takes &self.
+ inner: RefCell<Option<I>>,
+}
+
+pub fn new_format<'a, I, F>(iter: I, separator: &'a str, f: F) -> FormatWith<'a, I, F>
+ where I: Iterator,
+ F: FnMut(I::Item, &mut FnMut(&fmt::Display) -> fmt::Result) -> fmt::Result
+{
+ FormatWith {
+ sep: separator,
+ inner: RefCell::new(Some((iter, f))),
+ }
+}
+
+pub fn new_format_default<'a, I>(iter: I, separator: &'a str) -> Format<'a, I>
+ where I: Iterator,
+{
+ Format {
+ sep: separator,
+ inner: RefCell::new(Some(iter)),
+ }
+}
+
+impl<'a, I, F> fmt::Display for FormatWith<'a, I, F>
+ where I: Iterator,
+ F: FnMut(I::Item, &mut FnMut(&fmt::Display) -> fmt::Result) -> fmt::Result
+{
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ let (mut iter, mut format) = match self.inner.borrow_mut().take() {
+ Some(t) => t,
+ None => panic!("FormatWith: was already formatted once"),
+ };
+
+ if let Some(fst) = iter.next() {
+ try!(format(fst, &mut |disp: &fmt::Display| disp.fmt(f)));
+ for elt in iter {
+ if self.sep.len() > 0 {
+
+ try!(f.write_str(self.sep));
+ }
+ try!(format(elt, &mut |disp: &fmt::Display| disp.fmt(f)));
+ }
+ }
+ Ok(())
+ }
+}
+
+impl<'a, I> Format<'a, I>
+ where I: Iterator,
+{
+ fn format<F>(&self, f: &mut fmt::Formatter, mut cb: F) -> fmt::Result
+ where F: FnMut(&I::Item, &mut fmt::Formatter) -> fmt::Result,
+ {
+ let mut iter = match self.inner.borrow_mut().take() {
+ Some(t) => t,
+ None => panic!("Format: was already formatted once"),
+ };
+
+ if let Some(fst) = iter.next() {
+ try!(cb(&fst, f));
+ for elt in iter {
+ if self.sep.len() > 0 {
+ try!(f.write_str(self.sep));
+ }
+ try!(cb(&elt, f));
+ }
+ }
+ Ok(())
+ }
+}
+
+macro_rules! impl_format {
+ ($($fmt_trait:ident)*) => {
+ $(
+ impl<'a, I> fmt::$fmt_trait for Format<'a, I>
+ where I: Iterator,
+ I::Item: fmt::$fmt_trait,
+ {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ self.format(f, fmt::$fmt_trait::fmt)
+ }
+ }
+ )*
+ }
+}
+
+impl_format!{Display Debug
+ UpperExp LowerExp UpperHex LowerHex Octal Binary Pointer}
diff --git a/third_party/rust/itertools-0.8.0/src/free.rs b/third_party/rust/itertools-0.8.0/src/free.rs
new file mode 100644
index 0000000000..2bc72a9aa1
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/src/free.rs
@@ -0,0 +1,236 @@
+//! Free functions that create iterator adaptors or call iterator methods.
+//!
+//! The benefit of free functions is that they accept any `IntoIterator` as
+//! argument, so the resulting code may be easier to read.
+
+#[cfg(feature = "use_std")]
+use std::fmt::Display;
+use std::iter::{self, Zip};
+#[cfg(feature = "use_std")]
+type VecIntoIter<T> = ::std::vec::IntoIter<T>;
+
+#[cfg(feature = "use_std")]
+use Itertools;
+
+pub use adaptors::{
+ interleave,
+ merge,
+ put_back,
+};
+#[cfg(feature = "use_std")]
+pub use put_back_n_impl::put_back_n;
+#[cfg(feature = "use_std")]
+pub use multipeek_impl::multipeek;
+#[cfg(feature = "use_std")]
+pub use kmerge_impl::kmerge;
+pub use zip_eq_impl::zip_eq;
+pub use merge_join::merge_join_by;
+#[cfg(feature = "use_std")]
+pub use rciter_impl::rciter;
+
+/// Iterate `iterable` with a running index.
+///
+/// `IntoIterator` enabled version of `.enumerate()`.
+///
+/// ```
+/// use itertools::enumerate;
+///
+/// for (i, elt) in enumerate(&[1, 2, 3]) {
+/// /* loop body */
+/// }
+/// ```
+pub fn enumerate<I>(iterable: I) -> iter::Enumerate<I::IntoIter>
+ where I: IntoIterator
+{
+ iterable.into_iter().enumerate()
+}
+
+/// Iterate `iterable` in reverse.
+///
+/// `IntoIterator` enabled version of `.rev()`.
+///
+/// ```
+/// use itertools::rev;
+///
+/// for elt in rev(&[1, 2, 3]) {
+/// /* loop body */
+/// }
+/// ```
+pub fn rev<I>(iterable: I) -> iter::Rev<I::IntoIter>
+ where I: IntoIterator,
+ I::IntoIter: DoubleEndedIterator
+{
+ iterable.into_iter().rev()
+}
+
+/// Iterate `i` and `j` in lock step.
+///
+/// `IntoIterator` enabled version of `i.zip(j)`.
+///
+/// ```
+/// use itertools::zip;
+///
+/// let data = [1, 2, 3, 4, 5];
+/// for (a, b) in zip(&data, &data[1..]) {
+/// /* loop body */
+/// }
+/// ```
+pub fn zip<I, J>(i: I, j: J) -> Zip<I::IntoIter, J::IntoIter>
+ where I: IntoIterator,
+ J: IntoIterator
+{
+ i.into_iter().zip(j)
+}
+
+/// Create an iterator that first iterates `i` and then `j`.
+///
+/// `IntoIterator` enabled version of `i.chain(j)`.
+///
+/// ```
+/// use itertools::chain;
+///
+/// for elt in chain(&[1, 2, 3], &[4]) {
+/// /* loop body */
+/// }
+/// ```
+pub fn chain<I, J>(i: I, j: J) -> iter::Chain<<I as IntoIterator>::IntoIter, <J as IntoIterator>::IntoIter>
+ where I: IntoIterator,
+ J: IntoIterator<Item = I::Item>
+{
+ i.into_iter().chain(j)
+}
+
+/// Create an iterator that clones each element from &T to T
+///
+/// `IntoIterator` enabled version of `i.cloned()`.
+///
+/// ```
+/// use itertools::cloned;
+///
+/// assert_eq!(cloned(b"abc").next(), Some(b'a'));
+/// ```
+pub fn cloned<'a, I, T: 'a>(iterable: I) -> iter::Cloned<I::IntoIter>
+ where I: IntoIterator<Item=&'a T>,
+ T: Clone,
+{
+ iterable.into_iter().cloned()
+}
+
+/// Perform a fold operation over the iterable.
+///
+/// `IntoIterator` enabled version of `i.fold(init, f)`
+///
+/// ```
+/// use itertools::fold;
+///
+/// assert_eq!(fold(&[1., 2., 3.], 0., |a, &b| f32::max(a, b)), 3.);
+/// ```
+pub fn fold<I, B, F>(iterable: I, init: B, f: F) -> B
+ where I: IntoIterator,
+ F: FnMut(B, I::Item) -> B
+{
+ iterable.into_iter().fold(init, f)
+}
+
+/// Test whether the predicate holds for all elements in the iterable.
+///
+/// `IntoIterator` enabled version of `i.all(f)`
+///
+/// ```
+/// use itertools::all;
+///
+/// assert!(all(&[1, 2, 3], |elt| *elt > 0));
+/// ```
+pub fn all<I, F>(iterable: I, f: F) -> bool
+ where I: IntoIterator,
+ F: FnMut(I::Item) -> bool
+{
+ iterable.into_iter().all(f)
+}
+
+/// Test whether the predicate holds for any elements in the iterable.
+///
+/// `IntoIterator` enabled version of `i.any(f)`
+///
+/// ```
+/// use itertools::any;
+///
+/// assert!(any(&[0, -1, 2], |elt| *elt > 0));
+/// ```
+pub fn any<I, F>(iterable: I, f: F) -> bool
+ where I: IntoIterator,
+ F: FnMut(I::Item) -> bool
+{
+ iterable.into_iter().any(f)
+}
+
+/// Return the maximum value of the iterable.
+///
+/// `IntoIterator` enabled version of `i.max()`.
+///
+/// ```
+/// use itertools::max;
+///
+/// assert_eq!(max(0..10), Some(9));
+/// ```
+pub fn max<I>(iterable: I) -> Option<I::Item>
+ where I: IntoIterator,
+ I::Item: Ord
+{
+ iterable.into_iter().max()
+}
+
+/// Return the minimum value of the iterable.
+///
+/// `IntoIterator` enabled version of `i.min()`.
+///
+/// ```
+/// use itertools::min;
+///
+/// assert_eq!(min(0..10), Some(0));
+/// ```
+pub fn min<I>(iterable: I) -> Option<I::Item>
+ where I: IntoIterator,
+ I::Item: Ord
+{
+ iterable.into_iter().min()
+}
+
+
+/// Combine all iterator elements into one String, seperated by `sep`.
+///
+/// `IntoIterator` enabled version of `iterable.join(sep)`.
+///
+/// ```
+/// use itertools::join;
+///
+/// assert_eq!(join(&[1, 2, 3], ", "), "1, 2, 3");
+/// ```
+#[cfg(feature = "use_std")]
+pub fn join<I>(iterable: I, sep: &str) -> String
+ where I: IntoIterator,
+ I::Item: Display
+{
+ iterable.into_iter().join(sep)
+}
+
+/// Sort all iterator elements into a new iterator in ascending order.
+///
+/// `IntoIterator` enabled version of [`iterable.sorted()`][1].
+///
+/// [1]: trait.Itertools.html#method.sorted
+///
+/// ```
+/// use itertools::sorted;
+/// use itertools::assert_equal;
+///
+/// assert_equal(sorted("rust".chars()), "rstu".chars());
+/// ```
+#[cfg(feature = "use_std")]
+pub fn sorted<I>(iterable: I) -> VecIntoIter<I::Item>
+ where I: IntoIterator,
+ I::Item: Ord
+{
+ iterable.into_iter().sorted()
+}
+
diff --git a/third_party/rust/itertools-0.8.0/src/group_map.rs b/third_party/rust/itertools-0.8.0/src/group_map.rs
new file mode 100644
index 0000000000..be9f8420d8
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/src/group_map.rs
@@ -0,0 +1,22 @@
+#![cfg(feature = "use_std")]
+
+use std::collections::HashMap;
+use std::hash::Hash;
+use std::iter::Iterator;
+
+/// Return a `HashMap` of keys mapped to a list of their corresponding values.
+///
+/// See [`.into_group_map()`](../trait.Itertools.html#method.into_group_map)
+/// for more information.
+pub fn into_group_map<I, K, V>(iter: I) -> HashMap<K, Vec<V>>
+ where I: Iterator<Item=(K, V)>,
+ K: Hash + Eq,
+{
+ let mut lookup = HashMap::new();
+
+ for (key, val) in iter {
+ lookup.entry(key).or_insert(Vec::new()).push(val);
+ }
+
+ lookup
+} \ No newline at end of file
diff --git a/third_party/rust/itertools-0.8.0/src/groupbylazy.rs b/third_party/rust/itertools-0.8.0/src/groupbylazy.rs
new file mode 100644
index 0000000000..ff253e845d
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/src/groupbylazy.rs
@@ -0,0 +1,571 @@
+use std::cell::{Cell, RefCell};
+use std::vec;
+
+/// A trait to unify FnMut for GroupBy with the chunk key in IntoChunks
+trait KeyFunction<A> {
+ type Key;
+ fn call_mut(&mut self, arg: A) -> Self::Key;
+}
+
+impl<'a, A, K, F: ?Sized> KeyFunction<A> for F
+ where F: FnMut(A) -> K
+{
+ type Key = K;
+ #[inline]
+ fn call_mut(&mut self, arg: A) -> Self::Key {
+ (*self)(arg)
+ }
+}
+
+
+/// ChunkIndex acts like the grouping key function for IntoChunks
+#[derive(Debug)]
+struct ChunkIndex {
+ size: usize,
+ index: usize,
+ key: usize,
+}
+
+impl ChunkIndex {
+ #[inline(always)]
+ fn new(size: usize) -> Self {
+ ChunkIndex {
+ size: size,
+ index: 0,
+ key: 0,
+ }
+ }
+}
+
+impl<'a, A> KeyFunction<A> for ChunkIndex {
+ type Key = usize;
+ #[inline(always)]
+ fn call_mut(&mut self, _arg: A) -> Self::Key {
+ if self.index == self.size {
+ self.key += 1;
+ self.index = 0;
+ }
+ self.index += 1;
+ self.key
+ }
+}
+
+
+struct GroupInner<K, I, F>
+ where I: Iterator
+{
+ key: F,
+ iter: I,
+ current_key: Option<K>,
+ current_elt: Option<I::Item>,
+ /// flag set if iterator is exhausted
+ done: bool,
+ /// Index of group we are currently buffering or visiting
+ top_group: usize,
+ /// Least index for which we still have elements buffered
+ oldest_buffered_group: usize,
+ /// Group index for `buffer[0]` -- the slots
+ /// bottom_group..oldest_buffered_group are unused and will be erased when
+ /// that range is large enough.
+ bottom_group: usize,
+ /// Buffered groups, from `bottom_group` (index 0) to `top_group`.
+ buffer: Vec<vec::IntoIter<I::Item>>,
+ /// index of last group iter that was dropped, usize::MAX == none
+ dropped_group: usize,
+}
+
+impl<K, I, F> GroupInner<K, I, F>
+ where I: Iterator,
+ F: for<'a> KeyFunction<&'a I::Item, Key=K>,
+ K: PartialEq,
+{
+ /// `client`: Index of group that requests next element
+ #[inline(always)]
+ fn step(&mut self, client: usize) -> Option<I::Item> {
+ /*
+ println!("client={}, bottom_group={}, oldest_buffered_group={}, top_group={}, buffers=[{}]",
+ client, self.bottom_group, self.oldest_buffered_group,
+ self.top_group,
+ self.buffer.iter().map(|elt| elt.len()).format(", "));
+ */
+ if client < self.oldest_buffered_group {
+ None
+ } else if client < self.top_group ||
+ (client == self.top_group &&
+ self.buffer.len() > self.top_group - self.bottom_group)
+ {
+ self.lookup_buffer(client)
+ } else if self.done {
+ None
+ } else if self.top_group == client {
+ self.step_current()
+ } else {
+ self.step_buffering(client)
+ }
+ }
+
+ #[inline(never)]
+ fn lookup_buffer(&mut self, client: usize) -> Option<I::Item> {
+ // if `bufidx` doesn't exist in self.buffer, it might be empty
+ let bufidx = client - self.bottom_group;
+ if client < self.oldest_buffered_group {
+ return None;
+ }
+ let elt = self.buffer.get_mut(bufidx).and_then(|queue| queue.next());
+ if elt.is_none() && client == self.oldest_buffered_group {
+ // FIXME: VecDeque is unfortunately not zero allocation when empty,
+ // so we do this job manually.
+ // `bottom_group..oldest_buffered_group` is unused, and if it's large enough, erase it.
+ self.oldest_buffered_group += 1;
+ // skip forward further empty queues too
+ while self.buffer.get(self.oldest_buffered_group - self.bottom_group)
+ .map_or(false, |buf| buf.len() == 0)
+ {
+ self.oldest_buffered_group += 1;
+ }
+
+ let nclear = self.oldest_buffered_group - self.bottom_group;
+ if nclear > 0 && nclear >= self.buffer.len() / 2 {
+ let mut i = 0;
+ self.buffer.retain(|buf| {
+ i += 1;
+ debug_assert!(buf.len() == 0 || i > nclear);
+ i > nclear
+ });
+ self.bottom_group = self.oldest_buffered_group;
+ }
+ }
+ elt
+ }
+
+ /// Take the next element from the iterator, and set the done
+ /// flag if exhausted. Must not be called after done.
+ #[inline(always)]
+ fn next_element(&mut self) -> Option<I::Item> {
+ debug_assert!(!self.done);
+ match self.iter.next() {
+ None => { self.done = true; None }
+ otherwise => otherwise,
+ }
+ }
+
+
+ #[inline(never)]
+ fn step_buffering(&mut self, client: usize) -> Option<I::Item> {
+ // requested a later group -- walk through the current group up to
+ // the requested group index, and buffer the elements (unless
+ // the group is marked as dropped).
+ // Because the `Groups` iterator is always the first to request
+ // each group index, client is the next index efter top_group.
+ debug_assert!(self.top_group + 1 == client);
+ let mut group = Vec::new();
+
+ if let Some(elt) = self.current_elt.take() {
+ if self.top_group != self.dropped_group {
+ group.push(elt);
+ }
+ }
+ let mut first_elt = None; // first element of the next group
+
+ while let Some(elt) = self.next_element() {
+ let key = self.key.call_mut(&elt);
+ match self.current_key.take() {
+ None => {}
+ Some(old_key) => if old_key != key {
+ self.current_key = Some(key);
+ first_elt = Some(elt);
+ break;
+ },
+ }
+ self.current_key = Some(key);
+ if self.top_group != self.dropped_group {
+ group.push(elt);
+ }
+ }
+
+ if self.top_group != self.dropped_group {
+ self.push_next_group(group);
+ }
+ if first_elt.is_some() {
+ self.top_group += 1;
+ debug_assert!(self.top_group == client);
+ }
+ first_elt
+ }
+
+ fn push_next_group(&mut self, group: Vec<I::Item>) {
+ // When we add a new buffered group, fill up slots between oldest_buffered_group and top_group
+ while self.top_group - self.bottom_group > self.buffer.len() {
+ if self.buffer.is_empty() {
+ self.bottom_group += 1;
+ self.oldest_buffered_group += 1;
+ } else {
+ self.buffer.push(Vec::new().into_iter());
+ }
+ }
+ self.buffer.push(group.into_iter());
+ debug_assert!(self.top_group + 1 - self.bottom_group == self.buffer.len());
+ }
+
+ /// This is the immediate case, where we use no buffering
+ #[inline]
+ fn step_current(&mut self) -> Option<I::Item> {
+ debug_assert!(!self.done);
+ if let elt @ Some(..) = self.current_elt.take() {
+ return elt;
+ }
+ match self.next_element() {
+ None => None,
+ Some(elt) => {
+ let key = self.key.call_mut(&elt);
+ match self.current_key.take() {
+ None => {}
+ Some(old_key) => if old_key != key {
+ self.current_key = Some(key);
+ self.current_elt = Some(elt);
+ self.top_group += 1;
+ return None;
+ },
+ }
+ self.current_key = Some(key);
+ Some(elt)
+ }
+ }
+ }
+
+ /// Request the just started groups' key.
+ ///
+ /// `client`: Index of group
+ ///
+ /// **Panics** if no group key is available.
+ fn group_key(&mut self, client: usize) -> K {
+ // This can only be called after we have just returned the first
+ // element of a group.
+ // Perform this by simply buffering one more element, grabbing the
+ // next key.
+ debug_assert!(!self.done);
+ debug_assert!(client == self.top_group);
+ debug_assert!(self.current_key.is_some());
+ debug_assert!(self.current_elt.is_none());
+ let old_key = self.current_key.take().unwrap();
+ if let Some(elt) = self.next_element() {
+ let key = self.key.call_mut(&elt);
+ if old_key != key {
+ self.top_group += 1;
+ }
+ self.current_key = Some(key);
+ self.current_elt = Some(elt);
+ }
+ old_key
+ }
+}
+
+impl<K, I, F> GroupInner<K, I, F>
+ where I: Iterator,
+{
+ /// Called when a group is dropped
+ fn drop_group(&mut self, client: usize) {
+ // It's only useful to track the maximal index
+ if self.dropped_group == !0 || client > self.dropped_group {
+ self.dropped_group = client;
+ }
+ }
+}
+
+/// `GroupBy` is the storage for the lazy grouping operation.
+///
+/// If the groups are consumed in their original order, or if each
+/// group is dropped without keeping it around, then `GroupBy` uses
+/// no allocations. It needs allocations only if several group iterators
+/// are alive at the same time.
+///
+/// This type implements `IntoIterator` (it is **not** an iterator
+/// itself), because the group iterators need to borrow from this
+/// value. It should be stored in a local variable or temporary and
+/// iterated.
+///
+/// See [`.group_by()`](../trait.Itertools.html#method.group_by) for more information.
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct GroupBy<K, I, F>
+ where I: Iterator,
+{
+ inner: RefCell<GroupInner<K, I, F>>,
+ // the group iterator's current index. Keep this in the main value
+ // so that simultaneous iterators all use the same state.
+ index: Cell<usize>,
+}
+
+/// Create a new
+pub fn new<K, J, F>(iter: J, f: F) -> GroupBy<K, J::IntoIter, F>
+ where J: IntoIterator,
+ F: FnMut(&J::Item) -> K,
+{
+ GroupBy {
+ inner: RefCell::new(GroupInner {
+ key: f,
+ iter: iter.into_iter(),
+ current_key: None,
+ current_elt: None,
+ done: false,
+ top_group: 0,
+ oldest_buffered_group: 0,
+ bottom_group: 0,
+ buffer: Vec::new(),
+ dropped_group: !0,
+ }),
+ index: Cell::new(0),
+ }
+}
+
+impl<K, I, F> GroupBy<K, I, F>
+ where I: Iterator,
+{
+ /// `client`: Index of group that requests next element
+ fn step(&self, client: usize) -> Option<I::Item>
+ where F: FnMut(&I::Item) -> K,
+ K: PartialEq,
+ {
+ self.inner.borrow_mut().step(client)
+ }
+
+ /// `client`: Index of group
+ fn drop_group(&self, client: usize) {
+ self.inner.borrow_mut().drop_group(client)
+ }
+}
+
+impl<'a, K, I, F> IntoIterator for &'a GroupBy<K, I, F>
+ where I: Iterator,
+ I::Item: 'a,
+ F: FnMut(&I::Item) -> K,
+ K: PartialEq
+{
+ type Item = (K, Group<'a, K, I, F>);
+ type IntoIter = Groups<'a, K, I, F>;
+
+ fn into_iter(self) -> Self::IntoIter {
+ Groups { parent: self }
+ }
+}
+
+
+/// An iterator that yields the Group iterators.
+///
+/// Iterator element type is `(K, Group)`:
+/// the group's key `K` and the group's iterator.
+///
+/// See [`.group_by()`](../trait.Itertools.html#method.group_by) for more information.
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct Groups<'a, K: 'a, I: 'a, F: 'a>
+ where I: Iterator,
+ I::Item: 'a
+{
+ parent: &'a GroupBy<K, I, F>,
+}
+
+impl<'a, K, I, F> Iterator for Groups<'a, K, I, F>
+ where I: Iterator,
+ I::Item: 'a,
+ F: FnMut(&I::Item) -> K,
+ K: PartialEq
+{
+ type Item = (K, Group<'a, K, I, F>);
+
+ #[inline]
+ fn next(&mut self) -> Option<Self::Item> {
+ let index = self.parent.index.get();
+ self.parent.index.set(index + 1);
+ let inner = &mut *self.parent.inner.borrow_mut();
+ inner.step(index).map(|elt| {
+ let key = inner.group_key(index);
+ (key, Group {
+ parent: self.parent,
+ index: index,
+ first: Some(elt),
+ })
+ })
+ }
+}
+
+/// An iterator for the elements in a single group.
+///
+/// Iterator element type is `I::Item`.
+pub struct Group<'a, K: 'a, I: 'a, F: 'a>
+ where I: Iterator,
+ I::Item: 'a,
+{
+ parent: &'a GroupBy<K, I, F>,
+ index: usize,
+ first: Option<I::Item>,
+}
+
+impl<'a, K, I, F> Drop for Group<'a, K, I, F>
+ where I: Iterator,
+ I::Item: 'a,
+{
+ fn drop(&mut self) {
+ self.parent.drop_group(self.index);
+ }
+}
+
+impl<'a, K, I, F> Iterator for Group<'a, K, I, F>
+ where I: Iterator,
+ I::Item: 'a,
+ F: FnMut(&I::Item) -> K,
+ K: PartialEq,
+{
+ type Item = I::Item;
+ #[inline]
+ fn next(&mut self) -> Option<Self::Item> {
+ if let elt @ Some(..) = self.first.take() {
+ return elt;
+ }
+ self.parent.step(self.index)
+ }
+}
+
+///// IntoChunks /////
+
+/// Create a new
+pub fn new_chunks<J>(iter: J, size: usize) -> IntoChunks<J::IntoIter>
+ where J: IntoIterator,
+{
+ IntoChunks {
+ inner: RefCell::new(GroupInner {
+ key: ChunkIndex::new(size),
+ iter: iter.into_iter(),
+ current_key: None,
+ current_elt: None,
+ done: false,
+ top_group: 0,
+ oldest_buffered_group: 0,
+ bottom_group: 0,
+ buffer: Vec::new(),
+ dropped_group: !0,
+ }),
+ index: Cell::new(0),
+ }
+}
+
+
+/// `ChunkLazy` is the storage for a lazy chunking operation.
+///
+/// `IntoChunks` behaves just like `GroupBy`: it is iterable, and
+/// it only buffers if several chunk iterators are alive at the same time.
+///
+/// This type implements `IntoIterator` (it is **not** an iterator
+/// itself), because the chunk iterators need to borrow from this
+/// value. It should be stored in a local variable or temporary and
+/// iterated.
+///
+/// Iterator element type is `Chunk`, each chunk's iterator.
+///
+/// See [`.chunks()`](../trait.Itertools.html#method.chunks) for more information.
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct IntoChunks<I>
+ where I: Iterator,
+{
+ inner: RefCell<GroupInner<usize, I, ChunkIndex>>,
+ // the chunk iterator's current index. Keep this in the main value
+ // so that simultaneous iterators all use the same state.
+ index: Cell<usize>,
+}
+
+
+impl<I> IntoChunks<I>
+ where I: Iterator,
+{
+ /// `client`: Index of chunk that requests next element
+ fn step(&self, client: usize) -> Option<I::Item> {
+ self.inner.borrow_mut().step(client)
+ }
+
+ /// `client`: Index of chunk
+ fn drop_group(&self, client: usize) {
+ self.inner.borrow_mut().drop_group(client)
+ }
+}
+
+impl<'a, I> IntoIterator for &'a IntoChunks<I>
+ where I: Iterator,
+ I::Item: 'a,
+{
+ type Item = Chunk<'a, I>;
+ type IntoIter = Chunks<'a, I>;
+
+ fn into_iter(self) -> Self::IntoIter {
+ Chunks {
+ parent: self,
+ }
+ }
+}
+
+
+/// An iterator that yields the Chunk iterators.
+///
+/// Iterator element type is `Chunk`.
+///
+/// See [`.chunks()`](../trait.Itertools.html#method.chunks) for more information.
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct Chunks<'a, I: 'a>
+ where I: Iterator,
+ I::Item: 'a,
+{
+ parent: &'a IntoChunks<I>,
+}
+
+impl<'a, I> Iterator for Chunks<'a, I>
+ where I: Iterator,
+ I::Item: 'a,
+{
+ type Item = Chunk<'a, I>;
+
+ #[inline]
+ fn next(&mut self) -> Option<Self::Item> {
+ let index = self.parent.index.get();
+ self.parent.index.set(index + 1);
+ let inner = &mut *self.parent.inner.borrow_mut();
+ inner.step(index).map(|elt| {
+ Chunk {
+ parent: self.parent,
+ index: index,
+ first: Some(elt),
+ }
+ })
+ }
+}
+
+/// An iterator for the elements in a single chunk.
+///
+/// Iterator element type is `I::Item`.
+pub struct Chunk<'a, I: 'a>
+ where I: Iterator,
+ I::Item: 'a,
+{
+ parent: &'a IntoChunks<I>,
+ index: usize,
+ first: Option<I::Item>,
+}
+
+impl<'a, I> Drop for Chunk<'a, I>
+ where I: Iterator,
+ I::Item: 'a,
+{
+ fn drop(&mut self) {
+ self.parent.drop_group(self.index);
+ }
+}
+
+impl<'a, I> Iterator for Chunk<'a, I>
+ where I: Iterator,
+ I::Item: 'a,
+{
+ type Item = I::Item;
+ #[inline]
+ fn next(&mut self) -> Option<Self::Item> {
+ if let elt @ Some(..) = self.first.take() {
+ return elt;
+ }
+ self.parent.step(self.index)
+ }
+}
diff --git a/third_party/rust/itertools-0.8.0/src/impl_macros.rs b/third_party/rust/itertools-0.8.0/src/impl_macros.rs
new file mode 100644
index 0000000000..b41760aee8
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/src/impl_macros.rs
@@ -0,0 +1,14 @@
+//!
+//! Implementation's internal macros
+
+macro_rules! debug_fmt_fields {
+ ($tyname:ident, $($($field:ident).+),*) => {
+ fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
+ f.debug_struct(stringify!($tyname))
+ $(
+ .field(stringify!($($field).+), &self.$($field).+)
+ )*
+ .finish()
+ }
+ }
+}
diff --git a/third_party/rust/itertools-0.8.0/src/intersperse.rs b/third_party/rust/itertools-0.8.0/src/intersperse.rs
new file mode 100644
index 0000000000..b1dc732117
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/src/intersperse.rs
@@ -0,0 +1,60 @@
+use std::iter::Fuse;
+use super::size_hint;
+
+#[derive(Clone)]
+/// An iterator adaptor to insert a particular value
+/// between each element of the adapted iterator.
+///
+/// Iterator element type is `I::Item`
+///
+/// This iterator is *fused*.
+///
+/// See [`.intersperse()`](../trait.Itertools.html#method.intersperse) for more information.
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+#[derive(Debug)]
+pub struct Intersperse<I>
+ where I: Iterator
+{
+ element: I::Item,
+ iter: Fuse<I>,
+ peek: Option<I::Item>,
+}
+
+/// Create a new Intersperse iterator
+pub fn intersperse<I>(iter: I, elt: I::Item) -> Intersperse<I>
+ where I: Iterator
+{
+ let mut iter = iter.fuse();
+ Intersperse {
+ peek: iter.next(),
+ iter: iter,
+ element: elt,
+ }
+}
+
+impl<I> Iterator for Intersperse<I>
+ where I: Iterator,
+ I::Item: Clone
+{
+ type Item = I::Item;
+ #[inline]
+ fn next(&mut self) -> Option<I::Item> {
+ if self.peek.is_some() {
+ self.peek.take()
+ } else {
+ self.peek = self.iter.next();
+ if self.peek.is_some() {
+ Some(self.element.clone())
+ } else {
+ None
+ }
+ }
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ // 2 * SH + { 1 or 0 }
+ let has_peek = self.peek.is_some() as usize;
+ let sh = self.iter.size_hint();
+ size_hint::add_scalar(size_hint::add(sh, sh), has_peek)
+ }
+}
diff --git a/third_party/rust/itertools-0.8.0/src/kmerge_impl.rs b/third_party/rust/itertools-0.8.0/src/kmerge_impl.rs
new file mode 100644
index 0000000000..0720899e37
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/src/kmerge_impl.rs
@@ -0,0 +1,256 @@
+
+use size_hint;
+use Itertools;
+
+use std::mem::replace;
+use std::fmt;
+
+macro_rules! clone_fields {
+ ($name:ident, $base:expr, $($field:ident),+) => (
+ $name {
+ $(
+ $field : $base . $field .clone()
+ ),*
+ }
+ );
+}
+
+/// Head element and Tail iterator pair
+///
+/// `PartialEq`, `Eq`, `PartialOrd` and `Ord` are implemented by comparing sequences based on
+/// first items (which are guaranteed to exist).
+///
+/// The meanings of `PartialOrd` and `Ord` are reversed so as to turn the heap used in
+/// `KMerge` into a min-heap.
+#[derive(Debug)]
+struct HeadTail<I>
+ where I: Iterator
+{
+ head: I::Item,
+ tail: I,
+}
+
+impl<I> HeadTail<I>
+ where I: Iterator
+{
+ /// Constructs a `HeadTail` from an `Iterator`. Returns `None` if the `Iterator` is empty.
+ fn new(mut it: I) -> Option<HeadTail<I>> {
+ let head = it.next();
+ head.map(|h| {
+ HeadTail {
+ head: h,
+ tail: it,
+ }
+ })
+ }
+
+ /// Get the next element and update `head`, returning the old head in `Some`.
+ ///
+ /// Returns `None` when the tail is exhausted (only `head` then remains).
+ fn next(&mut self) -> Option<I::Item> {
+ if let Some(next) = self.tail.next() {
+ Some(replace(&mut self.head, next))
+ } else {
+ None
+ }
+ }
+
+ /// Hints at the size of the sequence, same as the `Iterator` method.
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ size_hint::add_scalar(self.tail.size_hint(), 1)
+ }
+}
+
+impl<I> Clone for HeadTail<I>
+ where I: Iterator + Clone,
+ I::Item: Clone
+{
+ fn clone(&self) -> Self {
+ clone_fields!(HeadTail, self, head, tail)
+ }
+}
+
+/// Make `data` a heap (min-heap w.r.t the sorting).
+fn heapify<T, S>(data: &mut [T], mut less_than: S)
+ where S: FnMut(&T, &T) -> bool
+{
+ for i in (0..data.len() / 2).rev() {
+ sift_down(data, i, &mut less_than);
+ }
+}
+
+/// Sift down element at `index` (`heap` is a min-heap wrt the ordering)
+fn sift_down<T, S>(heap: &mut [T], index: usize, mut less_than: S)
+ where S: FnMut(&T, &T) -> bool
+{
+ debug_assert!(index <= heap.len());
+ let mut pos = index;
+ let mut child = 2 * pos + 1;
+ // the `pos` conditional is to avoid a bounds check
+ while pos < heap.len() && child < heap.len() {
+ let right = child + 1;
+
+ // pick the smaller of the two children
+ if right < heap.len() && less_than(&heap[right], &heap[child]) {
+ child = right;
+ }
+
+ // sift down is done if we are already in order
+ if !less_than(&heap[child], &heap[pos]) {
+ return;
+ }
+ heap.swap(pos, child);
+ pos = child;
+ child = 2 * pos + 1;
+ }
+}
+
+/// An iterator adaptor that merges an abitrary number of base iterators in ascending order.
+/// If all base iterators are sorted (ascending), the result is sorted.
+///
+/// Iterator element type is `I::Item`.
+///
+/// See [`.kmerge()`](../trait.Itertools.html#method.kmerge) for more information.
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct KMerge<I>
+ where I: Iterator
+{
+ heap: Vec<HeadTail<I>>,
+}
+
+impl<I> fmt::Debug for KMerge<I>
+ where I: Iterator + fmt::Debug,
+ I::Item: fmt::Debug,
+{
+ debug_fmt_fields!(KMerge, heap);
+}
+
+/// Create an iterator that merges elements of the contained iterators using
+/// the ordering function.
+///
+/// Equivalent to `iterable.into_iter().kmerge()`.
+///
+/// ```
+/// use itertools::kmerge;
+///
+/// for elt in kmerge(vec![vec![0, 2, 4], vec![1, 3, 5], vec![6, 7]]) {
+/// /* loop body */
+/// }
+/// ```
+pub fn kmerge<I>(iterable: I) -> KMerge<<I::Item as IntoIterator>::IntoIter>
+ where I: IntoIterator,
+ I::Item: IntoIterator,
+ <<I as IntoIterator>::Item as IntoIterator>::Item: PartialOrd
+{
+ let iter = iterable.into_iter();
+ let (lower, _) = iter.size_hint();
+ let mut heap = Vec::with_capacity(lower);
+ heap.extend(iter.filter_map(|it| HeadTail::new(it.into_iter())));
+ heapify(&mut heap, |a, b| a.head < b.head);
+ KMerge { heap: heap }
+}
+
+impl<I> Clone for KMerge<I>
+ where I: Iterator + Clone,
+ I::Item: Clone
+{
+ fn clone(&self) -> KMerge<I> {
+ clone_fields!(KMerge, self, heap)
+ }
+}
+
+impl<I> Iterator for KMerge<I>
+ where I: Iterator,
+ I::Item: PartialOrd
+{
+ type Item = I::Item;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ if self.heap.is_empty() {
+ return None;
+ }
+ let result = if let Some(next) = self.heap[0].next() {
+ next
+ } else {
+ self.heap.swap_remove(0).head
+ };
+ sift_down(&mut self.heap, 0, |a, b| a.head < b.head);
+ Some(result)
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.heap.iter()
+ .map(|i| i.size_hint())
+ .fold1(size_hint::add)
+ .unwrap_or((0, Some(0)))
+ }
+}
+
+/// An iterator adaptor that merges an abitrary number of base iterators
+/// according to an ordering function.
+///
+/// Iterator element type is `I::Item`.
+///
+/// See [`.kmerge_by()`](../trait.Itertools.html#method.kmerge_by) for more
+/// information.
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct KMergeBy<I, F>
+ where I: Iterator,
+{
+ heap: Vec<HeadTail<I>>,
+ less_than: F,
+}
+
+impl<I, F> fmt::Debug for KMergeBy<I, F>
+ where I: Iterator + fmt::Debug,
+ I::Item: fmt::Debug,
+{
+ debug_fmt_fields!(KMergeBy, heap);
+}
+
+/// Create an iterator that merges elements of the contained iterators.
+///
+/// Equivalent to `iterable.into_iter().kmerge_by(less_than)`.
+pub fn kmerge_by<I, F>(iterable: I, mut less_than: F)
+ -> KMergeBy<<I::Item as IntoIterator>::IntoIter, F>
+ where I: IntoIterator,
+ I::Item: IntoIterator,
+ F: FnMut(&<<I as IntoIterator>::Item as IntoIterator>::Item,
+ &<<I as IntoIterator>::Item as IntoIterator>::Item) -> bool
+{
+ let iter = iterable.into_iter();
+ let (lower, _) = iter.size_hint();
+ let mut heap: Vec<_> = Vec::with_capacity(lower);
+ heap.extend(iter.filter_map(|it| HeadTail::new(it.into_iter())));
+ heapify(&mut heap, |a, b| less_than(&a.head, &b.head));
+ KMergeBy { heap: heap, less_than: less_than }
+}
+
+
+impl<I, F> Iterator for KMergeBy<I, F>
+ where I: Iterator,
+ F: FnMut(&I::Item, &I::Item) -> bool
+{
+ type Item = I::Item;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ if self.heap.is_empty() {
+ return None;
+ }
+ let result = if let Some(next) = self.heap[0].next() {
+ next
+ } else {
+ self.heap.swap_remove(0).head
+ };
+ let less_than = &mut self.less_than;
+ sift_down(&mut self.heap, 0, |a, b| less_than(&a.head, &b.head));
+ Some(result)
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.heap.iter()
+ .map(|i| i.size_hint())
+ .fold1(size_hint::add)
+ .unwrap_or((0, Some(0)))
+ }
+}
diff --git a/third_party/rust/itertools-0.8.0/src/lib.rs b/third_party/rust/itertools-0.8.0/src/lib.rs
new file mode 100644
index 0000000000..ab98bcdf9b
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/src/lib.rs
@@ -0,0 +1,2176 @@
+#![warn(missing_docs)]
+#![crate_name="itertools"]
+#![cfg_attr(not(feature = "use_std"), no_std)]
+
+//! Extra iterator adaptors, functions and macros.
+//!
+//! To extend [`Iterator`] with methods in this crate, import
+//! the [`Itertools` trait](./trait.Itertools.html):
+//!
+//! ```
+//! use itertools::Itertools;
+//! ```
+//!
+//! Now, new methods like [`interleave`](./trait.Itertools.html#method.interleave)
+//! are available on all iterators:
+//!
+//! ```
+//! use itertools::Itertools;
+//!
+//! let it = (1..3).interleave(vec![-1, -2]);
+//! itertools::assert_equal(it, vec![1, -1, 2, -2]);
+//! ```
+//!
+//! Most iterator methods are also provided as functions (with the benefit
+//! that they convert parameters using [`IntoIterator`]):
+//!
+//! ```
+//! use itertools::interleave;
+//!
+//! for elt in interleave(&[1, 2, 3], &[2, 3, 4]) {
+//! /* loop body */
+//! }
+//! ```
+//!
+//! ## Crate Features
+//!
+//! - `use_std`
+//! - Enabled by default.
+//! - Disable to compile itertools using `#![no_std]`. This disables
+//! any items that depend on collections (like `group_by`, `unique`,
+//! `kmerge`, `join` and many more).
+//!
+//! ## Rust Version
+//!
+//! This version of itertools requires Rust 1.24 or later.
+//!
+//! [`Iterator`]: https://doc.rust-lang.org/std/iter/trait.Iterator.html
+#![doc(html_root_url="https://docs.rs/itertools/0.8/")]
+
+extern crate either;
+
+#[cfg(not(feature = "use_std"))]
+extern crate core as std;
+
+pub use either::Either;
+
+#[cfg(feature = "use_std")]
+use std::collections::HashMap;
+use std::iter::{IntoIterator};
+use std::cmp::Ordering;
+use std::fmt;
+#[cfg(feature = "use_std")]
+use std::hash::Hash;
+#[cfg(feature = "use_std")]
+use std::fmt::Write;
+#[cfg(feature = "use_std")]
+type VecIntoIter<T> = ::std::vec::IntoIter<T>;
+#[cfg(feature = "use_std")]
+use std::iter::FromIterator;
+
+#[macro_use]
+mod impl_macros;
+
+// for compatibility with no std and macros
+#[doc(hidden)]
+pub use std::iter as __std_iter;
+
+/// The concrete iterator types.
+pub mod structs {
+ pub use adaptors::{
+ Dedup,
+ Interleave,
+ InterleaveShortest,
+ Product,
+ PutBack,
+ Batching,
+ MapInto,
+ MapResults,
+ Merge,
+ MergeBy,
+ TakeWhileRef,
+ WhileSome,
+ Coalesce,
+ TupleCombinations,
+ Positions,
+ Update,
+ };
+ #[allow(deprecated)]
+ pub use adaptors::Step;
+ #[cfg(feature = "use_std")]
+ pub use adaptors::MultiProduct;
+ #[cfg(feature = "use_std")]
+ pub use combinations::Combinations;
+ pub use cons_tuples_impl::ConsTuples;
+ pub use format::{Format, FormatWith};
+ #[cfg(feature = "use_std")]
+ pub use groupbylazy::{IntoChunks, Chunk, Chunks, GroupBy, Group, Groups};
+ pub use intersperse::Intersperse;
+ #[cfg(feature = "use_std")]
+ pub use kmerge_impl::{KMerge, KMergeBy};
+ pub use merge_join::MergeJoinBy;
+ #[cfg(feature = "use_std")]
+ pub use multipeek_impl::MultiPeek;
+ pub use pad_tail::PadUsing;
+ pub use peeking_take_while::PeekingTakeWhile;
+ pub use process_results_impl::ProcessResults;
+ #[cfg(feature = "use_std")]
+ pub use put_back_n_impl::PutBackN;
+ #[cfg(feature = "use_std")]
+ pub use rciter_impl::RcIter;
+ pub use repeatn::RepeatN;
+ #[allow(deprecated)]
+ pub use sources::{RepeatCall, Unfold, Iterate};
+ #[cfg(feature = "use_std")]
+ pub use tee::Tee;
+ pub use tuple_impl::{TupleBuffer, TupleWindows, Tuples};
+ #[cfg(feature = "use_std")]
+ pub use unique_impl::{Unique, UniqueBy};
+ pub use with_position::WithPosition;
+ pub use zip_eq_impl::ZipEq;
+ pub use zip_longest::ZipLongest;
+ pub use ziptuple::Zip;
+}
+#[allow(deprecated)]
+pub use structs::*;
+pub use concat_impl::concat;
+pub use cons_tuples_impl::cons_tuples;
+pub use diff::diff_with;
+pub use diff::Diff;
+#[cfg(feature = "use_std")]
+pub use kmerge_impl::{kmerge_by};
+pub use minmax::MinMaxResult;
+pub use peeking_take_while::PeekingNext;
+pub use process_results_impl::process_results;
+pub use repeatn::repeat_n;
+#[allow(deprecated)]
+pub use sources::{repeat_call, unfold, iterate};
+pub use with_position::Position;
+pub use ziptuple::multizip;
+mod adaptors;
+mod either_or_both;
+pub use either_or_both::EitherOrBoth;
+#[doc(hidden)]
+pub mod free;
+#[doc(inline)]
+pub use free::*;
+mod concat_impl;
+mod cons_tuples_impl;
+#[cfg(feature = "use_std")]
+mod combinations;
+mod diff;
+mod format;
+#[cfg(feature = "use_std")]
+mod group_map;
+#[cfg(feature = "use_std")]
+mod groupbylazy;
+mod intersperse;
+#[cfg(feature = "use_std")]
+mod kmerge_impl;
+mod merge_join;
+mod minmax;
+#[cfg(feature = "use_std")]
+mod multipeek_impl;
+mod pad_tail;
+mod peeking_take_while;
+mod process_results_impl;
+#[cfg(feature = "use_std")]
+mod put_back_n_impl;
+#[cfg(feature = "use_std")]
+mod rciter_impl;
+mod repeatn;
+mod size_hint;
+mod sources;
+#[cfg(feature = "use_std")]
+mod tee;
+mod tuple_impl;
+#[cfg(feature = "use_std")]
+mod unique_impl;
+mod with_position;
+mod zip_eq_impl;
+mod zip_longest;
+mod ziptuple;
+
+#[macro_export]
+/// Create an iterator over the “cartesian product” of iterators.
+///
+/// Iterator element type is like `(A, B, ..., E)` if formed
+/// from iterators `(I, J, ..., M)` with element types `I::Item = A`, `J::Item = B`, etc.
+///
+/// ```
+/// #[macro_use] extern crate itertools;
+/// # fn main() {
+/// // Iterate over the coordinates of a 4 x 4 x 4 grid
+/// // from (0, 0, 0), (0, 0, 1), .., (0, 1, 0), (0, 1, 1), .. etc until (3, 3, 3)
+/// for (i, j, k) in iproduct!(0..4, 0..4, 0..4) {
+/// // ..
+/// }
+/// # }
+/// ```
+///
+/// **Note:** To enable the macros in this crate, use the `#[macro_use]`
+/// attribute when importing the crate:
+///
+/// ```
+/// #[macro_use] extern crate itertools;
+/// # fn main() { }
+/// ```
+macro_rules! iproduct {
+ (@flatten $I:expr,) => (
+ $I
+ );
+ (@flatten $I:expr, $J:expr, $($K:expr,)*) => (
+ iproduct!(@flatten $crate::cons_tuples(iproduct!($I, $J)), $($K,)*)
+ );
+ ($I:expr) => (
+ $crate::__std_iter::IntoIterator::into_iter($I)
+ );
+ ($I:expr, $J:expr) => (
+ $crate::Itertools::cartesian_product(iproduct!($I), iproduct!($J))
+ );
+ ($I:expr, $J:expr, $($K:expr),+) => (
+ iproduct!(@flatten iproduct!($I, $J), $($K,)+)
+ );
+}
+
+#[macro_export]
+/// Create an iterator running multiple iterators in lockstep.
+///
+/// The `izip!` iterator yields elements until any subiterator
+/// returns `None`.
+///
+/// This is a version of the standard ``.zip()`` that's supporting more than
+/// two iterators. The iterator element type is a tuple with one element
+/// from each of the input iterators. Just like ``.zip()``, the iteration stops
+/// when the shortest of the inputs reaches its end.
+///
+/// **Note:** The result of this macro is in the general case an iterator
+/// composed of repeated `.zip()` and a `.map()`; it has an anonymous type.
+/// The special cases of one and two arguments produce the equivalent of
+/// `$a.into_iter()` and `$a.into_iter().zip($b)` respectively.
+///
+/// Prefer this macro `izip!()` over [`multizip`] for the performance benefits
+/// of using the standard library `.zip()`.
+///
+/// [`multizip`]: fn.multizip.html
+///
+/// ```
+/// #[macro_use] extern crate itertools;
+/// # fn main() {
+///
+/// // iterate over three sequences side-by-side
+/// let mut results = [0, 0, 0, 0];
+/// let inputs = [3, 7, 9, 6];
+///
+/// for (r, index, input) in izip!(&mut results, 0..10, &inputs) {
+/// *r = index * 10 + input;
+/// }
+///
+/// assert_eq!(results, [0 + 3, 10 + 7, 29, 36]);
+/// # }
+/// ```
+///
+/// **Note:** To enable the macros in this crate, use the `#[macro_use]`
+/// attribute when importing the crate:
+///
+/// ```
+/// #[macro_use] extern crate itertools;
+/// # fn main() { }
+/// ```
+macro_rules! izip {
+ // @closure creates a tuple-flattening closure for .map() call. usage:
+ // @closure partial_pattern => partial_tuple , rest , of , iterators
+ // eg. izip!( @closure ((a, b), c) => (a, b, c) , dd , ee )
+ ( @closure $p:pat => $tup:expr ) => {
+ |$p| $tup
+ };
+
+ // The "b" identifier is a different identifier on each recursion level thanks to hygiene.
+ ( @closure $p:pat => ( $($tup:tt)* ) , $_iter:expr $( , $tail:expr )* ) => {
+ izip!(@closure ($p, b) => ( $($tup)*, b ) $( , $tail )*)
+ };
+
+ // unary
+ ($first:expr $(,)*) => {
+ $crate::__std_iter::IntoIterator::into_iter($first)
+ };
+
+ // binary
+ ($first:expr, $second:expr $(,)*) => {
+ izip!($first)
+ .zip($second)
+ };
+
+ // n-ary where n > 2
+ ( $first:expr $( , $rest:expr )* $(,)* ) => {
+ izip!($first)
+ $(
+ .zip($rest)
+ )*
+ .map(
+ izip!(@closure a => (a) $( , $rest )*)
+ )
+ };
+}
+
+/// An [`Iterator`] blanket implementation that provides extra adaptors and
+/// methods.
+///
+/// This trait defines a number of methods. They are divided into two groups:
+///
+/// * *Adaptors* take an iterator and parameter as input, and return
+/// a new iterator value. These are listed first in the trait. An example
+/// of an adaptor is [`.interleave()`](#method.interleave)
+///
+/// * *Regular methods* are those that don't return iterators and instead
+/// return a regular value of some other kind.
+/// [`.next_tuple()`](#method.next_tuple) is an example and the first regular
+/// method in the list.
+///
+/// [`Iterator`]: https://doc.rust-lang.org/std/iter/trait.Iterator.html
+pub trait Itertools : Iterator {
+ // adaptors
+
+ /// Alternate elements from two iterators until both have run out.
+ ///
+ /// Iterator element type is `Self::Item`.
+ ///
+ /// This iterator is *fused*.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// let it = (1..7).interleave(vec![-1, -2]);
+ /// itertools::assert_equal(it, vec![1, -1, 2, -2, 3, 4, 5, 6]);
+ /// ```
+ fn interleave<J>(self, other: J) -> Interleave<Self, J::IntoIter>
+ where J: IntoIterator<Item = Self::Item>,
+ Self: Sized
+ {
+ interleave(self, other)
+ }
+
+ /// Alternate elements from two iterators until at least one of them has run
+ /// out.
+ ///
+ /// Iterator element type is `Self::Item`.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// let it = (1..7).interleave_shortest(vec![-1, -2]);
+ /// itertools::assert_equal(it, vec![1, -1, 2, -2, 3]);
+ /// ```
+ fn interleave_shortest<J>(self, other: J) -> InterleaveShortest<Self, J::IntoIter>
+ where J: IntoIterator<Item = Self::Item>,
+ Self: Sized
+ {
+ adaptors::interleave_shortest(self, other.into_iter())
+ }
+
+ /// An iterator adaptor to insert a particular value
+ /// between each element of the adapted iterator.
+ ///
+ /// Iterator element type is `Self::Item`.
+ ///
+ /// This iterator is *fused*.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// itertools::assert_equal((0..3).intersperse(8), vec![0, 8, 1, 8, 2]);
+ /// ```
+ fn intersperse(self, element: Self::Item) -> Intersperse<Self>
+ where Self: Sized,
+ Self::Item: Clone
+ {
+ intersperse::intersperse(self, element)
+ }
+
+ /// Create an iterator which iterates over both this and the specified
+ /// iterator simultaneously, yielding pairs of two optional elements.
+ ///
+ /// This iterator is *fused*.
+ ///
+ /// As long as neither input iterator is exhausted yet, it yields two values
+ /// via `EitherOrBoth::Both`.
+ ///
+ /// When the parameter iterator is exhausted, it only yields a value from the
+ /// `self` iterator via `EitherOrBoth::Left`.
+ ///
+ /// When the `self` iterator is exhausted, it only yields a value from the
+ /// parameter iterator via `EitherOrBoth::Right`.
+ ///
+ /// When both iterators return `None`, all further invocations of `.next()`
+ /// will return `None`.
+ ///
+ /// Iterator element type is
+ /// [`EitherOrBoth<Self::Item, J::Item>`](enum.EitherOrBoth.html).
+ ///
+ /// ```rust
+ /// use itertools::EitherOrBoth::{Both, Right};
+ /// use itertools::Itertools;
+ /// let it = (0..1).zip_longest(1..3);
+ /// itertools::assert_equal(it, vec![Both(0, 1), Right(2)]);
+ /// ```
+ #[inline]
+ fn zip_longest<J>(self, other: J) -> ZipLongest<Self, J::IntoIter>
+ where J: IntoIterator,
+ Self: Sized
+ {
+ zip_longest::zip_longest(self, other.into_iter())
+ }
+
+ /// Create an iterator which iterates over both this and the specified
+ /// iterator simultaneously, yielding pairs of elements.
+ ///
+ /// **Panics** if the iterators reach an end and they are not of equal
+ /// lengths.
+ #[inline]
+ fn zip_eq<J>(self, other: J) -> ZipEq<Self, J::IntoIter>
+ where J: IntoIterator,
+ Self: Sized
+ {
+ zip_eq(self, other)
+ }
+
+ /// A “meta iterator adaptor”. Its closure receives a reference to the
+ /// iterator and may pick off as many elements as it likes, to produce the
+ /// next iterator element.
+ ///
+ /// Iterator element type is `B`.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// // An adaptor that gathers elements in pairs
+ /// let pit = (0..4).batching(|it| {
+ /// match it.next() {
+ /// None => None,
+ /// Some(x) => match it.next() {
+ /// None => None,
+ /// Some(y) => Some((x, y)),
+ /// }
+ /// }
+ /// });
+ ///
+ /// itertools::assert_equal(pit, vec![(0, 1), (2, 3)]);
+ /// ```
+ ///
+ fn batching<B, F>(self, f: F) -> Batching<Self, F>
+ where F: FnMut(&mut Self) -> Option<B>,
+ Self: Sized
+ {
+ adaptors::batching(self, f)
+ }
+
+ /// Return an *iterable* that can group iterator elements.
+ /// Consecutive elements that map to the same key (“runs”), are assigned
+ /// to the same group.
+ ///
+ /// `GroupBy` is the storage for the lazy grouping operation.
+ ///
+ /// If the groups are consumed in order, or if each group's iterator is
+ /// dropped without keeping it around, then `GroupBy` uses no
+ /// allocations. It needs allocations only if several group iterators
+ /// are alive at the same time.
+ ///
+ /// This type implements `IntoIterator` (it is **not** an iterator
+ /// itself), because the group iterators need to borrow from this
+ /// value. It should be stored in a local variable or temporary and
+ /// iterated.
+ ///
+ /// Iterator element type is `(K, Group)`: the group's key and the
+ /// group iterator.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// // group data into runs of larger than zero or not.
+ /// let data = vec![1, 3, -2, -2, 1, 0, 1, 2];
+ /// // groups: |---->|------>|--------->|
+ ///
+ /// // Note: The `&` is significant here, `GroupBy` is iterable
+ /// // only by reference. You can also call `.into_iter()` explicitly.
+ /// for (key, group) in &data.into_iter().group_by(|elt| *elt >= 0) {
+ /// // Check that the sum of each group is +/- 4.
+ /// assert_eq!(4, group.sum::<i32>().abs());
+ /// }
+ /// ```
+ #[cfg(feature = "use_std")]
+ fn group_by<K, F>(self, key: F) -> GroupBy<K, Self, F>
+ where Self: Sized,
+ F: FnMut(&Self::Item) -> K,
+ K: PartialEq,
+ {
+ groupbylazy::new(self, key)
+ }
+
+ /// Return an *iterable* that can chunk the iterator.
+ ///
+ /// Yield subiterators (chunks) that each yield a fixed number elements,
+ /// determined by `size`. The last chunk will be shorter if there aren't
+ /// enough elements.
+ ///
+ /// `IntoChunks` is based on `GroupBy`: it is iterable (implements
+ /// `IntoIterator`, **not** `Iterator`), and it only buffers if several
+ /// chunk iterators are alive at the same time.
+ ///
+ /// Iterator element type is `Chunk`, each chunk's iterator.
+ ///
+ /// **Panics** if `size` is 0.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// let data = vec![1, 1, 2, -2, 6, 0, 3, 1];
+ /// //chunk size=3 |------->|-------->|--->|
+ ///
+ /// // Note: The `&` is significant here, `IntoChunks` is iterable
+ /// // only by reference. You can also call `.into_iter()` explicitly.
+ /// for chunk in &data.into_iter().chunks(3) {
+ /// // Check that the sum of each chunk is 4.
+ /// assert_eq!(4, chunk.sum());
+ /// }
+ /// ```
+ #[cfg(feature = "use_std")]
+ fn chunks(self, size: usize) -> IntoChunks<Self>
+ where Self: Sized,
+ {
+ assert!(size != 0);
+ groupbylazy::new_chunks(self, size)
+ }
+
+ /// Return an iterator over all contiguous windows producing tuples of
+ /// a specific size (up to 4).
+ ///
+ /// `tuple_windows` clones the iterator elements so that they can be
+ /// part of successive windows, this makes it most suited for iterators
+ /// of references and other values that are cheap to copy.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ /// let mut v = Vec::new();
+ /// for (a, b) in (1..5).tuple_windows() {
+ /// v.push((a, b));
+ /// }
+ /// assert_eq!(v, vec![(1, 2), (2, 3), (3, 4)]);
+ ///
+ /// let mut it = (1..5).tuple_windows();
+ /// assert_eq!(Some((1, 2, 3)), it.next());
+ /// assert_eq!(Some((2, 3, 4)), it.next());
+ /// assert_eq!(None, it.next());
+ ///
+ /// // this requires a type hint
+ /// let it = (1..5).tuple_windows::<(_, _, _)>();
+ /// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4)]);
+ ///
+ /// // you can also specify the complete type
+ /// use itertools::TupleWindows;
+ /// use std::ops::Range;
+ ///
+ /// let it: TupleWindows<Range<u32>, (u32, u32, u32)> = (1..5).tuple_windows();
+ /// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4)]);
+ /// ```
+ fn tuple_windows<T>(self) -> TupleWindows<Self, T>
+ where Self: Sized + Iterator<Item = T::Item>,
+ T: tuple_impl::TupleCollect,
+ T::Item: Clone
+ {
+ tuple_impl::tuple_windows(self)
+ }
+
+ /// Return an iterator that groups the items in tuples of a specific size
+ /// (up to 4).
+ ///
+ /// See also the method [`.next_tuple()`](#method.next_tuple).
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ /// let mut v = Vec::new();
+ /// for (a, b) in (1..5).tuples() {
+ /// v.push((a, b));
+ /// }
+ /// assert_eq!(v, vec![(1, 2), (3, 4)]);
+ ///
+ /// let mut it = (1..7).tuples();
+ /// assert_eq!(Some((1, 2, 3)), it.next());
+ /// assert_eq!(Some((4, 5, 6)), it.next());
+ /// assert_eq!(None, it.next());
+ ///
+ /// // this requires a type hint
+ /// let it = (1..7).tuples::<(_, _, _)>();
+ /// itertools::assert_equal(it, vec![(1, 2, 3), (4, 5, 6)]);
+ ///
+ /// // you can also specify the complete type
+ /// use itertools::Tuples;
+ /// use std::ops::Range;
+ ///
+ /// let it: Tuples<Range<u32>, (u32, u32, u32)> = (1..7).tuples();
+ /// itertools::assert_equal(it, vec![(1, 2, 3), (4, 5, 6)]);
+ /// ```
+ ///
+ /// See also [`Tuples::into_buffer`](structs/struct.Tuples.html#method.into_buffer).
+ fn tuples<T>(self) -> Tuples<Self, T>
+ where Self: Sized + Iterator<Item = T::Item>,
+ T: tuple_impl::TupleCollect
+ {
+ tuple_impl::tuples(self)
+ }
+
+ /// Split into an iterator pair that both yield all elements from
+ /// the original iterator.
+ ///
+ /// **Note:** If the iterator is clonable, prefer using that instead
+ /// of using this method. It is likely to be more efficient.
+ ///
+ /// Iterator element type is `Self::Item`.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ /// let xs = vec![0, 1, 2, 3];
+ ///
+ /// let (mut t1, t2) = xs.into_iter().tee();
+ /// itertools::assert_equal(t1.next(), Some(0));
+ /// itertools::assert_equal(t2, 0..4);
+ /// itertools::assert_equal(t1, 1..4);
+ /// ```
+ #[cfg(feature = "use_std")]
+ fn tee(self) -> (Tee<Self>, Tee<Self>)
+ where Self: Sized,
+ Self::Item: Clone
+ {
+ tee::new(self)
+ }
+
+ /// Return an iterator adaptor that steps `n` elements in the base iterator
+ /// for each iteration.
+ ///
+ /// The iterator steps by yielding the next element from the base iterator,
+ /// then skipping forward `n - 1` elements.
+ ///
+ /// Iterator element type is `Self::Item`.
+ ///
+ /// **Panics** if the step is 0.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// let it = (0..8).step(3);
+ /// itertools::assert_equal(it, vec![0, 3, 6]);
+ /// ```
+ #[deprecated(note="Use std .step_by() instead", since="0.8")]
+ #[allow(deprecated)]
+ fn step(self, n: usize) -> Step<Self>
+ where Self: Sized
+ {
+ adaptors::step(self, n)
+ }
+
+ /// Convert each item of the iterator using the `Into` trait.
+ ///
+ /// ```rust
+ /// use itertools::Itertools;
+ ///
+ /// (1i32..42i32).map_into::<f64>().collect_vec();
+ /// ```
+ fn map_into<R>(self) -> MapInto<Self, R>
+ where Self: Sized,
+ Self::Item: Into<R>,
+ {
+ adaptors::map_into(self)
+ }
+
+ /// Return an iterator adaptor that applies the provided closure
+ /// to every `Result::Ok` value. `Result::Err` values are
+ /// unchanged.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// let input = vec![Ok(41), Err(false), Ok(11)];
+ /// let it = input.into_iter().map_results(|i| i + 1);
+ /// itertools::assert_equal(it, vec![Ok(42), Err(false), Ok(12)]);
+ /// ```
+ fn map_results<F, T, U, E>(self, f: F) -> MapResults<Self, F>
+ where Self: Iterator<Item = Result<T, E>> + Sized,
+ F: FnMut(T) -> U,
+ {
+ adaptors::map_results(self, f)
+ }
+
+ /// Return an iterator adaptor that merges the two base iterators in
+ /// ascending order. If both base iterators are sorted (ascending), the
+ /// result is sorted.
+ ///
+ /// Iterator element type is `Self::Item`.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// let a = (0..11).step(3);
+ /// let b = (0..11).step(5);
+ /// let it = a.merge(b);
+ /// itertools::assert_equal(it, vec![0, 0, 3, 5, 6, 9, 10]);
+ /// ```
+ fn merge<J>(self, other: J) -> Merge<Self, J::IntoIter>
+ where Self: Sized,
+ Self::Item: PartialOrd,
+ J: IntoIterator<Item = Self::Item>
+ {
+ merge(self, other)
+ }
+
+ /// Return an iterator adaptor that merges the two base iterators in order.
+ /// This is much like `.merge()` but allows for a custom ordering.
+ ///
+ /// This can be especially useful for sequences of tuples.
+ ///
+ /// Iterator element type is `Self::Item`.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// let a = (0..).zip("bc".chars());
+ /// let b = (0..).zip("ad".chars());
+ /// let it = a.merge_by(b, |x, y| x.1 <= y.1);
+ /// itertools::assert_equal(it, vec![(0, 'a'), (0, 'b'), (1, 'c'), (1, 'd')]);
+ /// ```
+
+ fn merge_by<J, F>(self, other: J, is_first: F) -> MergeBy<Self, J::IntoIter, F>
+ where Self: Sized,
+ J: IntoIterator<Item = Self::Item>,
+ F: FnMut(&Self::Item, &Self::Item) -> bool
+ {
+ adaptors::merge_by_new(self, other.into_iter(), is_first)
+ }
+
+ /// Create an iterator that merges items from both this and the specified
+ /// iterator in ascending order.
+ ///
+ /// It chooses whether to pair elements based on the `Ordering` returned by the
+ /// specified compare function. At any point, inspecting the tip of the
+ /// iterators `I` and `J` as items `i` of type `I::Item` and `j` of type
+ /// `J::Item` respectively, the resulting iterator will:
+ ///
+ /// - Emit `EitherOrBoth::Left(i)` when `i < j`,
+ /// and remove `i` from its source iterator
+ /// - Emit `EitherOrBoth::Right(j)` when `i > j`,
+ /// and remove `j` from its source iterator
+ /// - Emit `EitherOrBoth::Both(i, j)` when `i == j`,
+ /// and remove both `i` and `j` from their respective source iterators
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ /// use itertools::EitherOrBoth::{Left, Right, Both};
+ ///
+ /// let ki = (0..10).step(3);
+ /// let ku = (0..10).step(5);
+ /// let ki_ku = ki.merge_join_by(ku, |i, j| i.cmp(j)).map(|either| {
+ /// match either {
+ /// Left(_) => "Ki",
+ /// Right(_) => "Ku",
+ /// Both(_, _) => "KiKu"
+ /// }
+ /// });
+ ///
+ /// itertools::assert_equal(ki_ku, vec!["KiKu", "Ki", "Ku", "Ki", "Ki"]);
+ /// ```
+ #[inline]
+ fn merge_join_by<J, F>(self, other: J, cmp_fn: F) -> MergeJoinBy<Self, J::IntoIter, F>
+ where J: IntoIterator,
+ F: FnMut(&Self::Item, &J::Item) -> std::cmp::Ordering,
+ Self: Sized
+ {
+ merge_join_by(self, other, cmp_fn)
+ }
+
+
+ /// Return an iterator adaptor that flattens an iterator of iterators by
+ /// merging them in ascending order.
+ ///
+ /// If all base iterators are sorted (ascending), the result is sorted.
+ ///
+ /// Iterator element type is `Self::Item`.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// let a = (0..6).step(3);
+ /// let b = (1..6).step(3);
+ /// let c = (2..6).step(3);
+ /// let it = vec![a, b, c].into_iter().kmerge();
+ /// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 5]);
+ /// ```
+ #[cfg(feature = "use_std")]
+ fn kmerge(self) -> KMerge<<Self::Item as IntoIterator>::IntoIter>
+ where Self: Sized,
+ Self::Item: IntoIterator,
+ <Self::Item as IntoIterator>::Item: PartialOrd,
+ {
+ kmerge(self)
+ }
+
+ /// Return an iterator adaptor that flattens an iterator of iterators by
+ /// merging them according to the given closure.
+ ///
+ /// The closure `first` is called with two elements *a*, *b* and should
+ /// return `true` if *a* is ordered before *b*.
+ ///
+ /// If all base iterators are sorted according to `first`, the result is
+ /// sorted.
+ ///
+ /// Iterator element type is `Self::Item`.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// let a = vec![-1f64, 2., 3., -5., 6., -7.];
+ /// let b = vec![0., 2., -4.];
+ /// let mut it = vec![a, b].into_iter().kmerge_by(|a, b| a.abs() < b.abs());
+ /// assert_eq!(it.next(), Some(0.));
+ /// assert_eq!(it.last(), Some(-7.));
+ /// ```
+ #[cfg(feature = "use_std")]
+ fn kmerge_by<F>(self, first: F)
+ -> KMergeBy<<Self::Item as IntoIterator>::IntoIter, F>
+ where Self: Sized,
+ Self::Item: IntoIterator,
+ F: FnMut(&<Self::Item as IntoIterator>::Item,
+ &<Self::Item as IntoIterator>::Item) -> bool
+ {
+ kmerge_by(self, first)
+ }
+
+ /// Return an iterator adaptor that iterates over the cartesian product of
+ /// the element sets of two iterators `self` and `J`.
+ ///
+ /// Iterator element type is `(Self::Item, J::Item)`.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// let it = (0..2).cartesian_product("αβ".chars());
+ /// itertools::assert_equal(it, vec![(0, 'α'), (0, 'β'), (1, 'α'), (1, 'β')]);
+ /// ```
+ fn cartesian_product<J>(self, other: J) -> Product<Self, J::IntoIter>
+ where Self: Sized,
+ Self::Item: Clone,
+ J: IntoIterator,
+ J::IntoIter: Clone
+ {
+ adaptors::cartesian_product(self, other.into_iter())
+ }
+
+ /// Return an iterator adaptor that iterates over the cartesian product of
+ /// all subiterators returned by meta-iterator `self`.
+ ///
+ /// All provided iterators must yield the same `Item` type. To generate
+ /// the product of iterators yielding multiple types, use the
+ /// [`iproduct`](macro.iproduct.html) macro instead.
+ ///
+ ///
+ /// The iterator element type is `Vec<T>`, where `T` is the iterator element
+ /// of the subiterators.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ /// let mut multi_prod = (0..3).map(|i| (i * 2)..(i * 2 + 2))
+ /// .multi_cartesian_product();
+ /// assert_eq!(multi_prod.next(), Some(vec![0, 2, 4]));
+ /// assert_eq!(multi_prod.next(), Some(vec![0, 2, 5]));
+ /// assert_eq!(multi_prod.next(), Some(vec![0, 3, 4]));
+ /// assert_eq!(multi_prod.next(), Some(vec![0, 3, 5]));
+ /// assert_eq!(multi_prod.next(), Some(vec![1, 2, 4]));
+ /// assert_eq!(multi_prod.next(), Some(vec![1, 2, 5]));
+ /// assert_eq!(multi_prod.next(), Some(vec![1, 3, 4]));
+ /// assert_eq!(multi_prod.next(), Some(vec![1, 3, 5]));
+ /// assert_eq!(multi_prod.next(), None);
+ /// ```
+ #[cfg(feature = "use_std")]
+ fn multi_cartesian_product(self) -> MultiProduct<<Self::Item as IntoIterator>::IntoIter>
+ where Self: Iterator + Sized,
+ Self::Item: IntoIterator,
+ <Self::Item as IntoIterator>::IntoIter: Clone,
+ <Self::Item as IntoIterator>::Item: Clone
+ {
+ adaptors::multi_cartesian_product(self)
+ }
+
+ /// Return an iterator adaptor that uses the passed-in closure to
+ /// optionally merge together consecutive elements.
+ ///
+ /// The closure `f` is passed two elements, `previous` and `current` and may
+ /// return either (1) `Ok(combined)` to merge the two values or
+ /// (2) `Err((previous', current'))` to indicate they can't be merged.
+ /// In (2), the value `previous'` is emitted by the iterator.
+ /// Either (1) `combined` or (2) `current'` becomes the previous value
+ /// when coalesce continues with the next pair of elements to merge. The
+ /// value that remains at the end is also emitted by the iterator.
+ ///
+ /// Iterator element type is `Self::Item`.
+ ///
+ /// This iterator is *fused*.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// // sum same-sign runs together
+ /// let data = vec![-1., -2., -3., 3., 1., 0., -1.];
+ /// itertools::assert_equal(data.into_iter().coalesce(|x, y|
+ /// if (x >= 0.) == (y >= 0.) {
+ /// Ok(x + y)
+ /// } else {
+ /// Err((x, y))
+ /// }),
+ /// vec![-6., 4., -1.]);
+ /// ```
+ fn coalesce<F>(self, f: F) -> Coalesce<Self, F>
+ where Self: Sized,
+ F: FnMut(Self::Item, Self::Item)
+ -> Result<Self::Item, (Self::Item, Self::Item)>
+ {
+ adaptors::coalesce(self, f)
+ }
+
+ /// Remove duplicates from sections of consecutive identical elements.
+ /// If the iterator is sorted, all elements will be unique.
+ ///
+ /// Iterator element type is `Self::Item`.
+ ///
+ /// This iterator is *fused*.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// let data = vec![1., 1., 2., 3., 3., 2., 2.];
+ /// itertools::assert_equal(data.into_iter().dedup(),
+ /// vec![1., 2., 3., 2.]);
+ /// ```
+ fn dedup(self) -> Dedup<Self>
+ where Self: Sized,
+ Self::Item: PartialEq,
+ {
+ adaptors::dedup(self)
+ }
+
+ /// Return an iterator adaptor that filters out elements that have
+ /// already been produced once during the iteration. Duplicates
+ /// are detected using hash and equality.
+ ///
+ /// Clones of visited elements are stored in a hash set in the
+ /// iterator.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// let data = vec![10, 20, 30, 20, 40, 10, 50];
+ /// itertools::assert_equal(data.into_iter().unique(),
+ /// vec![10, 20, 30, 40, 50]);
+ /// ```
+ #[cfg(feature = "use_std")]
+ fn unique(self) -> Unique<Self>
+ where Self: Sized,
+ Self::Item: Clone + Eq + Hash
+ {
+ unique_impl::unique(self)
+ }
+
+ /// Return an iterator adaptor that filters out elements that have
+ /// already been produced once during the iteration.
+ ///
+ /// Duplicates are detected by comparing the key they map to
+ /// with the keying function `f` by hash and equality.
+ /// The keys are stored in a hash set in the iterator.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// let data = vec!["a", "bb", "aa", "c", "ccc"];
+ /// itertools::assert_equal(data.into_iter().unique_by(|s| s.len()),
+ /// vec!["a", "bb", "ccc"]);
+ /// ```
+ #[cfg(feature = "use_std")]
+ fn unique_by<V, F>(self, f: F) -> UniqueBy<Self, V, F>
+ where Self: Sized,
+ V: Eq + Hash,
+ F: FnMut(&Self::Item) -> V
+ {
+ unique_impl::unique_by(self, f)
+ }
+
+ /// Return an iterator adaptor that borrows from this iterator and
+ /// takes items while the closure `accept` returns `true`.
+ ///
+ /// This adaptor can only be used on iterators that implement `PeekingNext`
+ /// like `.peekable()`, `put_back` and a few other collection iterators.
+ ///
+ /// The last and rejected element (first `false`) is still available when
+ /// `peeking_take_while` is done.
+ ///
+ ///
+ /// See also [`.take_while_ref()`](#method.take_while_ref)
+ /// which is a similar adaptor.
+ fn peeking_take_while<F>(&mut self, accept: F) -> PeekingTakeWhile<Self, F>
+ where Self: Sized + PeekingNext,
+ F: FnMut(&Self::Item) -> bool,
+ {
+ peeking_take_while::peeking_take_while(self, accept)
+ }
+
+ /// Return an iterator adaptor that borrows from a `Clone`-able iterator
+ /// to only pick off elements while the predicate `accept` returns `true`.
+ ///
+ /// It uses the `Clone` trait to restore the original iterator so that the
+ /// last and rejected element (first `false`) is still available when
+ /// `take_while_ref` is done.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// let mut hexadecimals = "0123456789abcdef".chars();
+ ///
+ /// let decimals = hexadecimals.take_while_ref(|c| c.is_numeric())
+ /// .collect::<String>();
+ /// assert_eq!(decimals, "0123456789");
+ /// assert_eq!(hexadecimals.next(), Some('a'));
+ ///
+ /// ```
+ fn take_while_ref<F>(&mut self, accept: F) -> TakeWhileRef<Self, F>
+ where Self: Clone,
+ F: FnMut(&Self::Item) -> bool
+ {
+ adaptors::take_while_ref(self, accept)
+ }
+
+ /// Return an iterator adaptor that filters `Option<A>` iterator elements
+ /// and produces `A`. Stops on the first `None` encountered.
+ ///
+ /// Iterator element type is `A`, the unwrapped element.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// // List all hexadecimal digits
+ /// itertools::assert_equal(
+ /// (0..).map(|i| std::char::from_digit(i, 16)).while_some(),
+ /// "0123456789abcdef".chars());
+ ///
+ /// ```
+ fn while_some<A>(self) -> WhileSome<Self>
+ where Self: Sized + Iterator<Item = Option<A>>
+ {
+ adaptors::while_some(self)
+ }
+
+ /// Return an iterator adaptor that iterates over the combinations of the
+ /// elements from an iterator.
+ ///
+ /// Iterator element can be any homogeneous tuple of type `Self::Item` with
+ /// size up to 4.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// let mut v = Vec::new();
+ /// for (a, b) in (1..5).tuple_combinations() {
+ /// v.push((a, b));
+ /// }
+ /// assert_eq!(v, vec![(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]);
+ ///
+ /// let mut it = (1..5).tuple_combinations();
+ /// assert_eq!(Some((1, 2, 3)), it.next());
+ /// assert_eq!(Some((1, 2, 4)), it.next());
+ /// assert_eq!(Some((1, 3, 4)), it.next());
+ /// assert_eq!(Some((2, 3, 4)), it.next());
+ /// assert_eq!(None, it.next());
+ ///
+ /// // this requires a type hint
+ /// let it = (1..5).tuple_combinations::<(_, _, _)>();
+ /// itertools::assert_equal(it, vec![(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]);
+ ///
+ /// // you can also specify the complete type
+ /// use itertools::TupleCombinations;
+ /// use std::ops::Range;
+ ///
+ /// let it: TupleCombinations<Range<u32>, (u32, u32, u32)> = (1..5).tuple_combinations();
+ /// itertools::assert_equal(it, vec![(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]);
+ /// ```
+ fn tuple_combinations<T>(self) -> TupleCombinations<Self, T>
+ where Self: Sized + Clone,
+ Self::Item: Clone,
+ T: adaptors::HasCombination<Self>,
+ {
+ adaptors::tuple_combinations(self)
+ }
+
+ /// Return an iterator adaptor that iterates over the `n`-length combinations of
+ /// the elements from an iterator.
+ ///
+ /// Iterator element type is `Vec<Self::Item>`. The iterator produces a new Vec per iteration,
+ /// and clones the iterator elements.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// let it = (1..5).combinations(3);
+ /// itertools::assert_equal(it, vec![
+ /// vec![1, 2, 3],
+ /// vec![1, 2, 4],
+ /// vec![1, 3, 4],
+ /// vec![2, 3, 4],
+ /// ]);
+ /// ```
+ #[cfg(feature = "use_std")]
+ fn combinations(self, n: usize) -> Combinations<Self>
+ where Self: Sized,
+ Self::Item: Clone
+ {
+ combinations::combinations(self, n)
+ }
+
+ /// Return an iterator adaptor that pads the sequence to a minimum length of
+ /// `min` by filling missing elements using a closure `f`.
+ ///
+ /// Iterator element type is `Self::Item`.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// let it = (0..5).pad_using(10, |i| 2*i);
+ /// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 10, 12, 14, 16, 18]);
+ ///
+ /// let it = (0..10).pad_using(5, |i| 2*i);
+ /// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
+ ///
+ /// let it = (0..5).pad_using(10, |i| 2*i).rev();
+ /// itertools::assert_equal(it, vec![18, 16, 14, 12, 10, 4, 3, 2, 1, 0]);
+ /// ```
+ fn pad_using<F>(self, min: usize, f: F) -> PadUsing<Self, F>
+ where Self: Sized,
+ F: FnMut(usize) -> Self::Item
+ {
+ pad_tail::pad_using(self, min, f)
+ }
+
+ /// Return an iterator adaptor that wraps each element in a `Position` to
+ /// ease special-case handling of the first or last elements.
+ ///
+ /// Iterator element type is
+ /// [`Position<Self::Item>`](enum.Position.html)
+ ///
+ /// ```
+ /// use itertools::{Itertools, Position};
+ ///
+ /// let it = (0..4).with_position();
+ /// itertools::assert_equal(it,
+ /// vec![Position::First(0),
+ /// Position::Middle(1),
+ /// Position::Middle(2),
+ /// Position::Last(3)]);
+ ///
+ /// let it = (0..1).with_position();
+ /// itertools::assert_equal(it, vec![Position::Only(0)]);
+ /// ```
+ fn with_position(self) -> WithPosition<Self>
+ where Self: Sized,
+ {
+ with_position::with_position(self)
+ }
+
+ /// Return an iterator adaptor that yields the indices of all elements
+ /// satisfying a predicate, counted from the start of the iterator.
+ ///
+ /// Equivalent to `iter.enumerate().filter(|(_, v)| predicate(v)).map(|(i, _)| i)`.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// let data = vec![1, 2, 3, 3, 4, 6, 7, 9];
+ /// itertools::assert_equal(data.iter().positions(|v| v % 2 == 0), vec![1, 4, 5]);
+ ///
+ /// itertools::assert_equal(data.iter().positions(|v| v % 2 == 1).rev(), vec![7, 6, 3, 2, 0]);
+ /// ```
+ fn positions<P>(self, predicate: P) -> Positions<Self, P>
+ where Self: Sized,
+ P: FnMut(Self::Item) -> bool,
+ {
+ adaptors::positions(self, predicate)
+ }
+
+ /// Return an iterator adaptor that applies a mutating function
+ /// to each element before yielding it.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// let input = vec![vec![1], vec![3, 2, 1]];
+ /// let it = input.into_iter().update(|mut v| v.push(0));
+ /// itertools::assert_equal(it, vec![vec![1, 0], vec![3, 2, 1, 0]]);
+ /// ```
+ fn update<F>(self, updater: F) -> Update<Self, F>
+ where Self: Sized,
+ F: FnMut(&mut Self::Item),
+ {
+ adaptors::update(self, updater)
+ }
+
+ // non-adaptor methods
+ /// Advances the iterator and returns the next items grouped in a tuple of
+ /// a specific size (up to 4).
+ ///
+ /// If there are enough elements to be grouped in a tuple, then the tuple is
+ /// returned inside `Some`, otherwise `None` is returned.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// let mut iter = 1..5;
+ ///
+ /// assert_eq!(Some((1, 2)), iter.next_tuple());
+ /// ```
+ fn next_tuple<T>(&mut self) -> Option<T>
+ where Self: Sized + Iterator<Item = T::Item>,
+ T: tuple_impl::TupleCollect
+ {
+ T::collect_from_iter_no_buf(self)
+ }
+
+ /// Collects all items from the iterator into a tuple of a specific size
+ /// (up to 4).
+ ///
+ /// If the number of elements inside the iterator is **exactly** equal to
+ /// the tuple size, then the tuple is returned inside `Some`, otherwise
+ /// `None` is returned.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// let iter = 1..3;
+ ///
+ /// if let Some((x, y)) = iter.collect_tuple() {
+ /// assert_eq!((x, y), (1, 2))
+ /// } else {
+ /// panic!("Expected two elements")
+ /// }
+ /// ```
+ fn collect_tuple<T>(mut self) -> Option<T>
+ where Self: Sized + Iterator<Item = T::Item>,
+ T: tuple_impl::TupleCollect
+ {
+ match self.next_tuple() {
+ elt @ Some(_) => match self.next() {
+ Some(_) => None,
+ None => elt,
+ },
+ _ => None
+ }
+ }
+
+
+ /// Find the position and value of the first element satisfying a predicate.
+ ///
+ /// The iterator is not advanced past the first element found.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// let text = "Hα";
+ /// assert_eq!(text.chars().find_position(|ch| ch.is_lowercase()), Some((1, 'α')));
+ /// ```
+ fn find_position<P>(&mut self, mut pred: P) -> Option<(usize, Self::Item)>
+ where P: FnMut(&Self::Item) -> bool
+ {
+ let mut index = 0usize;
+ for elt in self {
+ if pred(&elt) {
+ return Some((index, elt));
+ }
+ index += 1;
+ }
+ None
+ }
+
+ /// Check whether all elements compare equal.
+ ///
+ /// Empty iterators are considered to have equal elements:
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// let data = vec![1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 5];
+ /// assert!(!data.iter().all_equal());
+ /// assert!(data[0..3].iter().all_equal());
+ /// assert!(data[3..5].iter().all_equal());
+ /// assert!(data[5..8].iter().all_equal());
+ ///
+ /// let data : Option<usize> = None;
+ /// assert!(data.into_iter().all_equal());
+ /// ```
+ fn all_equal(&mut self) -> bool
+ where Self::Item: PartialEq,
+ {
+ self.dedup().nth(1).is_none()
+ }
+
+ /// Consume the first `n` elements from the iterator eagerly,
+ /// and return the same iterator again.
+ ///
+ /// It works similarly to *.skip(* `n` *)* except it is eager and
+ /// preserves the iterator type.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// let mut iter = "αβγ".chars().dropping(2);
+ /// itertools::assert_equal(iter, "γ".chars());
+ /// ```
+ ///
+ /// *Fusing notes: if the iterator is exhausted by dropping,
+ /// the result of calling `.next()` again depends on the iterator implementation.*
+ fn dropping(mut self, n: usize) -> Self
+ where Self: Sized
+ {
+ if n > 0 {
+ self.nth(n - 1);
+ }
+ self
+ }
+
+ /// Consume the last `n` elements from the iterator eagerly,
+ /// and return the same iterator again.
+ ///
+ /// This is only possible on double ended iterators. `n` may be
+ /// larger than the number of elements.
+ ///
+ /// Note: This method is eager, dropping the back elements immediately and
+ /// preserves the iterator type.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// let init = vec![0, 3, 6, 9].into_iter().dropping_back(1);
+ /// itertools::assert_equal(init, vec![0, 3, 6]);
+ /// ```
+ fn dropping_back(mut self, n: usize) -> Self
+ where Self: Sized,
+ Self: DoubleEndedIterator
+ {
+ if n > 0 {
+ (&mut self).rev().nth(n - 1);
+ }
+ self
+ }
+
+ /// Run the closure `f` eagerly on each element of the iterator.
+ ///
+ /// Consumes the iterator until its end.
+ ///
+ /// ```
+ /// use std::sync::mpsc::channel;
+ /// use itertools::Itertools;
+ ///
+ /// let (tx, rx) = channel();
+ ///
+ /// // use .foreach() to apply a function to each value -- sending it
+ /// (0..5).map(|x| x * 2 + 1).foreach(|x| { tx.send(x).unwrap(); } );
+ ///
+ /// drop(tx);
+ ///
+ /// itertools::assert_equal(rx.iter(), vec![1, 3, 5, 7, 9]);
+ /// ```
+ #[deprecated(note="Use .for_each() instead", since="0.8")]
+ fn foreach<F>(self, f: F)
+ where F: FnMut(Self::Item),
+ Self: Sized,
+ {
+ self.for_each(f)
+ }
+
+ /// Combine all an iterator's elements into one element by using `Extend`.
+ ///
+ /// This combinator will extend the first item with each of the rest of the
+ /// items of the iterator. If the iterator is empty, the default value of
+ /// `I::Item` is returned.
+ ///
+ /// ```rust
+ /// use itertools::Itertools;
+ ///
+ /// let input = vec![vec![1], vec![2, 3], vec![4, 5, 6]];
+ /// assert_eq!(input.into_iter().concat(),
+ /// vec![1, 2, 3, 4, 5, 6]);
+ /// ```
+ fn concat(self) -> Self::Item
+ where Self: Sized,
+ Self::Item: Extend<<<Self as Iterator>::Item as IntoIterator>::Item> + IntoIterator + Default
+ {
+ concat(self)
+ }
+
+ /// `.collect_vec()` is simply a type specialization of `.collect()`,
+ /// for convenience.
+ #[cfg(feature = "use_std")]
+ fn collect_vec(self) -> Vec<Self::Item>
+ where Self: Sized
+ {
+ self.collect()
+ }
+
+ /// Assign to each reference in `self` from the `from` iterator,
+ /// stopping at the shortest of the two iterators.
+ ///
+ /// The `from` iterator is queried for its next element before the `self`
+ /// iterator, and if either is exhausted the method is done.
+ ///
+ /// Return the number of elements written.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// let mut xs = [0; 4];
+ /// xs.iter_mut().set_from(1..);
+ /// assert_eq!(xs, [1, 2, 3, 4]);
+ /// ```
+ #[inline]
+ fn set_from<'a, A: 'a, J>(&mut self, from: J) -> usize
+ where Self: Iterator<Item = &'a mut A>,
+ J: IntoIterator<Item = A>
+ {
+ let mut count = 0;
+ for elt in from {
+ match self.next() {
+ None => break,
+ Some(ptr) => *ptr = elt,
+ }
+ count += 1;
+ }
+ count
+ }
+
+ /// Combine all iterator elements into one String, seperated by `sep`.
+ ///
+ /// Use the `Display` implementation of each element.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// assert_eq!(["a", "b", "c"].iter().join(", "), "a, b, c");
+ /// assert_eq!([1, 2, 3].iter().join(", "), "1, 2, 3");
+ /// ```
+ #[cfg(feature = "use_std")]
+ fn join(&mut self, sep: &str) -> String
+ where Self::Item: std::fmt::Display
+ {
+ match self.next() {
+ None => String::new(),
+ Some(first_elt) => {
+ // estimate lower bound of capacity needed
+ let (lower, _) = self.size_hint();
+ let mut result = String::with_capacity(sep.len() * lower);
+ write!(&mut result, "{}", first_elt).unwrap();
+ for elt in self {
+ result.push_str(sep);
+ write!(&mut result, "{}", elt).unwrap();
+ }
+ result
+ }
+ }
+ }
+
+ /// Format all iterator elements, separated by `sep`.
+ ///
+ /// All elements are formatted (any formatting trait)
+ /// with `sep` inserted between each element.
+ ///
+ /// **Panics** if the formatter helper is formatted more than once.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// let data = [1.1, 2.71828, -3.];
+ /// assert_eq!(
+ /// format!("{:.2}", data.iter().format(", ")),
+ /// "1.10, 2.72, -3.00");
+ /// ```
+ fn format(self, sep: &str) -> Format<Self>
+ where Self: Sized,
+ {
+ format::new_format_default(self, sep)
+ }
+
+ /// Format all iterator elements, separated by `sep`.
+ ///
+ /// This is a customizable version of `.format()`.
+ ///
+ /// The supplied closure `format` is called once per iterator element,
+ /// with two arguments: the element and a callback that takes a
+ /// `&Display` value, i.e. any reference to type that implements `Display`.
+ ///
+ /// Using `&format_args!(...)` is the most versatile way to apply custom
+ /// element formatting. The callback can be called multiple times if needed.
+ ///
+ /// **Panics** if the formatter helper is formatted more than once.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// let data = [1.1, 2.71828, -3.];
+ /// let data_formatter = data.iter().format_with(", ", |elt, f| f(&format_args!("{:.2}", elt)));
+ /// assert_eq!(format!("{}", data_formatter),
+ /// "1.10, 2.72, -3.00");
+ ///
+ /// // .format_with() is recursively composable
+ /// let matrix = [[1., 2., 3.],
+ /// [4., 5., 6.]];
+ /// let matrix_formatter = matrix.iter().format_with("\n", |row, f| {
+ /// f(&row.iter().format_with(", ", |elt, g| g(&elt)))
+ /// });
+ /// assert_eq!(format!("{}", matrix_formatter),
+ /// "1, 2, 3\n4, 5, 6");
+ ///
+ ///
+ /// ```
+ fn format_with<F>(self, sep: &str, format: F) -> FormatWith<Self, F>
+ where Self: Sized,
+ F: FnMut(Self::Item, &mut FnMut(&fmt::Display) -> fmt::Result) -> fmt::Result,
+ {
+ format::new_format(self, sep, format)
+ }
+
+ /// Fold `Result` values from an iterator.
+ ///
+ /// Only `Ok` values are folded. If no error is encountered, the folded
+ /// value is returned inside `Ok`. Otherwise, the operation terminates
+ /// and returns the first `Err` value it encounters. No iterator elements are
+ /// consumed after the first error.
+ ///
+ /// The first accumulator value is the `start` parameter.
+ /// Each iteration passes the accumulator value and the next value inside `Ok`
+ /// to the fold function `f` and its return value becomes the new accumulator value.
+ ///
+ /// For example the sequence *Ok(1), Ok(2), Ok(3)* will result in a
+ /// computation like this:
+ ///
+ /// ```ignore
+ /// let mut accum = start;
+ /// accum = f(accum, 1);
+ /// accum = f(accum, 2);
+ /// accum = f(accum, 3);
+ /// ```
+ ///
+ /// With a `start` value of 0 and an addition as folding function,
+ /// this effetively results in *((0 + 1) + 2) + 3*
+ ///
+ /// ```
+ /// use std::ops::Add;
+ /// use itertools::Itertools;
+ ///
+ /// let values = [1, 2, -2, -1, 2, 1];
+ /// assert_eq!(
+ /// values.iter()
+ /// .map(Ok::<_, ()>)
+ /// .fold_results(0, Add::add),
+ /// Ok(3)
+ /// );
+ /// assert!(
+ /// values.iter()
+ /// .map(|&x| if x >= 0 { Ok(x) } else { Err("Negative number") })
+ /// .fold_results(0, Add::add)
+ /// .is_err()
+ /// );
+ /// ```
+ fn fold_results<A, E, B, F>(&mut self, mut start: B, mut f: F) -> Result<B, E>
+ where Self: Iterator<Item = Result<A, E>>,
+ F: FnMut(B, A) -> B
+ {
+ for elt in self {
+ match elt {
+ Ok(v) => start = f(start, v),
+ Err(u) => return Err(u),
+ }
+ }
+ Ok(start)
+ }
+
+ /// Fold `Option` values from an iterator.
+ ///
+ /// Only `Some` values are folded. If no `None` is encountered, the folded
+ /// value is returned inside `Some`. Otherwise, the operation terminates
+ /// and returns `None`. No iterator elements are consumed after the `None`.
+ ///
+ /// This is the `Option` equivalent to `fold_results`.
+ ///
+ /// ```
+ /// use std::ops::Add;
+ /// use itertools::Itertools;
+ ///
+ /// let mut values = vec![Some(1), Some(2), Some(-2)].into_iter();
+ /// assert_eq!(values.fold_options(5, Add::add), Some(5 + 1 + 2 - 2));
+ ///
+ /// let mut more_values = vec![Some(2), None, Some(0)].into_iter();
+ /// assert!(more_values.fold_options(0, Add::add).is_none());
+ /// assert_eq!(more_values.next().unwrap(), Some(0));
+ /// ```
+ fn fold_options<A, B, F>(&mut self, mut start: B, mut f: F) -> Option<B>
+ where Self: Iterator<Item = Option<A>>,
+ F: FnMut(B, A) -> B
+ {
+ for elt in self {
+ match elt {
+ Some(v) => start = f(start, v),
+ None => return None,
+ }
+ }
+ Some(start)
+ }
+
+ /// Accumulator of the elements in the iterator.
+ ///
+ /// Like `.fold()`, without a base case. If the iterator is
+ /// empty, return `None`. With just one element, return it.
+ /// Otherwise elements are accumulated in sequence using the closure `f`.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// assert_eq!((0..10).fold1(|x, y| x + y).unwrap_or(0), 45);
+ /// assert_eq!((0..0).fold1(|x, y| x * y), None);
+ /// ```
+ fn fold1<F>(mut self, f: F) -> Option<Self::Item>
+ where F: FnMut(Self::Item, Self::Item) -> Self::Item,
+ Self: Sized,
+ {
+ self.next().map(move |x| self.fold(x, f))
+ }
+
+ /// Accumulate the elements in the iterator in a tree-like manner.
+ ///
+ /// You can think of it as, while there's more than one item, repeatedly
+ /// combining adjacent items. It does so in bottom-up-merge-sort order,
+ /// however, so that it needs only logarithmic stack space.
+ ///
+ /// This produces a call tree like the following (where the calls under
+ /// an item are done after reading that item):
+ ///
+ /// ```text
+ /// 1 2 3 4 5 6 7
+ /// │ │ │ │ │ │ │
+ /// └─f └─f └─f │
+ /// │ │ │ │
+ /// └───f └─f
+ /// │ │
+ /// └─────f
+ /// ```
+ ///
+ /// Which, for non-associative functions, will typically produce a different
+ /// result than the linear call tree used by `fold1`:
+ ///
+ /// ```text
+ /// 1 2 3 4 5 6 7
+ /// │ │ │ │ │ │ │
+ /// └─f─f─f─f─f─f
+ /// ```
+ ///
+ /// If `f` is associative, prefer the normal `fold1` instead.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// // The same tree as above
+ /// let num_strings = (1..8).map(|x| x.to_string());
+ /// assert_eq!(num_strings.tree_fold1(|x, y| format!("f({}, {})", x, y)),
+ /// Some(String::from("f(f(f(1, 2), f(3, 4)), f(f(5, 6), 7))")));
+ ///
+ /// // Like fold1, an empty iterator produces None
+ /// assert_eq!((0..0).tree_fold1(|x, y| x * y), None);
+ ///
+ /// // tree_fold1 matches fold1 for associative operations...
+ /// assert_eq!((0..10).tree_fold1(|x, y| x + y),
+ /// (0..10).fold1(|x, y| x + y));
+ /// // ...but not for non-associative ones
+ /// assert!((0..10).tree_fold1(|x, y| x - y)
+ /// != (0..10).fold1(|x, y| x - y));
+ /// ```
+ // FIXME: If minver changes to >= 1.13, use `assert_ne!` in the doctest.
+ fn tree_fold1<F>(mut self, mut f: F) -> Option<Self::Item>
+ where F: FnMut(Self::Item, Self::Item) -> Self::Item,
+ Self: Sized,
+ {
+ type State<T> = Result<T, Option<T>>;
+
+ fn inner0<T, II, FF>(it: &mut II, f: &mut FF) -> State<T>
+ where
+ II: Iterator<Item = T>,
+ FF: FnMut(T, T) -> T
+ {
+ // This function could be replaced with `it.next().ok_or(None)`,
+ // but half the useful tree_fold1 work is combining adjacent items,
+ // so put that in a form that LLVM is more likely to optimize well.
+
+ let a =
+ if let Some(v) = it.next() { v }
+ else { return Err(None) };
+ let b =
+ if let Some(v) = it.next() { v }
+ else { return Err(Some(a)) };
+ Ok(f(a, b))
+ }
+
+ fn inner<T, II, FF>(stop: usize, it: &mut II, f: &mut FF) -> State<T>
+ where
+ II: Iterator<Item = T>,
+ FF: FnMut(T, T) -> T
+ {
+ let mut x = try!(inner0(it, f));
+ for height in 0..stop {
+ // Try to get another tree the same size with which to combine it,
+ // creating a new tree that's twice as big for next time around.
+ let next =
+ if height == 0 {
+ inner0(it, f)
+ } else {
+ inner(height, it, f)
+ };
+ match next {
+ Ok(y) => x = f(x, y),
+
+ // If we ran out of items, combine whatever we did manage
+ // to get. It's better combined with the current value
+ // than something in a parent frame, because the tree in
+ // the parent is always as least as big as this one.
+ Err(None) => return Err(Some(x)),
+ Err(Some(y)) => return Err(Some(f(x, y))),
+ }
+ }
+ Ok(x)
+ }
+
+ match inner(usize::max_value(), &mut self, &mut f) {
+ Err(x) => x,
+ _ => unreachable!(),
+ }
+ }
+
+ /// An iterator method that applies a function, producing a single, final value.
+ ///
+ /// `fold_while()` is basically equivalent to `fold()` but with additional support for
+ /// early exit via short-circuiting.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ /// use itertools::FoldWhile::{Continue, Done};
+ ///
+ /// let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
+ ///
+ /// let mut result = 0;
+ ///
+ /// // for loop:
+ /// for i in &numbers {
+ /// if *i > 5 {
+ /// break;
+ /// }
+ /// result = result + i;
+ /// }
+ ///
+ /// // fold:
+ /// let result2 = numbers.iter().fold(0, |acc, x| {
+ /// if *x > 5 { acc } else { acc + x }
+ /// });
+ ///
+ /// // fold_while:
+ /// let result3 = numbers.iter().fold_while(0, |acc, x| {
+ /// if *x > 5 { Done(acc) } else { Continue(acc + x) }
+ /// }).into_inner();
+ ///
+ /// // they're the same
+ /// assert_eq!(result, result2);
+ /// assert_eq!(result2, result3);
+ /// ```
+ ///
+ /// The big difference between the computations of `result2` and `result3` is that while
+ /// `fold()` called the provided closure for every item of the callee iterator,
+ /// `fold_while()` actually stopped iterating as soon as it encountered `Fold::Done(_)`.
+ #[deprecated(note="Use .try_fold() instead", since="0.8")]
+ fn fold_while<B, F>(&mut self, init: B, mut f: F) -> FoldWhile<B>
+ where Self: Sized,
+ F: FnMut(B, Self::Item) -> FoldWhile<B>
+ {
+ let mut acc = init;
+ while let Some(item) = self.next() {
+ match f(acc, item) {
+ FoldWhile::Continue(res) => acc = res,
+ res @ FoldWhile::Done(_) => return res,
+ }
+ }
+ FoldWhile::Continue(acc)
+ }
+
+ /// Sort all iterator elements into a new iterator in ascending order.
+ ///
+ /// **Note:** This consumes the entire iterator, uses the
+ /// `slice::sort()` method and returns the result as a new
+ /// iterator that owns its elements.
+ ///
+ /// The sorted iterator, if directly collected to a `Vec`, is converted
+ /// without any extra copying or allocation cost.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// // sort the letters of the text in ascending order
+ /// let text = "bdacfe";
+ /// itertools::assert_equal(text.chars().sorted(),
+ /// "abcdef".chars());
+ /// ```
+ #[cfg(feature = "use_std")]
+ fn sorted(self) -> VecIntoIter<Self::Item>
+ where Self: Sized,
+ Self::Item: Ord
+ {
+ // Use .sort() directly since it is not quite identical with
+ // .sort_by(Ord::cmp)
+ let mut v = Vec::from_iter(self);
+ v.sort();
+ v.into_iter()
+ }
+
+ /// Sort all iterator elements into a new iterator in ascending order.
+ ///
+ /// **Note:** This consumes the entire iterator, uses the
+ /// `slice::sort_by()` method and returns the result as a new
+ /// iterator that owns its elements.
+ ///
+ /// The sorted iterator, if directly collected to a `Vec`, is converted
+ /// without any extra copying or allocation cost.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// // sort people in descending order by age
+ /// let people = vec![("Jane", 20), ("John", 18), ("Jill", 30), ("Jack", 27)];
+ ///
+ /// let oldest_people_first = people
+ /// .into_iter()
+ /// .sorted_by(|a, b| Ord::cmp(&b.1, &a.1))
+ /// .map(|(person, _age)| person);
+ ///
+ /// itertools::assert_equal(oldest_people_first,
+ /// vec!["Jill", "Jack", "Jane", "John"]);
+ /// ```
+ #[cfg(feature = "use_std")]
+ fn sorted_by<F>(self, cmp: F) -> VecIntoIter<Self::Item>
+ where Self: Sized,
+ F: FnMut(&Self::Item, &Self::Item) -> Ordering,
+ {
+ let mut v = Vec::from_iter(self);
+ v.sort_by(cmp);
+ v.into_iter()
+ }
+
+ /// Sort all iterator elements into a new iterator in ascending order.
+ ///
+ /// **Note:** This consumes the entire iterator, uses the
+ /// `slice::sort_by_key()` method and returns the result as a new
+ /// iterator that owns its elements.
+ ///
+ /// The sorted iterator, if directly collected to a `Vec`, is converted
+ /// without any extra copying or allocation cost.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// // sort people in descending order by age
+ /// let people = vec![("Jane", 20), ("John", 18), ("Jill", 30), ("Jack", 27)];
+ ///
+ /// let oldest_people_first = people
+ /// .into_iter()
+ /// .sorted_by_key(|x| -x.1)
+ /// .map(|(person, _age)| person);
+ ///
+ /// itertools::assert_equal(oldest_people_first,
+ /// vec!["Jill", "Jack", "Jane", "John"]);
+ /// ```
+ #[cfg(feature = "use_std")]
+ fn sorted_by_key<K, F>(self, f: F) -> VecIntoIter<Self::Item>
+ where Self: Sized,
+ K: Ord,
+ F: FnMut(&Self::Item) -> K,
+ {
+ let mut v = Vec::from_iter(self);
+ v.sort_by_key(f);
+ v.into_iter()
+ }
+
+ /// Collect all iterator elements into one of two
+ /// partitions. Unlike `Iterator::partition`, each partition may
+ /// have a distinct type.
+ ///
+ /// ```
+ /// use itertools::{Itertools, Either};
+ ///
+ /// let successes_and_failures = vec![Ok(1), Err(false), Err(true), Ok(2)];
+ ///
+ /// let (successes, failures): (Vec<_>, Vec<_>) = successes_and_failures
+ /// .into_iter()
+ /// .partition_map(|r| {
+ /// match r {
+ /// Ok(v) => Either::Left(v),
+ /// Err(v) => Either::Right(v),
+ /// }
+ /// });
+ ///
+ /// assert_eq!(successes, [1, 2]);
+ /// assert_eq!(failures, [false, true]);
+ /// ```
+ fn partition_map<A, B, F, L, R>(self, predicate: F) -> (A, B)
+ where Self: Sized,
+ F: Fn(Self::Item) -> Either<L, R>,
+ A: Default + Extend<L>,
+ B: Default + Extend<R>,
+ {
+ let mut left = A::default();
+ let mut right = B::default();
+
+ for val in self {
+ match predicate(val) {
+ Either::Left(v) => left.extend(Some(v)),
+ Either::Right(v) => right.extend(Some(v)),
+ }
+ }
+
+ (left, right)
+ }
+
+ /// Return a `HashMap` of keys mapped to `Vec`s of values. Keys and values
+ /// are taken from `(Key, Value)` tuple pairs yielded by the input iterator.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// let data = vec![(0, 10), (2, 12), (3, 13), (0, 20), (3, 33), (2, 42)];
+ /// let lookup = data.into_iter().into_group_map();
+ ///
+ /// assert_eq!(lookup[&0], vec![10, 20]);
+ /// assert_eq!(lookup.get(&1), None);
+ /// assert_eq!(lookup[&2], vec![12, 42]);
+ /// assert_eq!(lookup[&3], vec![13, 33]);
+ /// ```
+ #[cfg(feature = "use_std")]
+ fn into_group_map<K, V>(self) -> HashMap<K, Vec<V>>
+ where Self: Iterator<Item=(K, V)> + Sized,
+ K: Hash + Eq,
+ {
+ group_map::into_group_map(self)
+ }
+
+ /// Return the minimum and maximum elements in the iterator.
+ ///
+ /// The return type `MinMaxResult` is an enum of three variants:
+ ///
+ /// - `NoElements` if the iterator is empty.
+ /// - `OneElement(x)` if the iterator has exactly one element.
+ /// - `MinMax(x, y)` is returned otherwise, where `x <= y`. Two
+ /// values are equal if and only if there is more than one
+ /// element in the iterator and all elements are equal.
+ ///
+ /// On an iterator of length `n`, `minmax` does `1.5 * n` comparisons,
+ /// and so is faster than calling `min` and `max` separately which does
+ /// `2 * n` comparisons.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ /// use itertools::MinMaxResult::{NoElements, OneElement, MinMax};
+ ///
+ /// let a: [i32; 0] = [];
+ /// assert_eq!(a.iter().minmax(), NoElements);
+ ///
+ /// let a = [1];
+ /// assert_eq!(a.iter().minmax(), OneElement(&1));
+ ///
+ /// let a = [1, 2, 3, 4, 5];
+ /// assert_eq!(a.iter().minmax(), MinMax(&1, &5));
+ ///
+ /// let a = [1, 1, 1, 1];
+ /// assert_eq!(a.iter().minmax(), MinMax(&1, &1));
+ /// ```
+ ///
+ /// The elements can be floats but no particular result is guaranteed
+ /// if an element is NaN.
+ fn minmax(self) -> MinMaxResult<Self::Item>
+ where Self: Sized, Self::Item: PartialOrd
+ {
+ minmax::minmax_impl(self, |_| (), |x, y, _, _| x < y)
+ }
+
+ /// Return the minimum and maximum element of an iterator, as determined by
+ /// the specified function.
+ ///
+ /// The return value is a variant of `MinMaxResult` like for `minmax()`.
+ ///
+ /// For the minimum, the first minimal element is returned. For the maximum,
+ /// the last maximal element wins. This matches the behavior of the standard
+ /// `Iterator::min()` and `Iterator::max()` methods.
+ ///
+ /// The keys can be floats but no particular result is guaranteed
+ /// if a key is NaN.
+ fn minmax_by_key<K, F>(self, key: F) -> MinMaxResult<Self::Item>
+ where Self: Sized, K: PartialOrd, F: FnMut(&Self::Item) -> K
+ {
+ minmax::minmax_impl(self, key, |_, _, xk, yk| xk < yk)
+ }
+
+ /// Return the minimum and maximum element of an iterator, as determined by
+ /// the specified comparison function.
+ ///
+ /// The return value is a variant of `MinMaxResult` like for `minmax()`.
+ ///
+ /// For the minimum, the first minimal element is returned. For the maximum,
+ /// the last maximal element wins. This matches the behavior of the standard
+ /// `Iterator::min()` and `Iterator::max()` methods.
+ fn minmax_by<F>(self, mut compare: F) -> MinMaxResult<Self::Item>
+ where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering
+ {
+ minmax::minmax_impl(
+ self,
+ |_| (),
+ |x, y, _, _| Ordering::Less == compare(x, y)
+ )
+ }
+}
+
+impl<T: ?Sized> Itertools for T where T: Iterator { }
+
+/// Return `true` if both iterables produce equal sequences
+/// (elements pairwise equal and sequences of the same length),
+/// `false` otherwise.
+///
+/// This is an `IntoIterator` enabled function that is similar to the standard
+/// library method `Iterator::eq`.
+///
+/// ```
+/// assert!(itertools::equal(vec![1, 2, 3], 1..4));
+/// assert!(!itertools::equal(&[0, 0], &[0, 0, 0]));
+/// ```
+pub fn equal<I, J>(a: I, b: J) -> bool
+ where I: IntoIterator,
+ J: IntoIterator,
+ I::Item: PartialEq<J::Item>
+{
+ let mut ia = a.into_iter();
+ let mut ib = b.into_iter();
+ loop {
+ match ia.next() {
+ Some(x) => match ib.next() {
+ Some(y) => if x != y { return false; },
+ None => return false,
+ },
+ None => return ib.next().is_none()
+ }
+ }
+}
+
+/// Assert that two iterables produce equal sequences, with the same
+/// semantics as *equal(a, b)*.
+///
+/// **Panics** on assertion failure with a message that shows the
+/// two iteration elements.
+///
+/// ```ignore
+/// assert_equal("exceed".split('c'), "excess".split('c'));
+/// // ^PANIC: panicked at 'Failed assertion Some("eed") == Some("ess") for iteration 1',
+/// ```
+pub fn assert_equal<I, J>(a: I, b: J)
+ where I: IntoIterator,
+ J: IntoIterator,
+ I::Item: fmt::Debug + PartialEq<J::Item>,
+ J::Item: fmt::Debug,
+{
+ let mut ia = a.into_iter();
+ let mut ib = b.into_iter();
+ let mut i = 0;
+ loop {
+ match (ia.next(), ib.next()) {
+ (None, None) => return,
+ (a, b) => {
+ let equal = match (&a, &b) {
+ (&Some(ref a), &Some(ref b)) => a == b,
+ _ => false,
+ };
+ assert!(equal, "Failed assertion {a:?} == {b:?} for iteration {i}",
+ i=i, a=a, b=b);
+ i += 1;
+ }
+ }
+ }
+}
+
+/// Partition a sequence using predicate `pred` so that elements
+/// that map to `true` are placed before elements which map to `false`.
+///
+/// The order within the partitions is arbitrary.
+///
+/// Return the index of the split point.
+///
+/// ```
+/// use itertools::partition;
+///
+/// # // use repeated numbers to not promise any ordering
+/// let mut data = [7, 1, 1, 7, 1, 1, 7];
+/// let split_index = partition(&mut data, |elt| *elt >= 3);
+///
+/// assert_eq!(data, [7, 7, 7, 1, 1, 1, 1]);
+/// assert_eq!(split_index, 3);
+/// ```
+pub fn partition<'a, A: 'a, I, F>(iter: I, mut pred: F) -> usize
+ where I: IntoIterator<Item = &'a mut A>,
+ I::IntoIter: DoubleEndedIterator,
+ F: FnMut(&A) -> bool
+{
+ let mut split_index = 0;
+ let mut iter = iter.into_iter();
+ 'main: while let Some(front) = iter.next() {
+ if !pred(front) {
+ loop {
+ match iter.next_back() {
+ Some(back) => if pred(back) {
+ std::mem::swap(front, back);
+ break;
+ },
+ None => break 'main,
+ }
+ }
+ }
+ split_index += 1;
+ }
+ split_index
+}
+
+/// An enum used for controlling the execution of `.fold_while()`.
+///
+/// See [`.fold_while()`](trait.Itertools.html#method.fold_while) for more information.
+#[derive(Copy, Clone, Debug, Eq, PartialEq)]
+pub enum FoldWhile<T> {
+ /// Continue folding with this value
+ Continue(T),
+ /// Fold is complete and will return this value
+ Done(T),
+}
+
+impl<T> FoldWhile<T> {
+ /// Return the value in the continue or done.
+ pub fn into_inner(self) -> T {
+ match self {
+ FoldWhile::Continue(x) | FoldWhile::Done(x) => x,
+ }
+ }
+
+ /// Return true if `self` is `Done`, false if it is `Continue`.
+ pub fn is_done(&self) -> bool {
+ match *self {
+ FoldWhile::Continue(_) => false,
+ FoldWhile::Done(_) => true,
+ }
+ }
+}
diff --git a/third_party/rust/itertools-0.8.0/src/merge_join.rs b/third_party/rust/itertools-0.8.0/src/merge_join.rs
new file mode 100644
index 0000000000..5f9a0f4013
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/src/merge_join.rs
@@ -0,0 +1,87 @@
+use std::cmp::Ordering;
+use std::iter::Fuse;
+use std::fmt;
+
+use super::adaptors::{PutBack, put_back};
+use either_or_both::EitherOrBoth;
+
+/// Return an iterator adaptor that merge-joins items from the two base iterators in ascending order.
+///
+/// See [`.merge_join_by()`](trait.Itertools.html#method.merge_join_by) for more information.
+pub fn merge_join_by<I, J, F>(left: I, right: J, cmp_fn: F)
+ -> MergeJoinBy<I::IntoIter, J::IntoIter, F>
+ where I: IntoIterator,
+ J: IntoIterator,
+ F: FnMut(&I::Item, &J::Item) -> Ordering
+{
+ MergeJoinBy {
+ left: put_back(left.into_iter().fuse()),
+ right: put_back(right.into_iter().fuse()),
+ cmp_fn: cmp_fn
+ }
+}
+
+/// An iterator adaptor that merge-joins items from the two base iterators in ascending order.
+///
+/// See [`.merge_join_by()`](../trait.Itertools.html#method.merge_join_by) for more information.
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct MergeJoinBy<I: Iterator, J: Iterator, F> {
+ left: PutBack<Fuse<I>>,
+ right: PutBack<Fuse<J>>,
+ cmp_fn: F
+}
+
+impl<I, J, F> fmt::Debug for MergeJoinBy<I, J, F>
+ where I: Iterator + fmt::Debug,
+ I::Item: fmt::Debug,
+ J: Iterator + fmt::Debug,
+ J::Item: fmt::Debug,
+{
+ debug_fmt_fields!(MergeJoinBy, left, right);
+}
+
+impl<I, J, F> Iterator for MergeJoinBy<I, J, F>
+ where I: Iterator,
+ J: Iterator,
+ F: FnMut(&I::Item, &J::Item) -> Ordering
+{
+ type Item = EitherOrBoth<I::Item, J::Item>;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ match (self.left.next(), self.right.next()) {
+ (None, None) => None,
+ (Some(left), None) =>
+ Some(EitherOrBoth::Left(left)),
+ (None, Some(right)) =>
+ Some(EitherOrBoth::Right(right)),
+ (Some(left), Some(right)) => {
+ match (self.cmp_fn)(&left, &right) {
+ Ordering::Equal =>
+ Some(EitherOrBoth::Both(left, right)),
+ Ordering::Less => {
+ self.right.put_back(right);
+ Some(EitherOrBoth::Left(left))
+ },
+ Ordering::Greater => {
+ self.left.put_back(left);
+ Some(EitherOrBoth::Right(right))
+ }
+ }
+ }
+ }
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ let (a_lower, a_upper) = self.left.size_hint();
+ let (b_lower, b_upper) = self.right.size_hint();
+
+ let lower = ::std::cmp::max(a_lower, b_lower);
+
+ let upper = match (a_upper, b_upper) {
+ (Some(x), Some(y)) => Some(x + y),
+ _ => None,
+ };
+
+ (lower, upper)
+ }
+}
diff --git a/third_party/rust/itertools-0.8.0/src/minmax.rs b/third_party/rust/itertools-0.8.0/src/minmax.rs
new file mode 100644
index 0000000000..38180ef6d0
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/src/minmax.rs
@@ -0,0 +1,114 @@
+
+/// `MinMaxResult` is an enum returned by `minmax`. See `Itertools::minmax()` for
+/// more detail.
+#[derive(Copy, Clone, PartialEq, Debug)]
+pub enum MinMaxResult<T> {
+ /// Empty iterator
+ NoElements,
+
+ /// Iterator with one element, so the minimum and maximum are the same
+ OneElement(T),
+
+ /// More than one element in the iterator, the first element is not larger
+ /// than the second
+ MinMax(T, T)
+}
+
+impl<T: Clone> MinMaxResult<T> {
+ /// `into_option` creates an `Option` of type `(T, T)`. The returned `Option`
+ /// has variant `None` if and only if the `MinMaxResult` has variant
+ /// `NoElements`. Otherwise `Some((x, y))` is returned where `x <= y`.
+ /// If the `MinMaxResult` has variant `OneElement(x)`, performing this
+ /// operation will make one clone of `x`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use itertools::MinMaxResult::{self, NoElements, OneElement, MinMax};
+ ///
+ /// let r: MinMaxResult<i32> = NoElements;
+ /// assert_eq!(r.into_option(), None);
+ ///
+ /// let r = OneElement(1);
+ /// assert_eq!(r.into_option(), Some((1, 1)));
+ ///
+ /// let r = MinMax(1, 2);
+ /// assert_eq!(r.into_option(), Some((1, 2)));
+ /// ```
+ pub fn into_option(self) -> Option<(T,T)> {
+ match self {
+ MinMaxResult::NoElements => None,
+ MinMaxResult::OneElement(x) => Some((x.clone(), x)),
+ MinMaxResult::MinMax(x, y) => Some((x, y))
+ }
+ }
+}
+
+/// Implementation guts for `minmax` and `minmax_by_key`.
+pub fn minmax_impl<I, K, F, L>(mut it: I, mut key_for: F,
+ mut lt: L) -> MinMaxResult<I::Item>
+ where I: Iterator,
+ F: FnMut(&I::Item) -> K,
+ L: FnMut(&I::Item, &I::Item, &K, &K) -> bool,
+{
+ let (mut min, mut max, mut min_key, mut max_key) = match it.next() {
+ None => return MinMaxResult::NoElements,
+ Some(x) => {
+ match it.next() {
+ None => return MinMaxResult::OneElement(x),
+ Some(y) => {
+ let xk = key_for(&x);
+ let yk = key_for(&y);
+ if !lt(&y, &x, &yk, &xk) {(x, y, xk, yk)} else {(y, x, yk, xk)}
+ }
+ }
+ }
+ };
+
+ loop {
+ // `first` and `second` are the two next elements we want to look
+ // at. We first compare `first` and `second` (#1). The smaller one
+ // is then compared to current minimum (#2). The larger one is
+ // compared to current maximum (#3). This way we do 3 comparisons
+ // for 2 elements.
+ let first = match it.next() {
+ None => break,
+ Some(x) => x
+ };
+ let second = match it.next() {
+ None => {
+ let first_key = key_for(&first);
+ if lt(&first, &min, &first_key, &min_key) {
+ min = first;
+ } else if !lt(&first, &max, &first_key, &max_key) {
+ max = first;
+ }
+ break;
+ }
+ Some(x) => x
+ };
+ let first_key = key_for(&first);
+ let second_key = key_for(&second);
+ if !lt(&second, &first, &second_key, &first_key) {
+ if lt(&first, &min, &first_key, &min_key) {
+ min = first;
+ min_key = first_key;
+ }
+ if !lt(&second, &max, &second_key, &max_key) {
+ max = second;
+ max_key = second_key;
+ }
+ } else {
+ if lt(&second, &min, &second_key, &min_key) {
+ min = second;
+ min_key = second_key;
+ }
+ if !lt(&first, &max, &first_key, &max_key) {
+ max = first;
+ max_key = first_key;
+ }
+ }
+ }
+
+ MinMaxResult::MinMax(min, max)
+}
diff --git a/third_party/rust/itertools-0.8.0/src/multipeek_impl.rs b/third_party/rust/itertools-0.8.0/src/multipeek_impl.rs
new file mode 100644
index 0000000000..a6a2fb33eb
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/src/multipeek_impl.rs
@@ -0,0 +1,104 @@
+
+
+use std::iter::Fuse;
+use std::collections::VecDeque;
+use size_hint;
+use PeekingNext;
+
+/// See [`multipeek()`](../fn.multipeek.html) for more information.
+#[derive(Clone, Debug)]
+pub struct MultiPeek<I>
+ where I: Iterator
+{
+ iter: Fuse<I>,
+ buf: VecDeque<I::Item>,
+ index: usize,
+}
+
+/// An iterator adaptor that allows the user to peek at multiple `.next()`
+/// values without advancing the base iterator.
+pub fn multipeek<I>(iterable: I) -> MultiPeek<I::IntoIter>
+ where I: IntoIterator
+{
+ MultiPeek {
+ iter: iterable.into_iter().fuse(),
+ buf: VecDeque::new(),
+ index: 0,
+ }
+}
+
+impl<I> MultiPeek<I>
+ where I: Iterator
+{
+ /// Reset the peeking “cursor”
+ pub fn reset_peek(&mut self) {
+ self.index = 0;
+ }
+}
+
+impl<I: Iterator> MultiPeek<I> {
+ /// Works exactly like `.next()` with the only difference that it doesn't
+ /// advance itself. `.peek()` can be called multiple times, to peek
+ /// further ahead.
+ pub fn peek(&mut self) -> Option<&I::Item> {
+ let ret = if self.index < self.buf.len() {
+ Some(&self.buf[self.index])
+ } else {
+ match self.iter.next() {
+ Some(x) => {
+ self.buf.push_back(x);
+ Some(&self.buf[self.index])
+ }
+ None => return None,
+ }
+ };
+
+ self.index += 1;
+ ret
+ }
+}
+
+impl<I> PeekingNext for MultiPeek<I>
+ where I: Iterator,
+{
+ fn peeking_next<F>(&mut self, accept: F) -> Option<Self::Item>
+ where F: FnOnce(&Self::Item) -> bool
+ {
+ if self.buf.is_empty() {
+ if let Some(r) = self.peek() {
+ if !accept(r) { return None }
+ }
+ } else {
+ if let Some(r) = self.buf.get(0) {
+ if !accept(r) { return None }
+ }
+ }
+ self.next()
+ }
+}
+
+impl<I> Iterator for MultiPeek<I>
+ where I: Iterator
+{
+ type Item = I::Item;
+
+ fn next(&mut self) -> Option<I::Item> {
+ self.index = 0;
+ if self.buf.is_empty() {
+ self.iter.next()
+ } else {
+ self.buf.pop_front()
+ }
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ size_hint::add_scalar(self.iter.size_hint(), self.buf.len())
+ }
+}
+
+// Same size
+impl<I> ExactSizeIterator for MultiPeek<I>
+ where I: ExactSizeIterator
+{}
+
+
diff --git a/third_party/rust/itertools-0.8.0/src/pad_tail.rs b/third_party/rust/itertools-0.8.0/src/pad_tail.rs
new file mode 100644
index 0000000000..c9cfe6af30
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/src/pad_tail.rs
@@ -0,0 +1,83 @@
+use std::iter::Fuse;
+use size_hint;
+
+/// An iterator adaptor that pads a sequence to a minimum length by filling
+/// missing elements using a closure.
+///
+/// Iterator element type is `I::Item`.
+///
+/// See [`.pad_using()`](../trait.Itertools.html#method.pad_using) for more information.
+#[derive(Clone)]
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct PadUsing<I, F> {
+ iter: Fuse<I>,
+ min: usize,
+ pos: usize,
+ filler: F,
+}
+
+/// Create a new **PadUsing** iterator.
+pub fn pad_using<I, F>(iter: I, min: usize, filler: F) -> PadUsing<I, F>
+ where I: Iterator,
+ F: FnMut(usize) -> I::Item
+{
+ PadUsing {
+ iter: iter.fuse(),
+ min: min,
+ pos: 0,
+ filler: filler,
+ }
+}
+
+impl<I, F> Iterator for PadUsing<I, F>
+ where I: Iterator,
+ F: FnMut(usize) -> I::Item
+{
+ type Item = I::Item;
+
+ #[inline]
+ fn next(&mut self) -> Option<I::Item> {
+ match self.iter.next() {
+ None => {
+ if self.pos < self.min {
+ let e = Some((self.filler)(self.pos));
+ self.pos += 1;
+ e
+ } else {
+ None
+ }
+ },
+ e => {
+ self.pos += 1;
+ e
+ }
+ }
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ let tail = self.min.saturating_sub(self.pos);
+ size_hint::max(self.iter.size_hint(), (tail, Some(tail)))
+ }
+}
+
+impl<I, F> DoubleEndedIterator for PadUsing<I, F>
+ where I: DoubleEndedIterator + ExactSizeIterator,
+ F: FnMut(usize) -> I::Item
+{
+ fn next_back(&mut self) -> Option<I::Item> {
+ if self.min == 0 {
+ self.iter.next_back()
+ } else if self.iter.len() >= self.min {
+ self.min -= 1;
+ self.iter.next_back()
+ } else {
+ self.min -= 1;
+ Some((self.filler)(self.min))
+ }
+ }
+}
+
+impl<I, F> ExactSizeIterator for PadUsing<I, F>
+ where I: ExactSizeIterator,
+ F: FnMut(usize) -> I::Item
+{}
diff --git a/third_party/rust/itertools-0.8.0/src/peeking_take_while.rs b/third_party/rust/itertools-0.8.0/src/peeking_take_while.rs
new file mode 100644
index 0000000000..0b2291dfdd
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/src/peeking_take_while.rs
@@ -0,0 +1,149 @@
+
+use std::iter::Peekable;
+use PutBack;
+#[cfg(feature = "use_std")]
+use PutBackN;
+
+/// An iterator that allows peeking at an element before deciding to accept it.
+///
+/// See [`.peeking_take_while()`](trait.Itertools.html#method.peeking_take_while)
+/// for more information.
+///
+/// This is implemented by peeking adaptors like peekable and put back,
+/// but also by a few iterators that can be peeked natively, like the slice’s
+/// by reference iterator (`std::slice::Iter`).
+pub trait PeekingNext : Iterator {
+ /// Pass a reference to the next iterator element to the closure `accept`;
+ /// if `accept` returns true, return it as the next element,
+ /// else None.
+ fn peeking_next<F>(&mut self, accept: F) -> Option<Self::Item>
+ where F: FnOnce(&Self::Item) -> bool;
+}
+
+impl<I> PeekingNext for Peekable<I>
+ where I: Iterator,
+{
+ fn peeking_next<F>(&mut self, accept: F) -> Option<Self::Item>
+ where F: FnOnce(&Self::Item) -> bool
+ {
+ if let Some(r) = self.peek() {
+ if !accept(r) {
+ return None;
+ }
+ }
+ self.next()
+ }
+}
+
+impl<I> PeekingNext for PutBack<I>
+ where I: Iterator,
+{
+ fn peeking_next<F>(&mut self, accept: F) -> Option<Self::Item>
+ where F: FnOnce(&Self::Item) -> bool
+ {
+ if let Some(r) = self.next() {
+ if !accept(&r) {
+ self.put_back(r);
+ return None;
+ }
+ Some(r)
+ } else {
+ None
+ }
+ }
+}
+
+#[cfg(feature = "use_std")]
+impl<I> PeekingNext for PutBackN<I>
+ where I: Iterator,
+{
+ fn peeking_next<F>(&mut self, accept: F) -> Option<Self::Item>
+ where F: FnOnce(&Self::Item) -> bool
+ {
+ if let Some(r) = self.next() {
+ if !accept(&r) {
+ self.put_back(r);
+ return None;
+ }
+ Some(r)
+ } else {
+ None
+ }
+ }
+}
+
+/// An iterator adaptor that takes items while a closure returns `true`.
+///
+/// See [`.peeking_take_while()`](../trait.Itertools.html#method.peeking_take_while)
+/// for more information.
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct PeekingTakeWhile<'a, I: 'a, F>
+ where I: Iterator,
+{
+ iter: &'a mut I,
+ f: F,
+}
+
+/// Create a PeekingTakeWhile
+pub fn peeking_take_while<I, F>(iter: &mut I, f: F) -> PeekingTakeWhile<I, F>
+ where I: Iterator,
+{
+ PeekingTakeWhile {
+ iter: iter,
+ f: f,
+ }
+}
+
+impl<'a, I, F> Iterator for PeekingTakeWhile<'a, I, F>
+ where I: PeekingNext,
+ F: FnMut(&I::Item) -> bool,
+
+{
+ type Item = I::Item;
+ fn next(&mut self) -> Option<Self::Item> {
+ self.iter.peeking_next(&mut self.f)
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ let (_, hi) = self.iter.size_hint();
+ (0, hi)
+ }
+}
+
+// Some iterators are so lightweight we can simply clone them to save their
+// state and use that for peeking.
+macro_rules! peeking_next_by_clone {
+ ([$($typarm:tt)*] $type_:ty) => {
+ impl<$($typarm)*> PeekingNext for $type_ {
+ fn peeking_next<F>(&mut self, accept: F) -> Option<Self::Item>
+ where F: FnOnce(&Self::Item) -> bool
+ {
+ let saved_state = self.clone();
+ if let Some(r) = self.next() {
+ if !accept(&r) {
+ *self = saved_state;
+ } else {
+ return Some(r)
+ }
+ }
+ None
+ }
+ }
+ }
+}
+
+peeking_next_by_clone! { ['a, T] ::std::slice::Iter<'a, T> }
+peeking_next_by_clone! { ['a] ::std::str::Chars<'a> }
+peeking_next_by_clone! { ['a] ::std::str::CharIndices<'a> }
+peeking_next_by_clone! { ['a] ::std::str::Bytes<'a> }
+peeking_next_by_clone! { ['a, T] ::std::option::Iter<'a, T> }
+peeking_next_by_clone! { ['a, T] ::std::result::Iter<'a, T> }
+peeking_next_by_clone! { [T] ::std::iter::Empty<T> }
+#[cfg(feature = "use_std")]
+peeking_next_by_clone! { ['a, T] ::std::collections::linked_list::Iter<'a, T> }
+#[cfg(feature = "use_std")]
+peeking_next_by_clone! { ['a, T] ::std::collections::vec_deque::Iter<'a, T> }
+
+// cloning a Rev has no extra overhead; peekable and put backs are never DEI.
+peeking_next_by_clone! { [I: Clone + PeekingNext + DoubleEndedIterator]
+ ::std::iter::Rev<I> }
diff --git a/third_party/rust/itertools-0.8.0/src/process_results_impl.rs b/third_party/rust/itertools-0.8.0/src/process_results_impl.rs
new file mode 100644
index 0000000000..f78515d77f
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/src/process_results_impl.rs
@@ -0,0 +1,81 @@
+
+/// An iterator that produces only the `T` values as long as the
+/// inner iterator produces `Ok(T)`.
+///
+/// Used by [`process_results`](../fn.process_results.html), see its docs
+/// for more information.
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+#[derive(Debug)]
+pub struct ProcessResults<'a, I, E: 'a> {
+ error: &'a mut Result<(), E>,
+ iter: I,
+}
+
+impl<'a, I, T, E> Iterator for ProcessResults<'a, I, E>
+ where I: Iterator<Item = Result<T, E>>
+{
+ type Item = T;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ match self.iter.next() {
+ Some(Ok(x)) => Some(x),
+ Some(Err(e)) => {
+ *self.error = Err(e);
+ None
+ }
+ None => None,
+ }
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ let (_, hi) = self.iter.size_hint();
+ (0, hi)
+ }
+}
+
+/// “Lift” a function of the values of an iterator so that it can process
+/// an iterator of `Result` values instead.
+///
+/// `iterable` is an iterator or iterable with `Result<T, E>` elements, where
+/// `T` is the value type and `E` the error type.
+///
+/// `processor` is a closure that receives an adapted version of the iterable
+/// as the only argument — the adapted iterator produces elements of type `T`,
+/// as long as the original iterator produces `Ok` values.
+///
+/// If the original iterable produces an error at any point, the adapted
+/// iterator ends and the `process_results` function will return the
+/// error iself.
+///
+/// Otherwise, the return value from the closure is returned wrapped
+/// inside `Ok`.
+///
+/// # Example
+///
+/// ```
+/// use itertools::process_results;
+///
+/// type R = Result<i32, &'static str>;
+///
+/// let first_values: Vec<R> = vec![Ok(1), Ok(0), Ok(3)];
+/// let second_values: Vec<R> = vec![Ok(2), Ok(1), Err("overflow")];
+///
+/// // “Lift” the iterator .max() method to work on the values in Results using process_results
+///
+/// let first_max = process_results(first_values, |iter| iter.max().unwrap_or(0));
+/// let second_max = process_results(second_values, |iter| iter.max().unwrap_or(0));
+///
+/// assert_eq!(first_max, Ok(3));
+/// assert!(second_max.is_err());
+/// ```
+pub fn process_results<I, F, T, E, R>(iterable: I, processor: F) -> Result<R, E>
+ where I: IntoIterator<Item = Result<T, E>>,
+ F: FnOnce(ProcessResults<I::IntoIter, E>) -> R
+{
+ let iter = iterable.into_iter();
+ let mut error = Ok(());
+
+ let result = processor(ProcessResults { error: &mut error, iter: iter });
+
+ error.map(|_| result)
+}
diff --git a/third_party/rust/itertools-0.8.0/src/put_back_n_impl.rs b/third_party/rust/itertools-0.8.0/src/put_back_n_impl.rs
new file mode 100644
index 0000000000..cc08320714
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/src/put_back_n_impl.rs
@@ -0,0 +1,63 @@
+use size_hint;
+
+/// An iterator adaptor that allows putting multiple
+/// items in front of the iterator.
+///
+/// Iterator element type is `I::Item`.
+#[derive(Debug, Clone)]
+pub struct PutBackN<I: Iterator> {
+ top: Vec<I::Item>,
+ iter: I,
+}
+
+/// Create an iterator where you can put back multiple values to the front
+/// of the iteration.
+///
+/// Iterator element type is `I::Item`.
+pub fn put_back_n<I>(iterable: I) -> PutBackN<I::IntoIter>
+ where I: IntoIterator
+{
+ PutBackN {
+ top: Vec::new(),
+ iter: iterable.into_iter(),
+ }
+}
+
+impl<I: Iterator> PutBackN<I> {
+ /// Puts x in front of the iterator.
+ /// The values are yielded in order of the most recently put back
+ /// values first.
+ ///
+ /// ```rust
+ /// use itertools::put_back_n;
+ ///
+ /// let mut it = put_back_n(1..5);
+ /// it.next();
+ /// it.put_back(1);
+ /// it.put_back(0);
+ ///
+ /// assert!(itertools::equal(it, 0..5));
+ /// ```
+ #[inline]
+ pub fn put_back(&mut self, x: I::Item) {
+ self.top.push(x);
+ }
+}
+
+impl<I: Iterator> Iterator for PutBackN<I> {
+ type Item = I::Item;
+ #[inline]
+ fn next(&mut self) -> Option<I::Item> {
+ if self.top.is_empty() {
+ self.iter.next()
+ } else {
+ self.top.pop()
+ }
+ }
+
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ size_hint::add_scalar(self.iter.size_hint(), self.top.len())
+ }
+}
+
diff --git a/third_party/rust/itertools-0.8.0/src/rciter_impl.rs b/third_party/rust/itertools-0.8.0/src/rciter_impl.rs
new file mode 100644
index 0000000000..1c3b03b5bc
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/src/rciter_impl.rs
@@ -0,0 +1,98 @@
+
+use std::iter::IntoIterator;
+use std::rc::Rc;
+use std::cell::RefCell;
+
+/// A wrapper for `Rc<RefCell<I>>`, that implements the `Iterator` trait.
+#[derive(Debug)]
+pub struct RcIter<I> {
+ /// The boxed iterator.
+ pub rciter: Rc<RefCell<I>>,
+}
+
+/// Return an iterator inside a `Rc<RefCell<_>>` wrapper.
+///
+/// The returned `RcIter` can be cloned, and each clone will refer back to the
+/// same original iterator.
+///
+/// `RcIter` allows doing interesting things like using `.zip()` on an iterator with
+/// itself, at the cost of runtime borrow checking which may have a performance
+/// penalty.
+///
+/// Iterator element type is `Self::Item`.
+///
+/// ```
+/// use itertools::rciter;
+/// use itertools::zip;
+///
+/// // In this example a range iterator is created and we iterate it using
+/// // three separate handles (two of them given to zip).
+/// // We also use the IntoIterator implementation for `&RcIter`.
+///
+/// let mut iter = rciter(0..9);
+/// let mut z = zip(&iter, &iter);
+///
+/// assert_eq!(z.next(), Some((0, 1)));
+/// assert_eq!(z.next(), Some((2, 3)));
+/// assert_eq!(z.next(), Some((4, 5)));
+/// assert_eq!(iter.next(), Some(6));
+/// assert_eq!(z.next(), Some((7, 8)));
+/// assert_eq!(z.next(), None);
+/// ```
+///
+/// **Panics** in iterator methods if a borrow error is encountered in the
+/// iterator methods. It can only happen if the `RcIter` is reentered in
+/// `.next()`, i.e. if it somehow participates in an “iterator knot”
+/// where it is an adaptor of itself.
+pub fn rciter<I>(iterable: I) -> RcIter<I::IntoIter>
+ where I: IntoIterator
+{
+ RcIter { rciter: Rc::new(RefCell::new(iterable.into_iter())) }
+}
+
+impl<I> Clone for RcIter<I> {
+ #[inline]
+ fn clone(&self) -> RcIter<I> {
+ RcIter { rciter: self.rciter.clone() }
+ }
+}
+
+impl<A, I> Iterator for RcIter<I>
+ where I: Iterator<Item = A>
+{
+ type Item = A;
+ #[inline]
+ fn next(&mut self) -> Option<A> {
+ self.rciter.borrow_mut().next()
+ }
+
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ // To work sanely with other API that assume they own an iterator,
+ // so it can't change in other places, we can't guarantee as much
+ // in our size_hint. Other clones may drain values under our feet.
+ let (_, hi) = self.rciter.borrow().size_hint();
+ (0, hi)
+ }
+}
+
+impl<I> DoubleEndedIterator for RcIter<I>
+ where I: DoubleEndedIterator
+{
+ #[inline]
+ fn next_back(&mut self) -> Option<I::Item> {
+ self.rciter.borrow_mut().next_back()
+ }
+}
+
+/// Return an iterator from `&RcIter<I>` (by simply cloning it).
+impl<'a, I> IntoIterator for &'a RcIter<I>
+ where I: Iterator
+{
+ type Item = I::Item;
+ type IntoIter = RcIter<I>;
+
+ fn into_iter(self) -> RcIter<I> {
+ self.clone()
+ }
+}
diff --git a/third_party/rust/itertools-0.8.0/src/repeatn.rs b/third_party/rust/itertools-0.8.0/src/repeatn.rs
new file mode 100644
index 0000000000..1c7c310014
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/src/repeatn.rs
@@ -0,0 +1,54 @@
+
+/// An iterator that produces *n* repetitions of an element.
+///
+/// See [`repeat_n()`](../fn.repeat_n.html) for more information.
+#[must_use = "iterators are lazy and do nothing unless consumed"]
+#[derive(Debug)]
+pub struct RepeatN<A> {
+ elt: Option<A>,
+ n: usize,
+}
+
+/// Create an iterator that produces `n` repetitions of `element`.
+pub fn repeat_n<A>(element: A, n: usize) -> RepeatN<A>
+ where A: Clone,
+{
+ if n == 0 {
+ RepeatN { elt: None, n: n, }
+ } else {
+ RepeatN { elt: Some(element), n: n, }
+ }
+}
+
+impl<A> Iterator for RepeatN<A>
+ where A: Clone
+{
+ type Item = A;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ if self.n > 1 {
+ self.n -= 1;
+ self.elt.as_ref().cloned()
+ } else {
+ self.n = 0;
+ self.elt.take()
+ }
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ (self.n, Some(self.n))
+ }
+}
+
+impl<A> DoubleEndedIterator for RepeatN<A>
+ where A: Clone
+{
+ #[inline]
+ fn next_back(&mut self) -> Option<Self::Item> {
+ self.next()
+ }
+}
+
+impl<A> ExactSizeIterator for RepeatN<A>
+ where A: Clone
+{}
diff --git a/third_party/rust/itertools-0.8.0/src/size_hint.rs b/third_party/rust/itertools-0.8.0/src/size_hint.rs
new file mode 100644
index 0000000000..be54443f29
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/src/size_hint.rs
@@ -0,0 +1,104 @@
+//! Arithmetic on **Iterator** *.size_hint()* values.
+//!
+
+use std::usize;
+use std::cmp;
+
+/// **SizeHint** is the return type of **Iterator::size_hint()**.
+pub type SizeHint = (usize, Option<usize>);
+
+/// Add **SizeHint** correctly.
+#[inline]
+pub fn add(a: SizeHint, b: SizeHint) -> SizeHint {
+ let min = a.0.checked_add(b.0).unwrap_or(usize::MAX);
+ let max = match (a.1, b.1) {
+ (Some(x), Some(y)) => x.checked_add(y),
+ _ => None,
+ };
+
+ (min, max)
+}
+
+/// Add **x** correctly to a **SizeHint**.
+#[inline]
+pub fn add_scalar(sh: SizeHint, x: usize) -> SizeHint {
+ let (mut low, mut hi) = sh;
+ low = low.saturating_add(x);
+ hi = hi.and_then(|elt| elt.checked_add(x));
+ (low, hi)
+}
+
+/// Sbb **x** correctly to a **SizeHint**.
+#[inline]
+#[allow(dead_code)]
+pub fn sub_scalar(sh: SizeHint, x: usize) -> SizeHint {
+ let (mut low, mut hi) = sh;
+ low = low.saturating_sub(x);
+ hi = hi.map(|elt| elt.saturating_sub(x));
+ (low, hi)
+}
+
+
+/// Multiply **SizeHint** correctly
+///
+/// ```ignore
+/// use std::usize;
+/// use itertools::size_hint;
+///
+/// assert_eq!(size_hint::mul((3, Some(4)), (3, Some(4))),
+/// (9, Some(16)));
+///
+/// assert_eq!(size_hint::mul((3, Some(4)), (usize::MAX, None)),
+/// (usize::MAX, None));
+///
+/// assert_eq!(size_hint::mul((3, None), (0, Some(0))),
+/// (0, Some(0)));
+/// ```
+#[inline]
+pub fn mul(a: SizeHint, b: SizeHint) -> SizeHint {
+ let low = a.0.checked_mul(b.0).unwrap_or(usize::MAX);
+ let hi = match (a.1, b.1) {
+ (Some(x), Some(y)) => x.checked_mul(y),
+ (Some(0), None) | (None, Some(0)) => Some(0),
+ _ => None,
+ };
+ (low, hi)
+}
+
+/// Multiply **x** correctly with a **SizeHint**.
+#[inline]
+pub fn mul_scalar(sh: SizeHint, x: usize) -> SizeHint {
+ let (mut low, mut hi) = sh;
+ low = low.saturating_mul(x);
+ hi = hi.and_then(|elt| elt.checked_mul(x));
+ (low, hi)
+}
+
+/// Return the maximum
+#[inline]
+pub fn max(a: SizeHint, b: SizeHint) -> SizeHint {
+ let (a_lower, a_upper) = a;
+ let (b_lower, b_upper) = b;
+
+ let lower = cmp::max(a_lower, b_lower);
+
+ let upper = match (a_upper, b_upper) {
+ (Some(x), Some(y)) => Some(cmp::max(x, y)),
+ _ => None,
+ };
+
+ (lower, upper)
+}
+
+/// Return the minimum
+#[inline]
+pub fn min(a: SizeHint, b: SizeHint) -> SizeHint {
+ let (a_lower, a_upper) = a;
+ let (b_lower, b_upper) = b;
+ let lower = cmp::min(a_lower, b_lower);
+ let upper = match (a_upper, b_upper) {
+ (Some(u1), Some(u2)) => Some(cmp::min(u1, u2)),
+ _ => a_upper.or(b_upper),
+ };
+ (lower, upper)
+}
diff --git a/third_party/rust/itertools-0.8.0/src/sources.rs b/third_party/rust/itertools-0.8.0/src/sources.rs
new file mode 100644
index 0000000000..a579f3d9c2
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/src/sources.rs
@@ -0,0 +1,190 @@
+//! Iterators that are sources (produce elements from parameters,
+//! not from another iterator).
+#![allow(deprecated)]
+
+use std::fmt;
+use std::mem;
+
+/// See [`repeat_call`](../fn.repeat_call.html) for more information.
+#[deprecated(note="Use std repeat_with() instead", since="0.8")]
+pub struct RepeatCall<F> {
+ f: F,
+}
+
+impl<F> fmt::Debug for RepeatCall<F>
+{
+ debug_fmt_fields!(RepeatCall, );
+}
+
+/// An iterator source that produces elements indefinitely by calling
+/// a given closure.
+///
+/// Iterator element type is the return type of the closure.
+///
+/// ```
+/// use itertools::repeat_call;
+/// use itertools::Itertools;
+/// use std::collections::BinaryHeap;
+///
+/// let mut heap = BinaryHeap::from(vec![2, 5, 3, 7, 8]);
+///
+/// // extract each element in sorted order
+/// for element in repeat_call(|| heap.pop()).while_some() {
+/// print!("{}", element);
+/// }
+///
+/// itertools::assert_equal(
+/// repeat_call(|| 1).take(5),
+/// vec![1, 1, 1, 1, 1]
+/// );
+/// ```
+#[deprecated(note="Use std repeat_with() instead", since="0.8")]
+pub fn repeat_call<F, A>(function: F) -> RepeatCall<F>
+ where F: FnMut() -> A
+{
+ RepeatCall { f: function }
+}
+
+impl<A, F> Iterator for RepeatCall<F>
+ where F: FnMut() -> A
+{
+ type Item = A;
+
+ #[inline]
+ fn next(&mut self) -> Option<A> {
+ Some((self.f)())
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ (usize::max_value(), None)
+ }
+}
+
+/// Creates a new unfold source with the specified closure as the "iterator
+/// function" and an initial state to eventually pass to the closure
+///
+/// `unfold` is a general iterator builder: it has a mutable state value,
+/// and a closure with access to the state that produces the next value.
+///
+/// This more or less equivalent to a regular struct with an `Iterator`
+/// implementation, and is useful for one-off iterators.
+///
+/// ```
+/// // an iterator that yields sequential Fibonacci numbers,
+/// // and stops at the maximum representable value.
+///
+/// use itertools::unfold;
+///
+/// let (mut x1, mut x2) = (1u32, 1u32);
+/// let mut fibonacci = unfold((), move |_| {
+/// // Attempt to get the next Fibonacci number
+/// let next = x1.saturating_add(x2);
+///
+/// // Shift left: ret <- x1 <- x2 <- next
+/// let ret = x1;
+/// x1 = x2;
+/// x2 = next;
+///
+/// // If addition has saturated at the maximum, we are finished
+/// if ret == x1 && ret > 1 {
+/// return None;
+/// }
+///
+/// Some(ret)
+/// });
+///
+/// itertools::assert_equal(fibonacci.by_ref().take(8),
+/// vec![1, 1, 2, 3, 5, 8, 13, 21]);
+/// assert_eq!(fibonacci.last(), Some(2_971_215_073))
+/// ```
+pub fn unfold<A, St, F>(initial_state: St, f: F) -> Unfold<St, F>
+ where F: FnMut(&mut St) -> Option<A>
+{
+ Unfold {
+ f: f,
+ state: initial_state,
+ }
+}
+
+impl<St, F> fmt::Debug for Unfold<St, F>
+ where St: fmt::Debug,
+{
+ debug_fmt_fields!(Unfold, state);
+}
+
+/// See [`unfold`](../fn.unfold.html) for more information.
+#[derive(Clone)]
+#[must_use = "iterators are lazy and do nothing unless consumed"]
+pub struct Unfold<St, F> {
+ f: F,
+ /// Internal state that will be passed to the closure on the next iteration
+ pub state: St,
+}
+
+impl<A, St, F> Iterator for Unfold<St, F>
+ where F: FnMut(&mut St) -> Option<A>
+{
+ type Item = A;
+
+ #[inline]
+ fn next(&mut self) -> Option<A> {
+ (self.f)(&mut self.state)
+ }
+
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ // no possible known bounds at this point
+ (0, None)
+ }
+}
+
+/// An iterator that infinitely applies function to value and yields results.
+///
+/// This `struct` is created by the [`iterate()`] function. See its documentation for more.
+///
+/// [`iterate()`]: ../fn.iterate.html
+#[derive(Clone)]
+#[must_use = "iterators are lazy and do nothing unless consumed"]
+pub struct Iterate<St, F> {
+ state: St,
+ f: F,
+}
+
+impl<St, F> fmt::Debug for Iterate<St, F>
+ where St: fmt::Debug,
+{
+ debug_fmt_fields!(Iterate, state);
+}
+
+impl<St, F> Iterator for Iterate<St, F>
+ where F: FnMut(&St) -> St
+{
+ type Item = St;
+
+ #[inline]
+ fn next(&mut self) -> Option<Self::Item> {
+ let next_state = (self.f)(&self.state);
+ Some(mem::replace(&mut self.state, next_state))
+ }
+
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ (usize::max_value(), None)
+ }
+}
+
+/// Creates a new iterator that infinitely applies function to value and yields results.
+///
+/// ```
+/// use itertools::iterate;
+///
+/// itertools::assert_equal(iterate(1, |&i| i * 3).take(5), vec![1, 3, 9, 27, 81]);
+/// ```
+pub fn iterate<St, F>(initial_value: St, f: F) -> Iterate<St, F>
+ where F: FnMut(&St) -> St
+{
+ Iterate {
+ state: initial_value,
+ f: f,
+ }
+}
diff --git a/third_party/rust/itertools-0.8.0/src/tee.rs b/third_party/rust/itertools-0.8.0/src/tee.rs
new file mode 100644
index 0000000000..77d261759d
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/src/tee.rs
@@ -0,0 +1,78 @@
+use super::size_hint;
+
+use std::cell::RefCell;
+use std::collections::VecDeque;
+use std::rc::Rc;
+
+/// Common buffer object for the two tee halves
+#[derive(Debug)]
+struct TeeBuffer<A, I> {
+ backlog: VecDeque<A>,
+ iter: I,
+ /// The owner field indicates which id should read from the backlog
+ owner: bool,
+}
+
+/// One half of an iterator pair where both return the same elements.
+///
+/// See [`.tee()`](../trait.Itertools.html#method.tee) for more information.
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+#[derive(Debug)]
+pub struct Tee<I>
+ where I: Iterator
+{
+ rcbuffer: Rc<RefCell<TeeBuffer<I::Item, I>>>,
+ id: bool,
+}
+
+pub fn new<I>(iter: I) -> (Tee<I>, Tee<I>)
+ where I: Iterator
+{
+ let buffer = TeeBuffer{backlog: VecDeque::new(), iter: iter, owner: false};
+ let t1 = Tee{rcbuffer: Rc::new(RefCell::new(buffer)), id: true};
+ let t2 = Tee{rcbuffer: t1.rcbuffer.clone(), id: false};
+ (t1, t2)
+}
+
+impl<I> Iterator for Tee<I>
+ where I: Iterator,
+ I::Item: Clone
+{
+ type Item = I::Item;
+ fn next(&mut self) -> Option<I::Item> {
+ // .borrow_mut may fail here -- but only if the user has tied some kind of weird
+ // knot where the iterator refers back to itself.
+ let mut buffer = self.rcbuffer.borrow_mut();
+ if buffer.owner == self.id {
+ match buffer.backlog.pop_front() {
+ None => {}
+ some_elt => return some_elt,
+ }
+ }
+ match buffer.iter.next() {
+ None => None,
+ Some(elt) => {
+ buffer.backlog.push_back(elt.clone());
+ buffer.owner = !self.id;
+ Some(elt)
+ }
+ }
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ let buffer = self.rcbuffer.borrow();
+ let sh = buffer.iter.size_hint();
+
+ if buffer.owner == self.id {
+ let log_len = buffer.backlog.len();
+ size_hint::add_scalar(sh, log_len)
+ } else {
+ sh
+ }
+ }
+}
+
+impl<I> ExactSizeIterator for Tee<I>
+ where I: ExactSizeIterator,
+ I::Item: Clone
+{}
diff --git a/third_party/rust/itertools-0.8.0/src/tuple_impl.rs b/third_party/rust/itertools-0.8.0/src/tuple_impl.rs
new file mode 100644
index 0000000000..0daa7800c1
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/src/tuple_impl.rs
@@ -0,0 +1,266 @@
+//! Some iterator that produces tuples
+
+use std::iter::Fuse;
+
+/// An iterator over a incomplete tuple.
+///
+/// See [`.tuples()`](../trait.Itertools.html#method.tuples) and
+/// [`Tuples::into_buffer()`](struct.Tuples.html#method.into_buffer).
+#[derive(Debug)]
+pub struct TupleBuffer<T>
+ where T: TupleCollect
+{
+ cur: usize,
+ buf: T::Buffer,
+}
+
+impl<T> TupleBuffer<T>
+ where T: TupleCollect
+{
+ fn new(buf: T::Buffer) -> Self {
+ TupleBuffer {
+ cur: 0,
+ buf: buf,
+ }
+ }
+}
+
+impl<T> Iterator for TupleBuffer<T>
+ where T: TupleCollect
+{
+ type Item = T::Item;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ let s = self.buf.as_mut();
+ if let Some(ref mut item) = s.get_mut(self.cur) {
+ self.cur += 1;
+ item.take()
+ } else {
+ None
+ }
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ let buffer = &self.buf.as_ref()[self.cur..];
+ let len = if buffer.len() == 0 {
+ 0
+ } else {
+ buffer.iter()
+ .position(|x| x.is_none())
+ .unwrap_or(buffer.len())
+ };
+ (len, Some(len))
+ }
+}
+
+impl<T> ExactSizeIterator for TupleBuffer<T>
+ where T: TupleCollect
+{
+}
+
+/// An iterator that groups the items in tuples of a specific size.
+///
+/// See [`.tuples()`](../trait.Itertools.html#method.tuples) for more information.
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct Tuples<I, T>
+ where I: Iterator<Item = T::Item>,
+ T: TupleCollect
+{
+ iter: Fuse<I>,
+ buf: T::Buffer,
+}
+
+/// Create a new tuples iterator.
+pub fn tuples<I, T>(iter: I) -> Tuples<I, T>
+ where I: Iterator<Item = T::Item>,
+ T: TupleCollect
+{
+ Tuples {
+ iter: iter.fuse(),
+ buf: Default::default(),
+ }
+}
+
+impl<I, T> Iterator for Tuples<I, T>
+ where I: Iterator<Item = T::Item>,
+ T: TupleCollect
+{
+ type Item = T;
+
+ fn next(&mut self) -> Option<T> {
+ T::collect_from_iter(&mut self.iter, &mut self.buf)
+ }
+}
+
+impl<I, T> Tuples<I, T>
+ where I: Iterator<Item = T::Item>,
+ T: TupleCollect
+{
+ /// Return a buffer with the produced items that was not enough to be grouped in a tuple.
+ ///
+ /// ```
+ /// use itertools::Itertools;
+ ///
+ /// let mut iter = (0..5).tuples();
+ /// assert_eq!(Some((0, 1, 2)), iter.next());
+ /// assert_eq!(None, iter.next());
+ /// itertools::assert_equal(vec![3, 4], iter.into_buffer());
+ /// ```
+ pub fn into_buffer(self) -> TupleBuffer<T> {
+ TupleBuffer::new(self.buf)
+ }
+}
+
+
+/// An iterator over all contiguous windows that produces tuples of a specific size.
+///
+/// See [`.tuple_windows()`](../trait.Itertools.html#method.tuple_windows) for more
+/// information.
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+#[derive(Debug)]
+pub struct TupleWindows<I, T>
+ where I: Iterator<Item = T::Item>,
+ T: TupleCollect
+{
+ iter: I,
+ last: Option<T>,
+}
+
+/// Create a new tuple windows iterator.
+pub fn tuple_windows<I, T>(mut iter: I) -> TupleWindows<I, T>
+ where I: Iterator<Item = T::Item>,
+ T: TupleCollect,
+ T::Item: Clone
+{
+ use std::iter::once;
+
+ let mut last = None;
+ if T::num_items() != 1 {
+ // put in a duplicate item in front of the tuple; this simplifies
+ // .next() function.
+ if let Some(item) = iter.next() {
+ let iter = once(item.clone()).chain(once(item)).chain(&mut iter);
+ last = T::collect_from_iter_no_buf(iter);
+ }
+ }
+
+ TupleWindows {
+ last: last,
+ iter: iter,
+ }
+}
+
+impl<I, T> Iterator for TupleWindows<I, T>
+ where I: Iterator<Item = T::Item>,
+ T: TupleCollect + Clone,
+ T::Item: Clone
+{
+ type Item = T;
+
+ fn next(&mut self) -> Option<T> {
+ if T::num_items() == 1 {
+ return T::collect_from_iter_no_buf(&mut self.iter)
+ }
+ if let Some(ref mut last) = self.last {
+ if let Some(new) = self.iter.next() {
+ last.left_shift_push(new);
+ return Some(last.clone());
+ }
+ }
+ None
+ }
+}
+
+pub trait TupleCollect: Sized {
+ type Item;
+ type Buffer: Default + AsRef<[Option<Self::Item>]> + AsMut<[Option<Self::Item>]>;
+
+ fn collect_from_iter<I>(iter: I, buf: &mut Self::Buffer) -> Option<Self>
+ where I: IntoIterator<Item = Self::Item>;
+
+ fn collect_from_iter_no_buf<I>(iter: I) -> Option<Self>
+ where I: IntoIterator<Item = Self::Item>;
+
+ fn num_items() -> usize;
+
+ fn left_shift_push(&mut self, item: Self::Item);
+}
+
+macro_rules! impl_tuple_collect {
+ () => ();
+ ($N:expr; $A:ident ; $($X:ident),* ; $($Y:ident),* ; $($Y_rev:ident),*) => (
+ impl<$A> TupleCollect for ($($X),*,) {
+ type Item = $A;
+ type Buffer = [Option<$A>; $N - 1];
+
+ #[allow(unused_assignments, unused_mut)]
+ fn collect_from_iter<I>(iter: I, buf: &mut Self::Buffer) -> Option<Self>
+ where I: IntoIterator<Item = $A>
+ {
+ let mut iter = iter.into_iter();
+ $(
+ let mut $Y = None;
+ )*
+
+ loop {
+ $(
+ $Y = iter.next();
+ if $Y.is_none() {
+ break
+ }
+ )*
+ return Some(($($Y.unwrap()),*,))
+ }
+
+ let mut i = 0;
+ let mut s = buf.as_mut();
+ $(
+ if i < s.len() {
+ s[i] = $Y;
+ i += 1;
+ }
+ )*
+ return None;
+ }
+
+ #[allow(unused_assignments)]
+ fn collect_from_iter_no_buf<I>(iter: I) -> Option<Self>
+ where I: IntoIterator<Item = $A>
+ {
+ let mut iter = iter.into_iter();
+ loop {
+ $(
+ let $Y = if let Some($Y) = iter.next() {
+ $Y
+ } else {
+ break;
+ };
+ )*
+ return Some(($($Y),*,))
+ }
+
+ return None;
+ }
+
+ fn num_items() -> usize {
+ $N
+ }
+
+ fn left_shift_push(&mut self, item: $A) {
+ use std::mem::replace;
+
+ let &mut ($(ref mut $Y),*,) = self;
+ let tmp = item;
+ $(
+ let tmp = replace($Y_rev, tmp);
+ )*
+ drop(tmp);
+ }
+ }
+ )
+}
+
+impl_tuple_collect!(1; A; A; a; a);
+impl_tuple_collect!(2; A; A, A; a, b; b, a);
+impl_tuple_collect!(3; A; A, A, A; a, b, c; c, b, a);
+impl_tuple_collect!(4; A; A, A, A, A; a, b, c, d; d, c, b, a);
diff --git a/third_party/rust/itertools-0.8.0/src/unique_impl.rs b/third_party/rust/itertools-0.8.0/src/unique_impl.rs
new file mode 100644
index 0000000000..d9e7fd3dc8
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/src/unique_impl.rs
@@ -0,0 +1,134 @@
+
+use std::collections::HashMap;
+use std::collections::hash_map::{Entry};
+use std::hash::Hash;
+use std::fmt;
+
+/// An iterator adapter to filter out duplicate elements.
+///
+/// See [`.unique_by()`](../trait.Itertools.html#method.unique) for more information.
+#[derive(Clone)]
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct UniqueBy<I: Iterator, V, F> {
+ iter: I,
+ // Use a hashmap for the entry API
+ used: HashMap<V, ()>,
+ f: F,
+}
+
+impl<I, V, F> fmt::Debug for UniqueBy<I, V, F>
+ where I: Iterator + fmt::Debug,
+ V: fmt::Debug + Hash + Eq,
+{
+ debug_fmt_fields!(UniqueBy, iter, used);
+}
+
+/// Create a new `UniqueBy` iterator.
+pub fn unique_by<I, V, F>(iter: I, f: F) -> UniqueBy<I, V, F>
+ where V: Eq + Hash,
+ F: FnMut(&I::Item) -> V,
+ I: Iterator,
+{
+ UniqueBy {
+ iter: iter,
+ used: HashMap::new(),
+ f: f,
+ }
+}
+
+// count the number of new unique keys in iterable (`used` is the set already seen)
+fn count_new_keys<I, K>(mut used: HashMap<K, ()>, iterable: I) -> usize
+ where I: IntoIterator<Item=K>,
+ K: Hash + Eq,
+{
+ let iter = iterable.into_iter();
+ let current_used = used.len();
+ used.extend(iter.map(|key| (key, ())));
+ used.len() - current_used
+}
+
+impl<I, V, F> Iterator for UniqueBy<I, V, F>
+ where I: Iterator,
+ V: Eq + Hash,
+ F: FnMut(&I::Item) -> V
+{
+ type Item = I::Item;
+
+ fn next(&mut self) -> Option<I::Item> {
+ while let Some(v) = self.iter.next() {
+ let key = (self.f)(&v);
+ if self.used.insert(key, ()).is_none() {
+ return Some(v);
+ }
+ }
+ None
+ }
+
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ let (low, hi) = self.iter.size_hint();
+ ((low > 0 && self.used.is_empty()) as usize, hi)
+ }
+
+ fn count(self) -> usize {
+ let mut key_f = self.f;
+ count_new_keys(self.used, self.iter.map(move |elt| key_f(&elt)))
+ }
+}
+
+impl<I> Iterator for Unique<I>
+ where I: Iterator,
+ I::Item: Eq + Hash + Clone
+{
+ type Item = I::Item;
+
+ fn next(&mut self) -> Option<I::Item> {
+ while let Some(v) = self.iter.iter.next() {
+ if let Entry::Vacant(entry) = self.iter.used.entry(v) {
+ let elt = entry.key().clone();
+ entry.insert(());
+ return Some(elt);
+ }
+ }
+ None
+ }
+
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ let (low, hi) = self.iter.iter.size_hint();
+ ((low > 0 && self.iter.used.is_empty()) as usize, hi)
+ }
+
+ fn count(self) -> usize {
+ count_new_keys(self.iter.used, self.iter.iter)
+ }
+}
+
+/// An iterator adapter to filter out duplicate elements.
+///
+/// See [`.unique()`](../trait.Itertools.html#method.unique) for more information.
+#[derive(Clone)]
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct Unique<I: Iterator> {
+ iter: UniqueBy<I, I::Item, ()>,
+}
+
+impl<I> fmt::Debug for Unique<I>
+ where I: Iterator + fmt::Debug,
+ I::Item: Hash + Eq + fmt::Debug,
+{
+ debug_fmt_fields!(Unique, iter);
+}
+
+pub fn unique<I>(iter: I) -> Unique<I>
+ where I: Iterator,
+ I::Item: Eq + Hash,
+{
+ Unique {
+ iter: UniqueBy {
+ iter: iter,
+ used: HashMap::new(),
+ f: (),
+ }
+ }
+}
diff --git a/third_party/rust/itertools-0.8.0/src/with_position.rs b/third_party/rust/itertools-0.8.0/src/with_position.rs
new file mode 100644
index 0000000000..2a7c2b8ad6
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/src/with_position.rs
@@ -0,0 +1,90 @@
+use std::iter::{Fuse,Peekable};
+
+/// An iterator adaptor that wraps each element in an [`Position`](../enum.Position.html).
+///
+/// Iterator element type is `Position<I::Item>`.
+///
+/// See [`.with_position()`](../trait.Itertools.html#method.with_position) for more information.
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct WithPosition<I>
+ where I: Iterator,
+{
+ handled_first: bool,
+ peekable: Peekable<Fuse<I>>,
+}
+
+/// Create a new `WithPosition` iterator.
+pub fn with_position<I>(iter: I) -> WithPosition<I>
+ where I: Iterator,
+{
+ WithPosition {
+ handled_first: false,
+ peekable: iter.fuse().peekable(),
+ }
+}
+
+/// A value yielded by `WithPosition`.
+/// Indicates the position of this element in the iterator results.
+///
+/// See [`.with_position()`](trait.Itertools.html#method.with_position) for more information.
+#[derive(Copy, Clone, Debug, PartialEq)]
+pub enum Position<T> {
+ /// This is the first element.
+ First(T),
+ /// This is neither the first nor the last element.
+ Middle(T),
+ /// This is the last element.
+ Last(T),
+ /// This is the only element.
+ Only(T),
+}
+
+impl<T> Position<T> {
+ /// Return the inner value.
+ pub fn into_inner(self) -> T {
+ match self {
+ Position::First(x) |
+ Position::Middle(x) |
+ Position::Last(x) |
+ Position::Only(x) => x,
+ }
+ }
+}
+
+impl<I: Iterator> Iterator for WithPosition<I> {
+ type Item = Position<I::Item>;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ match self.peekable.next() {
+ Some(item) => {
+ if !self.handled_first {
+ // Haven't seen the first item yet, and there is one to give.
+ self.handled_first = true;
+ // Peek to see if this is also the last item,
+ // in which case tag it as `Only`.
+ match self.peekable.peek() {
+ Some(_) => Some(Position::First(item)),
+ None => Some(Position::Only(item)),
+ }
+ } else {
+ // Have seen the first item, and there's something left.
+ // Peek to see if this is the last item.
+ match self.peekable.peek() {
+ Some(_) => Some(Position::Middle(item)),
+ None => Some(Position::Last(item)),
+ }
+ }
+ }
+ // Iterator is finished.
+ None => None,
+ }
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.peekable.size_hint()
+ }
+}
+
+impl<I> ExactSizeIterator for WithPosition<I>
+ where I: ExactSizeIterator,
+{ }
diff --git a/third_party/rust/itertools-0.8.0/src/zip_eq_impl.rs b/third_party/rust/itertools-0.8.0/src/zip_eq_impl.rs
new file mode 100644
index 0000000000..857465da41
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/src/zip_eq_impl.rs
@@ -0,0 +1,60 @@
+use super::size_hint;
+
+/// An iterator which iterates two other iterators simultaneously
+///
+/// See [`.zip_eq()`](../trait.Itertools.html#method.zip_eq) for more information.
+#[derive(Clone, Debug)]
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct ZipEq<I, J> {
+ a: I,
+ b: J,
+}
+
+/// Iterate `i` and `j` in lock step.
+///
+/// **Panics** if the iterators are not of the same length.
+///
+/// `IntoIterator` enabled version of `i.zip_eq(j)`.
+///
+/// ```
+/// use itertools::zip_eq;
+///
+/// let data = [1, 2, 3, 4, 5];
+/// for (a, b) in zip_eq(&data[..data.len() - 1], &data[1..]) {
+/// /* loop body */
+/// }
+/// ```
+pub fn zip_eq<I, J>(i: I, j: J) -> ZipEq<I::IntoIter, J::IntoIter>
+ where I: IntoIterator,
+ J: IntoIterator
+{
+ ZipEq {
+ a: i.into_iter(),
+ b: j.into_iter(),
+ }
+}
+
+impl<I, J> Iterator for ZipEq<I, J>
+ where I: Iterator,
+ J: Iterator
+{
+ type Item = (I::Item, J::Item);
+
+ fn next(&mut self) -> Option<Self::Item> {
+ match (self.a.next(), self.b.next()) {
+ (None, None) => None,
+ (Some(a), Some(b)) => Some((a, b)),
+ (None, Some(_)) | (Some(_), None) =>
+ panic!("itertools: .zip_eq() reached end of one iterator before the other")
+ }
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ size_hint::min(self.a.size_hint(), self.b.size_hint())
+ }
+}
+
+impl<I, J> ExactSizeIterator for ZipEq<I, J>
+ where I: ExactSizeIterator,
+ J: ExactSizeIterator
+{}
diff --git a/third_party/rust/itertools-0.8.0/src/zip_longest.rs b/third_party/rust/itertools-0.8.0/src/zip_longest.rs
new file mode 100644
index 0000000000..68a381acee
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/src/zip_longest.rs
@@ -0,0 +1,78 @@
+use std::cmp::Ordering::{Equal, Greater, Less};
+use super::size_hint;
+use std::iter::Fuse;
+
+use either_or_both::EitherOrBoth;
+
+// ZipLongest originally written by SimonSapin,
+// and dedicated to itertools https://github.com/rust-lang/rust/pull/19283
+
+/// An iterator which iterates two other iterators simultaneously
+///
+/// This iterator is *fused*.
+///
+/// See [`.zip_longest()`](../trait.Itertools.html#method.zip_longest) for more information.
+#[derive(Clone, Debug)]
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct ZipLongest<T, U> {
+ a: Fuse<T>,
+ b: Fuse<U>,
+}
+
+/// Create a new `ZipLongest` iterator.
+pub fn zip_longest<T, U>(a: T, b: U) -> ZipLongest<T, U>
+ where T: Iterator,
+ U: Iterator
+{
+ ZipLongest {
+ a: a.fuse(),
+ b: b.fuse(),
+ }
+}
+
+impl<T, U> Iterator for ZipLongest<T, U>
+ where T: Iterator,
+ U: Iterator
+{
+ type Item = EitherOrBoth<T::Item, U::Item>;
+
+ #[inline]
+ fn next(&mut self) -> Option<Self::Item> {
+ match (self.a.next(), self.b.next()) {
+ (None, None) => None,
+ (Some(a), None) => Some(EitherOrBoth::Left(a)),
+ (None, Some(b)) => Some(EitherOrBoth::Right(b)),
+ (Some(a), Some(b)) => Some(EitherOrBoth::Both(a, b)),
+ }
+ }
+
+ #[inline]
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ size_hint::max(self.a.size_hint(), self.b.size_hint())
+ }
+}
+
+impl<T, U> DoubleEndedIterator for ZipLongest<T, U>
+ where T: DoubleEndedIterator + ExactSizeIterator,
+ U: DoubleEndedIterator + ExactSizeIterator
+{
+ #[inline]
+ fn next_back(&mut self) -> Option<Self::Item> {
+ match self.a.len().cmp(&self.b.len()) {
+ Equal => match (self.a.next_back(), self.b.next_back()) {
+ (None, None) => None,
+ (Some(a), Some(b)) => Some(EitherOrBoth::Both(a, b)),
+ // These can only happen if .len() is inconsistent with .next_back()
+ (Some(a), None) => Some(EitherOrBoth::Left(a)),
+ (None, Some(b)) => Some(EitherOrBoth::Right(b)),
+ },
+ Greater => self.a.next_back().map(EitherOrBoth::Left),
+ Less => self.b.next_back().map(EitherOrBoth::Right),
+ }
+ }
+}
+
+impl<T, U> ExactSizeIterator for ZipLongest<T, U>
+ where T: ExactSizeIterator,
+ U: ExactSizeIterator
+{}
diff --git a/third_party/rust/itertools-0.8.0/src/ziptuple.rs b/third_party/rust/itertools-0.8.0/src/ziptuple.rs
new file mode 100644
index 0000000000..2dc3ea5e0b
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/src/ziptuple.rs
@@ -0,0 +1,111 @@
+use super::size_hint;
+
+/// See [`multizip`](../fn.multizip.html) for more information.
+#[derive(Clone, Debug)]
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct Zip<T> {
+ t: T,
+}
+
+/// An iterator that generalizes *.zip()* and allows running multiple iterators in lockstep.
+///
+/// The iterator `Zip<(I, J, ..., M)>` is formed from a tuple of iterators (or values that
+/// implement `IntoIterator`) and yields elements
+/// until any of the subiterators yields `None`.
+///
+/// The iterator element type is a tuple like like `(A, B, ..., E)` where `A` to `E` are the
+/// element types of the subiterator.
+///
+/// **Note:** The result of this macro is a value of a named type (`Zip<(I, J,
+/// ..)>` of each component iterator `I, J, ...`) if each component iterator is
+/// nameable.
+///
+/// Prefer [`izip!()`] over `multizip` for the performance benefits of using the
+/// standard library `.zip()`. Prefer `multizip` if a nameable type is needed.
+///
+/// [`izip!()`]: macro.izip.html
+///
+/// ```
+/// use itertools::multizip;
+///
+/// // iterate over three sequences side-by-side
+/// let mut results = [0, 0, 0, 0];
+/// let inputs = [3, 7, 9, 6];
+///
+/// for (r, index, input) in multizip((&mut results, 0..10, &inputs)) {
+/// *r = index * 10 + input;
+/// }
+///
+/// assert_eq!(results, [0 + 3, 10 + 7, 29, 36]);
+/// ```
+pub fn multizip<T, U>(t: U) -> Zip<T>
+ where Zip<T>: From<U>,
+ Zip<T>: Iterator,
+{
+ Zip::from(t)
+}
+
+macro_rules! impl_zip_iter {
+ ($($B:ident),*) => (
+ #[allow(non_snake_case)]
+ impl<$($B: IntoIterator),*> From<($($B,)*)> for Zip<($($B::IntoIter,)*)> {
+ fn from(t: ($($B,)*)) -> Self {
+ let ($($B,)*) = t;
+ Zip { t: ($($B.into_iter(),)*) }
+ }
+ }
+
+ #[allow(non_snake_case)]
+ #[allow(unused_assignments)]
+ impl<$($B),*> Iterator for Zip<($($B,)*)>
+ where
+ $(
+ $B: Iterator,
+ )*
+ {
+ type Item = ($($B::Item,)*);
+
+ fn next(&mut self) -> Option<Self::Item>
+ {
+ let ($(ref mut $B,)*) = self.t;
+
+ // NOTE: Just like iter::Zip, we check the iterators
+ // for None in order. We may finish unevenly (some
+ // iterators gave n + 1 elements, some only n).
+ $(
+ let $B = match $B.next() {
+ None => return None,
+ Some(elt) => elt
+ };
+ )*
+ Some(($($B,)*))
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>)
+ {
+ let sh = (::std::usize::MAX, None);
+ let ($(ref $B,)*) = self.t;
+ $(
+ let sh = size_hint::min($B.size_hint(), sh);
+ )*
+ sh
+ }
+ }
+
+ #[allow(non_snake_case)]
+ impl<$($B),*> ExactSizeIterator for Zip<($($B,)*)> where
+ $(
+ $B: ExactSizeIterator,
+ )*
+ { }
+ );
+}
+
+impl_zip_iter!(A);
+impl_zip_iter!(A, B);
+impl_zip_iter!(A, B, C);
+impl_zip_iter!(A, B, C, D);
+impl_zip_iter!(A, B, C, D, E);
+impl_zip_iter!(A, B, C, D, E, F);
+impl_zip_iter!(A, B, C, D, E, F, G);
+impl_zip_iter!(A, B, C, D, E, F, G, H);
diff --git a/third_party/rust/itertools-0.8.0/tests/merge_join.rs b/third_party/rust/itertools-0.8.0/tests/merge_join.rs
new file mode 100644
index 0000000000..41829202b8
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/tests/merge_join.rs
@@ -0,0 +1,110 @@
+extern crate itertools;
+
+use itertools::EitherOrBoth;
+use itertools::free::merge_join_by;
+
+#[test]
+fn empty() {
+ let left: Vec<u32> = vec![];
+ let right: Vec<u32> = vec![];
+ let expected_result: Vec<EitherOrBoth<u32, u32>> = vec![];
+ let actual_result = merge_join_by(left, right, |l, r| l.cmp(r))
+ .collect::<Vec<_>>();
+ assert_eq!(expected_result, actual_result);
+}
+
+#[test]
+fn left_only() {
+ let left: Vec<u32> = vec![1,2,3];
+ let right: Vec<u32> = vec![];
+ let expected_result: Vec<EitherOrBoth<u32, u32>> = vec![
+ EitherOrBoth::Left(1),
+ EitherOrBoth::Left(2),
+ EitherOrBoth::Left(3)
+ ];
+ let actual_result = merge_join_by(left, right, |l, r| l.cmp(r))
+ .collect::<Vec<_>>();
+ assert_eq!(expected_result, actual_result);
+}
+
+#[test]
+fn right_only() {
+ let left: Vec<u32> = vec![];
+ let right: Vec<u32> = vec![1,2,3];
+ let expected_result: Vec<EitherOrBoth<u32, u32>> = vec![
+ EitherOrBoth::Right(1),
+ EitherOrBoth::Right(2),
+ EitherOrBoth::Right(3)
+ ];
+ let actual_result = merge_join_by(left, right, |l, r| l.cmp(r))
+ .collect::<Vec<_>>();
+ assert_eq!(expected_result, actual_result);
+}
+
+#[test]
+fn first_left_then_right() {
+ let left: Vec<u32> = vec![1,2,3];
+ let right: Vec<u32> = vec![4,5,6];
+ let expected_result: Vec<EitherOrBoth<u32, u32>> = vec![
+ EitherOrBoth::Left(1),
+ EitherOrBoth::Left(2),
+ EitherOrBoth::Left(3),
+ EitherOrBoth::Right(4),
+ EitherOrBoth::Right(5),
+ EitherOrBoth::Right(6)
+ ];
+ let actual_result = merge_join_by(left, right, |l, r| l.cmp(r))
+ .collect::<Vec<_>>();
+ assert_eq!(expected_result, actual_result);
+}
+
+#[test]
+fn first_right_then_left() {
+ let left: Vec<u32> = vec![4,5,6];
+ let right: Vec<u32> = vec![1,2,3];
+ let expected_result: Vec<EitherOrBoth<u32, u32>> = vec![
+ EitherOrBoth::Right(1),
+ EitherOrBoth::Right(2),
+ EitherOrBoth::Right(3),
+ EitherOrBoth::Left(4),
+ EitherOrBoth::Left(5),
+ EitherOrBoth::Left(6)
+ ];
+ let actual_result = merge_join_by(left, right, |l, r| l.cmp(r))
+ .collect::<Vec<_>>();
+ assert_eq!(expected_result, actual_result);
+}
+
+#[test]
+fn interspersed_left_and_right() {
+ let left: Vec<u32> = vec![1,3,5];
+ let right: Vec<u32> = vec![2,4,6];
+ let expected_result: Vec<EitherOrBoth<u32, u32>> = vec![
+ EitherOrBoth::Left(1),
+ EitherOrBoth::Right(2),
+ EitherOrBoth::Left(3),
+ EitherOrBoth::Right(4),
+ EitherOrBoth::Left(5),
+ EitherOrBoth::Right(6)
+ ];
+ let actual_result = merge_join_by(left, right, |l, r| l.cmp(r))
+ .collect::<Vec<_>>();
+ assert_eq!(expected_result, actual_result);
+}
+
+#[test]
+fn overlapping_left_and_right() {
+ let left: Vec<u32> = vec![1,3,4,6];
+ let right: Vec<u32> = vec![2,3,4,5];
+ let expected_result: Vec<EitherOrBoth<u32, u32>> = vec![
+ EitherOrBoth::Left(1),
+ EitherOrBoth::Right(2),
+ EitherOrBoth::Both(3, 3),
+ EitherOrBoth::Both(4, 4),
+ EitherOrBoth::Right(5),
+ EitherOrBoth::Left(6)
+ ];
+ let actual_result = merge_join_by(left, right, |l, r| l.cmp(r))
+ .collect::<Vec<_>>();
+ assert_eq!(expected_result, actual_result);
+}
diff --git a/third_party/rust/itertools-0.8.0/tests/peeking_take_while.rs b/third_party/rust/itertools-0.8.0/tests/peeking_take_while.rs
new file mode 100644
index 0000000000..45c76c2d5c
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/tests/peeking_take_while.rs
@@ -0,0 +1,53 @@
+
+extern crate itertools;
+
+use itertools::Itertools;
+use itertools::{put_back, put_back_n};
+
+#[test]
+fn peeking_take_while_peekable() {
+ let mut r = (0..10).peekable();
+ r.peeking_take_while(|x| *x <= 3).count();
+ assert_eq!(r.next(), Some(4));
+}
+
+#[test]
+fn peeking_take_while_put_back() {
+ let mut r = put_back(0..10);
+ r.peeking_take_while(|x| *x <= 3).count();
+ assert_eq!(r.next(), Some(4));
+ r.peeking_take_while(|_| true).count();
+ assert_eq!(r.next(), None);
+}
+
+#[test]
+fn peeking_take_while_put_back_n() {
+ let mut r = put_back_n(6..10);
+ for elt in (0..6).rev() {
+ r.put_back(elt);
+ }
+ r.peeking_take_while(|x| *x <= 3).count();
+ assert_eq!(r.next(), Some(4));
+ r.peeking_take_while(|_| true).count();
+ assert_eq!(r.next(), None);
+}
+
+#[test]
+fn peeking_take_while_slice_iter() {
+ let v = [1, 2, 3, 4, 5, 6];
+ let mut r = v.iter();
+ r.peeking_take_while(|x| **x <= 3).count();
+ assert_eq!(r.next(), Some(&4));
+ r.peeking_take_while(|_| true).count();
+ assert_eq!(r.next(), None);
+}
+
+#[test]
+fn peeking_take_while_slice_iter_rev() {
+ let v = [1, 2, 3, 4, 5, 6];
+ let mut r = v.iter().rev();
+ r.peeking_take_while(|x| **x >= 3).count();
+ assert_eq!(r.next(), Some(&2));
+ r.peeking_take_while(|_| true).count();
+ assert_eq!(r.next(), None);
+}
diff --git a/third_party/rust/itertools-0.8.0/tests/quick.rs b/third_party/rust/itertools-0.8.0/tests/quick.rs
new file mode 100644
index 0000000000..e0c61b47de
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/tests/quick.rs
@@ -0,0 +1,1017 @@
+//! The purpose of these tests is to cover corner cases of iterators
+//! and adaptors.
+//!
+//! In particular we test the tedious size_hint and exact size correctness.
+
+#[macro_use] extern crate itertools;
+
+extern crate quickcheck;
+extern crate rand;
+
+use std::default::Default;
+
+use quickcheck as qc;
+use std::ops::Range;
+use std::cmp::Ordering;
+use itertools::Itertools;
+use itertools::{
+ multizip,
+ EitherOrBoth,
+};
+use itertools::free::{
+ cloned,
+ enumerate,
+ multipeek,
+ put_back,
+ put_back_n,
+ rciter,
+ zip,
+ zip_eq,
+};
+
+use rand::Rng;
+use rand::seq::SliceRandom;
+use quickcheck::TestResult;
+
+/// Trait for size hint modifier types
+trait HintKind: Copy + Send + qc::Arbitrary {
+ fn loosen_bounds(&self, org_hint: (usize, Option<usize>)) -> (usize, Option<usize>);
+}
+
+/// Exact size hint variant that leaves hints unchanged
+#[derive(Clone, Copy, Debug)]
+struct Exact {}
+
+impl HintKind for Exact {
+ fn loosen_bounds(&self, org_hint: (usize, Option<usize>)) -> (usize, Option<usize>) {
+ org_hint
+ }
+}
+
+impl qc::Arbitrary for Exact {
+ fn arbitrary<G: qc::Gen>(_: &mut G) -> Self {
+ Exact {}
+ }
+}
+
+/// Inexact size hint variant to simulate imprecise (but valid) size hints
+///
+/// Will always decrease the lower bound and increase the upper bound
+/// of the size hint by set amounts.
+#[derive(Clone, Copy, Debug)]
+struct Inexact {
+ underestimate: usize,
+ overestimate: usize,
+}
+
+impl HintKind for Inexact {
+ fn loosen_bounds(&self, org_hint: (usize, Option<usize>)) -> (usize, Option<usize>) {
+ let (org_lower, org_upper) = org_hint;
+ (org_lower.saturating_sub(self.underestimate),
+ org_upper.and_then(move |x| x.checked_add(self.overestimate)))
+ }
+}
+
+impl qc::Arbitrary for Inexact {
+ fn arbitrary<G: qc::Gen>(g: &mut G) -> Self {
+ let ue_value = usize::arbitrary(g);
+ let oe_value = usize::arbitrary(g);
+ // Compensate for quickcheck using extreme values too rarely
+ let ue_choices = &[0, ue_value, usize::max_value()];
+ let oe_choices = &[0, oe_value, usize::max_value()];
+ Inexact {
+ underestimate: *ue_choices.choose(g).unwrap(),
+ overestimate: *oe_choices.choose(g).unwrap(),
+ }
+ }
+
+ fn shrink(&self) -> Box<Iterator<Item=Self>> {
+ let underestimate_value = self.underestimate;
+ let overestimate_value = self.overestimate;
+ Box::new(
+ underestimate_value.shrink().flat_map(move |ue_value|
+ overestimate_value.shrink().map(move |oe_value|
+ Inexact {
+ underestimate: ue_value,
+ overestimate: oe_value,
+ }
+ )
+ )
+ )
+ }
+}
+
+/// Our base iterator that we can impl Arbitrary for
+///
+/// By default we'll return inexact bounds estimates for size_hint
+/// to make tests harder to pass.
+///
+/// NOTE: Iter is tricky and is not fused, to help catch bugs.
+/// At the end it will return None once, then return Some(0),
+/// then return None again.
+#[derive(Clone, Debug)]
+struct Iter<T, SK: HintKind = Inexact> {
+ iterator: Range<T>,
+ // fuse/done flag
+ fuse_flag: i32,
+ hint_kind: SK,
+}
+
+impl<T, HK> Iter<T, HK> where HK: HintKind
+{
+ fn new(it: Range<T>, hint_kind: HK) -> Self {
+ Iter {
+ iterator: it,
+ fuse_flag: 0,
+ hint_kind: hint_kind
+ }
+ }
+}
+
+impl<T, HK> Iterator for Iter<T, HK>
+ where Range<T>: Iterator,
+ <Range<T> as Iterator>::Item: Default,
+ HK: HintKind,
+{
+ type Item = <Range<T> as Iterator>::Item;
+
+ fn next(&mut self) -> Option<Self::Item>
+ {
+ let elt = self.iterator.next();
+ if elt.is_none() {
+ self.fuse_flag += 1;
+ // check fuse flag
+ if self.fuse_flag == 2 {
+ return Some(Default::default())
+ }
+ }
+ elt
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>)
+ {
+ let org_hint = self.iterator.size_hint();
+ self.hint_kind.loosen_bounds(org_hint)
+ }
+}
+
+impl<T, HK> DoubleEndedIterator for Iter<T, HK>
+ where Range<T>: DoubleEndedIterator,
+ <Range<T> as Iterator>::Item: Default,
+ HK: HintKind
+{
+ fn next_back(&mut self) -> Option<Self::Item> { self.iterator.next_back() }
+}
+
+impl<T> ExactSizeIterator for Iter<T, Exact> where Range<T>: ExactSizeIterator,
+ <Range<T> as Iterator>::Item: Default,
+{ }
+
+impl<T, HK> qc::Arbitrary for Iter<T, HK>
+ where T: qc::Arbitrary,
+ HK: HintKind,
+{
+ fn arbitrary<G: qc::Gen>(g: &mut G) -> Self
+ {
+ Iter::new(T::arbitrary(g)..T::arbitrary(g), HK::arbitrary(g))
+ }
+
+ fn shrink(&self) -> Box<Iterator<Item=Iter<T, HK>>>
+ {
+ let r = self.iterator.clone();
+ let hint_kind = self.hint_kind;
+ Box::new(
+ r.start.shrink().flat_map(move |a|
+ r.end.shrink().map(move |b|
+ Iter::new(a.clone()..b, hint_kind)
+ )
+ )
+ )
+ }
+}
+
+/// A meta-iterator which yields `Iter<i32>`s whose start/endpoints are
+/// increased or decreased linearly on each iteration.
+#[derive(Clone, Debug)]
+struct ShiftRange<HK = Inexact> {
+ range_start: i32,
+ range_end: i32,
+ start_step: i32,
+ end_step: i32,
+ iter_count: u32,
+ hint_kind: HK,
+}
+
+impl<HK> Iterator for ShiftRange<HK> where HK: HintKind {
+ type Item = Iter<i32, HK>;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ if self.iter_count == 0 {
+ return None;
+ }
+
+ let iter = Iter::new(self.range_start..self.range_end, self.hint_kind);
+
+ self.range_start += self.start_step;
+ self.range_end += self.end_step;
+ self.iter_count -= 1;
+
+ Some(iter)
+ }
+}
+
+impl ExactSizeIterator for ShiftRange<Exact> { }
+
+impl<HK> qc::Arbitrary for ShiftRange<HK>
+ where HK: HintKind
+{
+ fn arbitrary<G: qc::Gen>(g: &mut G) -> Self {
+ const MAX_STARTING_RANGE_DIFF: i32 = 32;
+ const MAX_STEP_MODULO: i32 = 8;
+ const MAX_ITER_COUNT: u32 = 3;
+
+ let range_start = qc::Arbitrary::arbitrary(g);
+ let range_end = range_start + g.gen_range(0, MAX_STARTING_RANGE_DIFF + 1);
+ let start_step = g.gen_range(-MAX_STEP_MODULO, MAX_STEP_MODULO + 1);
+ let end_step = g.gen_range(-MAX_STEP_MODULO, MAX_STEP_MODULO + 1);
+ let iter_count = g.gen_range(0, MAX_ITER_COUNT + 1);
+ let hint_kind = qc::Arbitrary::arbitrary(g);
+
+ ShiftRange {
+ range_start: range_start,
+ range_end: range_end,
+ start_step: start_step,
+ end_step: end_step,
+ iter_count: iter_count,
+ hint_kind: hint_kind
+ }
+ }
+}
+
+fn correct_size_hint<I: Iterator>(mut it: I) -> bool {
+ // record size hint at each iteration
+ let initial_hint = it.size_hint();
+ let mut hints = Vec::with_capacity(initial_hint.0 + 1);
+ hints.push(initial_hint);
+ while let Some(_) = it.next() {
+ hints.push(it.size_hint())
+ }
+
+ let mut true_count = hints.len(); // start off +1 too much
+
+ // check all the size hints
+ for &(low, hi) in &hints {
+ true_count -= 1;
+ if low > true_count ||
+ (hi.is_some() && hi.unwrap() < true_count)
+ {
+ println!("True size: {:?}, size hint: {:?}", true_count, (low, hi));
+ //println!("All hints: {:?}", hints);
+ return false
+ }
+ }
+ true
+}
+
+fn exact_size<I: ExactSizeIterator>(mut it: I) -> bool {
+ // check every iteration
+ let (mut low, mut hi) = it.size_hint();
+ if Some(low) != hi { return false; }
+ while let Some(_) = it.next() {
+ let (xlow, xhi) = it.size_hint();
+ if low != xlow + 1 { return false; }
+ low = xlow;
+ hi = xhi;
+ if Some(low) != hi { return false; }
+ }
+ let (low, hi) = it.size_hint();
+ low == 0 && hi == Some(0)
+}
+
+// Exact size for this case, without ExactSizeIterator
+fn exact_size_for_this<I: Iterator>(mut it: I) -> bool {
+ // check every iteration
+ let (mut low, mut hi) = it.size_hint();
+ if Some(low) != hi { return false; }
+ while let Some(_) = it.next() {
+ let (xlow, xhi) = it.size_hint();
+ if low != xlow + 1 { return false; }
+ low = xlow;
+ hi = xhi;
+ if Some(low) != hi { return false; }
+ }
+ let (low, hi) = it.size_hint();
+ low == 0 && hi == Some(0)
+}
+
+/*
+ * NOTE: Range<i8> is broken!
+ * (all signed ranges are)
+#[quickcheck]
+fn size_range_i8(a: Iter<i8>) -> bool {
+ exact_size(a)
+}
+
+#[quickcheck]
+fn size_range_i16(a: Iter<i16>) -> bool {
+ exact_size(a)
+}
+
+#[quickcheck]
+fn size_range_u8(a: Iter<u8>) -> bool {
+ exact_size(a)
+}
+ */
+
+macro_rules! quickcheck {
+ // accept several property function definitions
+ // The property functions can use pattern matching and `mut` as usual
+ // in the function arguments, but the functions can not be generic.
+ {$($(#$attr:tt)* fn $fn_name:ident($($arg:tt)*) -> $ret:ty { $($code:tt)* })*} => (
+ $(
+ #[test]
+ $(#$attr)*
+ fn $fn_name() {
+ fn prop($($arg)*) -> $ret {
+ $($code)*
+ }
+ ::quickcheck::quickcheck(quickcheck!(@fn prop [] $($arg)*));
+ }
+ )*
+ );
+ // parse argument list (with patterns allowed) into prop as fn(_, _) -> _
+ (@fn $f:ident [$($t:tt)*]) => {
+ $f as fn($($t),*) -> _
+ };
+ (@fn $f:ident [$($p:tt)*] : $($tail:tt)*) => {
+ quickcheck!(@fn $f [$($p)* _] $($tail)*)
+ };
+ (@fn $f:ident [$($p:tt)*] $t:tt $($tail:tt)*) => {
+ quickcheck!(@fn $f [$($p)*] $($tail)*)
+ };
+}
+
+quickcheck! {
+
+ fn size_product(a: Iter<u16>, b: Iter<u16>) -> bool {
+ correct_size_hint(a.cartesian_product(b))
+ }
+ fn size_product3(a: Iter<u16>, b: Iter<u16>, c: Iter<u16>) -> bool {
+ correct_size_hint(iproduct!(a, b, c))
+ }
+
+ fn correct_cartesian_product3(a: Iter<u16>, b: Iter<u16>, c: Iter<u16>,
+ take_manual: usize) -> ()
+ {
+ // test correctness of iproduct through regular iteration (take)
+ // and through fold.
+ let ac = a.clone();
+ let br = &b.clone();
+ let cr = &c.clone();
+ let answer: Vec<_> = ac.flat_map(move |ea| br.clone().flat_map(move |eb| cr.clone().map(move |ec| (ea, eb, ec)))).collect();
+ let mut product_iter = iproduct!(a, b, c);
+ let mut actual = Vec::new();
+
+ actual.extend((&mut product_iter).take(take_manual));
+ if actual.len() == take_manual {
+ product_iter.fold((), |(), elt| actual.push(elt));
+ }
+ assert_eq!(answer, actual);
+ }
+
+ fn size_multi_product(a: ShiftRange) -> bool {
+ correct_size_hint(a.multi_cartesian_product())
+ }
+ fn correct_multi_product3(a: ShiftRange, take_manual: usize) -> () {
+ // Fix no. of iterators at 3
+ let a = ShiftRange { iter_count: 3, ..a };
+
+ // test correctness of MultiProduct through regular iteration (take)
+ // and through fold.
+ let mut iters = a.clone();
+ let i0 = iters.next().unwrap();
+ let i1r = &iters.next().unwrap();
+ let i2r = &iters.next().unwrap();
+ let answer: Vec<_> = i0.flat_map(move |ei0| i1r.clone().flat_map(move |ei1| i2r.clone().map(move |ei2| vec![ei0, ei1, ei2]))).collect();
+ let mut multi_product = a.clone().multi_cartesian_product();
+ let mut actual = Vec::new();
+
+ actual.extend((&mut multi_product).take(take_manual));
+ if actual.len() == take_manual {
+ multi_product.fold((), |(), elt| actual.push(elt));
+ }
+ assert_eq!(answer, actual);
+
+ assert_eq!(answer.into_iter().last(), a.clone().multi_cartesian_product().last());
+ }
+
+ #[allow(deprecated)]
+ fn size_step(a: Iter<i16, Exact>, s: usize) -> bool {
+ let mut s = s;
+ if s == 0 {
+ s += 1; // never zero
+ }
+ let filt = a.clone().dedup();
+ correct_size_hint(filt.step(s)) &&
+ exact_size(a.step(s))
+ }
+
+ #[allow(deprecated)]
+ fn equal_step(a: Iter<i16>, s: usize) -> bool {
+ let mut s = s;
+ if s == 0 {
+ s += 1; // never zero
+ }
+ let mut i = 0;
+ itertools::equal(a.clone().step(s), a.filter(|_| {
+ let keep = i % s == 0;
+ i += 1;
+ keep
+ }))
+ }
+
+ #[allow(deprecated)]
+ fn equal_step_vec(a: Vec<i16>, s: usize) -> bool {
+ let mut s = s;
+ if s == 0 {
+ s += 1; // never zero
+ }
+ let mut i = 0;
+ itertools::equal(a.iter().step(s), a.iter().filter(|_| {
+ let keep = i % s == 0;
+ i += 1;
+ keep
+ }))
+ }
+
+ fn size_multipeek(a: Iter<u16, Exact>, s: u8) -> bool {
+ let mut it = multipeek(a);
+ // peek a few times
+ for _ in 0..s {
+ it.peek();
+ }
+ exact_size(it)
+ }
+
+ fn equal_merge(a: Vec<i16>, b: Vec<i16>) -> bool {
+ let mut sa = a.clone();
+ let mut sb = b.clone();
+ sa.sort();
+ sb.sort();
+ let mut merged = sa.clone();
+ merged.extend(sb.iter().cloned());
+ merged.sort();
+ itertools::equal(&merged, sa.iter().merge(&sb))
+ }
+ fn size_merge(a: Iter<u16>, b: Iter<u16>) -> bool {
+ correct_size_hint(a.merge(b))
+ }
+ fn size_zip(a: Iter<i16, Exact>, b: Iter<i16, Exact>, c: Iter<i16, Exact>) -> bool {
+ let filt = a.clone().dedup();
+ correct_size_hint(multizip((filt, b.clone(), c.clone()))) &&
+ exact_size(multizip((a, b, c)))
+ }
+ fn size_zip_rc(a: Iter<i16>, b: Iter<i16>) -> bool {
+ let rc = rciter(a.clone());
+ correct_size_hint(multizip((&rc, &rc, b)))
+ }
+
+ fn size_zip_macro(a: Iter<i16, Exact>, b: Iter<i16, Exact>, c: Iter<i16, Exact>) -> bool {
+ let filt = a.clone().dedup();
+ correct_size_hint(izip!(filt, b.clone(), c.clone())) &&
+ exact_size(izip!(a, b, c))
+ }
+ fn equal_kmerge(a: Vec<i16>, b: Vec<i16>, c: Vec<i16>) -> bool {
+ use itertools::free::kmerge;
+ let mut sa = a.clone();
+ let mut sb = b.clone();
+ let mut sc = c.clone();
+ sa.sort();
+ sb.sort();
+ sc.sort();
+ let mut merged = sa.clone();
+ merged.extend(sb.iter().cloned());
+ merged.extend(sc.iter().cloned());
+ merged.sort();
+ itertools::equal(merged.into_iter(), kmerge(vec![sa, sb, sc]))
+ }
+
+ // Any number of input iterators
+ fn equal_kmerge_2(mut inputs: Vec<Vec<i16>>) -> bool {
+ use itertools::free::kmerge;
+ // sort the inputs
+ for input in &mut inputs {
+ input.sort();
+ }
+ let mut merged = inputs.concat();
+ merged.sort();
+ itertools::equal(merged.into_iter(), kmerge(inputs))
+ }
+
+ // Any number of input iterators
+ fn equal_kmerge_by_ge(mut inputs: Vec<Vec<i16>>) -> bool {
+ // sort the inputs
+ for input in &mut inputs {
+ input.sort();
+ input.reverse();
+ }
+ let mut merged = inputs.concat();
+ merged.sort();
+ merged.reverse();
+ itertools::equal(merged.into_iter(),
+ inputs.into_iter().kmerge_by(|x, y| x >= y))
+ }
+
+ // Any number of input iterators
+ fn equal_kmerge_by_lt(mut inputs: Vec<Vec<i16>>) -> bool {
+ // sort the inputs
+ for input in &mut inputs {
+ input.sort();
+ }
+ let mut merged = inputs.concat();
+ merged.sort();
+ itertools::equal(merged.into_iter(),
+ inputs.into_iter().kmerge_by(|x, y| x < y))
+ }
+
+ // Any number of input iterators
+ fn equal_kmerge_by_le(mut inputs: Vec<Vec<i16>>) -> bool {
+ // sort the inputs
+ for input in &mut inputs {
+ input.sort();
+ }
+ let mut merged = inputs.concat();
+ merged.sort();
+ itertools::equal(merged.into_iter(),
+ inputs.into_iter().kmerge_by(|x, y| x <= y))
+ }
+ fn size_kmerge(a: Iter<i16>, b: Iter<i16>, c: Iter<i16>) -> bool {
+ use itertools::free::kmerge;
+ correct_size_hint(kmerge(vec![a, b, c]))
+ }
+ fn equal_zip_eq(a: Vec<i32>, b: Vec<i32>) -> bool {
+ let len = std::cmp::min(a.len(), b.len());
+ let a = &a[..len];
+ let b = &b[..len];
+ itertools::equal(zip_eq(a, b), zip(a, b))
+ }
+ fn size_zip_longest(a: Iter<i16, Exact>, b: Iter<i16, Exact>) -> bool {
+ let filt = a.clone().dedup();
+ let filt2 = b.clone().dedup();
+ correct_size_hint(filt.zip_longest(b.clone())) &&
+ correct_size_hint(a.clone().zip_longest(filt2)) &&
+ exact_size(a.zip_longest(b))
+ }
+ fn size_2_zip_longest(a: Iter<i16>, b: Iter<i16>) -> bool {
+ let it = a.clone().zip_longest(b.clone());
+ let jt = a.clone().zip_longest(b.clone());
+ itertools::equal(a.clone(),
+ it.filter_map(|elt| match elt {
+ EitherOrBoth::Both(x, _) => Some(x),
+ EitherOrBoth::Left(x) => Some(x),
+ _ => None,
+ }
+ ))
+ &&
+ itertools::equal(b.clone(),
+ jt.filter_map(|elt| match elt {
+ EitherOrBoth::Both(_, y) => Some(y),
+ EitherOrBoth::Right(y) => Some(y),
+ _ => None,
+ }
+ ))
+ }
+ fn size_interleave(a: Iter<i16>, b: Iter<i16>) -> bool {
+ correct_size_hint(a.interleave(b))
+ }
+ fn exact_interleave(a: Iter<i16, Exact>, b: Iter<i16, Exact>) -> bool {
+ exact_size_for_this(a.interleave(b))
+ }
+ fn size_interleave_shortest(a: Iter<i16>, b: Iter<i16>) -> bool {
+ correct_size_hint(a.interleave_shortest(b))
+ }
+ fn exact_interleave_shortest(a: Vec<()>, b: Vec<()>) -> bool {
+ exact_size_for_this(a.iter().interleave_shortest(&b))
+ }
+ fn size_intersperse(a: Iter<i16>, x: i16) -> bool {
+ correct_size_hint(a.intersperse(x))
+ }
+ fn equal_intersperse(a: Vec<i32>, x: i32) -> bool {
+ let mut inter = false;
+ let mut i = 0;
+ for elt in a.iter().cloned().intersperse(x) {
+ if inter {
+ if elt != x { return false }
+ } else {
+ if elt != a[i] { return false }
+ i += 1;
+ }
+ inter = !inter;
+ }
+ true
+ }
+
+ fn equal_combinations_2(a: Vec<u8>) -> bool {
+ let mut v = Vec::new();
+ for (i, x) in enumerate(&a) {
+ for y in &a[i + 1..] {
+ v.push((x, y));
+ }
+ }
+ itertools::equal(a.iter().tuple_combinations::<(_, _)>(), v)
+ }
+
+ fn collect_tuple_matches_size(a: Iter<i16>) -> bool {
+ let size = a.clone().count();
+ a.collect_tuple::<(_, _, _)>().is_some() == (size == 3)
+ }
+}
+
+quickcheck! {
+ fn equal_dedup(a: Vec<i32>) -> bool {
+ let mut b = a.clone();
+ b.dedup();
+ itertools::equal(&b, a.iter().dedup())
+ }
+}
+
+quickcheck! {
+ fn size_dedup(a: Vec<i32>) -> bool {
+ correct_size_hint(a.iter().dedup())
+ }
+}
+
+quickcheck! {
+ fn exact_repeatn((n, x): (usize, i32)) -> bool {
+ let it = itertools::repeat_n(x, n);
+ exact_size(it)
+ }
+}
+
+quickcheck! {
+ fn size_put_back(a: Vec<u8>, x: Option<u8>) -> bool {
+ let mut it = put_back(a.into_iter());
+ match x {
+ Some(t) => it.put_back(t),
+ None => {}
+ }
+ correct_size_hint(it)
+ }
+}
+
+quickcheck! {
+ fn size_put_backn(a: Vec<u8>, b: Vec<u8>) -> bool {
+ let mut it = put_back_n(a.into_iter());
+ for elt in b {
+ it.put_back(elt)
+ }
+ correct_size_hint(it)
+ }
+}
+
+quickcheck! {
+ fn size_tee(a: Vec<u8>) -> bool {
+ let (mut t1, mut t2) = a.iter().tee();
+ t1.next();
+ t1.next();
+ t2.next();
+ exact_size(t1) && exact_size(t2)
+ }
+}
+
+quickcheck! {
+ fn size_tee_2(a: Vec<u8>) -> bool {
+ let (mut t1, mut t2) = a.iter().dedup().tee();
+ t1.next();
+ t1.next();
+ t2.next();
+ correct_size_hint(t1) && correct_size_hint(t2)
+ }
+}
+
+quickcheck! {
+ fn size_take_while_ref(a: Vec<u8>, stop: u8) -> bool {
+ correct_size_hint(a.iter().take_while_ref(|x| **x != stop))
+ }
+}
+
+quickcheck! {
+ fn equal_partition(a: Vec<i32>) -> bool {
+ let mut a = a;
+ let mut ap = a.clone();
+ let split_index = itertools::partition(&mut ap, |x| *x >= 0);
+ let parted = (0..split_index).all(|i| ap[i] >= 0) &&
+ (split_index..a.len()).all(|i| ap[i] < 0);
+
+ a.sort();
+ ap.sort();
+ parted && (a == ap)
+ }
+}
+
+quickcheck! {
+ fn size_combinations(it: Iter<i16>) -> bool {
+ correct_size_hint(it.tuple_combinations::<(_, _)>())
+ }
+}
+
+quickcheck! {
+ fn equal_combinations(it: Iter<i16>) -> bool {
+ let values = it.clone().collect_vec();
+ let mut cmb = it.tuple_combinations();
+ for i in 0..values.len() {
+ for j in i+1..values.len() {
+ let pair = (values[i], values[j]);
+ if pair != cmb.next().unwrap() {
+ return false;
+ }
+ }
+ }
+ cmb.next() == None
+ }
+}
+
+quickcheck! {
+ fn size_pad_tail(it: Iter<i8>, pad: u8) -> bool {
+ correct_size_hint(it.clone().pad_using(pad as usize, |_| 0)) &&
+ correct_size_hint(it.dropping(1).rev().pad_using(pad as usize, |_| 0))
+ }
+}
+
+quickcheck! {
+ fn size_pad_tail2(it: Iter<i8, Exact>, pad: u8) -> bool {
+ exact_size(it.pad_using(pad as usize, |_| 0))
+ }
+}
+
+quickcheck! {
+ fn size_unique(it: Iter<i8>) -> bool {
+ correct_size_hint(it.unique())
+ }
+
+ fn count_unique(it: Vec<i8>, take_first: u8) -> () {
+ let answer = {
+ let mut v = it.clone();
+ v.sort(); v.dedup();
+ v.len()
+ };
+ let mut iter = cloned(&it).unique();
+ let first_count = (&mut iter).take(take_first as usize).count();
+ let rest_count = iter.count();
+ assert_eq!(answer, first_count + rest_count);
+ }
+}
+
+quickcheck! {
+ fn fuzz_group_by_lazy_1(it: Iter<u8>) -> bool {
+ let jt = it.clone();
+ let groups = it.group_by(|k| *k);
+ let res = itertools::equal(jt, groups.into_iter().flat_map(|(_, x)| x));
+ res
+ }
+}
+
+quickcheck! {
+ fn fuzz_group_by_lazy_2(data: Vec<u8>) -> bool {
+ let groups = data.iter().group_by(|k| *k / 10);
+ let res = itertools::equal(data.iter(), groups.into_iter().flat_map(|(_, x)| x));
+ res
+ }
+}
+
+quickcheck! {
+ fn fuzz_group_by_lazy_3(data: Vec<u8>) -> bool {
+ let grouper = data.iter().group_by(|k| *k / 10);
+ let groups = grouper.into_iter().collect_vec();
+ let res = itertools::equal(data.iter(), groups.into_iter().flat_map(|(_, x)| x));
+ res
+ }
+}
+
+quickcheck! {
+ fn fuzz_group_by_lazy_duo(data: Vec<u8>, order: Vec<(bool, bool)>) -> bool {
+ let grouper = data.iter().group_by(|k| *k / 3);
+ let mut groups1 = grouper.into_iter();
+ let mut groups2 = grouper.into_iter();
+ let mut elts = Vec::<&u8>::new();
+ let mut old_groups = Vec::new();
+
+ let tup1 = |(_, b)| b;
+ for &(ord, consume_now) in &order {
+ let iter = &mut [&mut groups1, &mut groups2][ord as usize];
+ match iter.next() {
+ Some((_, gr)) => if consume_now {
+ for og in old_groups.drain(..) {
+ elts.extend(og);
+ }
+ elts.extend(gr);
+ } else {
+ old_groups.push(gr);
+ },
+ None => break,
+ }
+ }
+ for og in old_groups.drain(..) {
+ elts.extend(og);
+ }
+ for gr in groups1.map(&tup1) { elts.extend(gr); }
+ for gr in groups2.map(&tup1) { elts.extend(gr); }
+ itertools::assert_equal(&data, elts);
+ true
+ }
+}
+
+quickcheck! {
+ fn equal_chunks_lazy(a: Vec<u8>, size: u8) -> bool {
+ let mut size = size;
+ if size == 0 {
+ size += 1;
+ }
+ let chunks = a.iter().chunks(size as usize);
+ let it = a.chunks(size as usize);
+ for (a, b) in chunks.into_iter().zip(it) {
+ if !itertools::equal(a, b) {
+ return false;
+ }
+ }
+ true
+ }
+}
+
+quickcheck! {
+ fn equal_tuple_windows_1(a: Vec<u8>) -> bool {
+ let x = a.windows(1).map(|s| (&s[0], ));
+ let y = a.iter().tuple_windows::<(_,)>();
+ itertools::equal(x, y)
+ }
+
+ fn equal_tuple_windows_2(a: Vec<u8>) -> bool {
+ let x = a.windows(2).map(|s| (&s[0], &s[1]));
+ let y = a.iter().tuple_windows::<(_, _)>();
+ itertools::equal(x, y)
+ }
+
+ fn equal_tuple_windows_3(a: Vec<u8>) -> bool {
+ let x = a.windows(3).map(|s| (&s[0], &s[1], &s[2]));
+ let y = a.iter().tuple_windows::<(_, _, _)>();
+ itertools::equal(x, y)
+ }
+
+ fn equal_tuple_windows_4(a: Vec<u8>) -> bool {
+ let x = a.windows(4).map(|s| (&s[0], &s[1], &s[2], &s[3]));
+ let y = a.iter().tuple_windows::<(_, _, _, _)>();
+ itertools::equal(x, y)
+ }
+
+ fn equal_tuples_1(a: Vec<u8>) -> bool {
+ let x = a.chunks(1).map(|s| (&s[0], ));
+ let y = a.iter().tuples::<(_,)>();
+ itertools::equal(x, y)
+ }
+
+ fn equal_tuples_2(a: Vec<u8>) -> bool {
+ let x = a.chunks(2).filter(|s| s.len() == 2).map(|s| (&s[0], &s[1]));
+ let y = a.iter().tuples::<(_, _)>();
+ itertools::equal(x, y)
+ }
+
+ fn equal_tuples_3(a: Vec<u8>) -> bool {
+ let x = a.chunks(3).filter(|s| s.len() == 3).map(|s| (&s[0], &s[1], &s[2]));
+ let y = a.iter().tuples::<(_, _, _)>();
+ itertools::equal(x, y)
+ }
+
+ fn equal_tuples_4(a: Vec<u8>) -> bool {
+ let x = a.chunks(4).filter(|s| s.len() == 4).map(|s| (&s[0], &s[1], &s[2], &s[3]));
+ let y = a.iter().tuples::<(_, _, _, _)>();
+ itertools::equal(x, y)
+ }
+
+ fn exact_tuple_buffer(a: Vec<u8>) -> bool {
+ let mut iter = a.iter().tuples::<(_, _, _, _)>();
+ (&mut iter).last();
+ let buffer = iter.into_buffer();
+ assert_eq!(buffer.len(), a.len() % 4);
+ exact_size(buffer)
+ }
+}
+
+// with_position
+quickcheck! {
+ fn with_position_exact_size_1(a: Vec<u8>) -> bool {
+ exact_size_for_this(a.iter().with_position())
+ }
+ fn with_position_exact_size_2(a: Iter<u8, Exact>) -> bool {
+ exact_size_for_this(a.with_position())
+ }
+}
+
+quickcheck! {
+ fn correct_group_map_modulo_key(a: Vec<u8>, modulo: u8) -> () {
+ let modulo = if modulo == 0 { 1 } else { modulo }; // Avoid `% 0`
+ let count = a.len();
+ let lookup = a.into_iter().map(|i| (i % modulo, i)).into_group_map();
+
+ assert_eq!(lookup.values().flat_map(|vals| vals.iter()).count(), count);
+
+ for (&key, vals) in lookup.iter() {
+ assert!(vals.iter().all(|&val| val % modulo == key));
+ }
+ }
+}
+
+/// A peculiar type: Equality compares both tuple items, but ordering only the
+/// first item. This is so we can check the stability property easily.
+#[derive(Clone, Debug, PartialEq, Eq)]
+struct Val(u32, u32);
+
+impl PartialOrd<Val> for Val {
+ fn partial_cmp(&self, other: &Val) -> Option<Ordering> {
+ self.0.partial_cmp(&other.0)
+ }
+}
+
+impl Ord for Val {
+ fn cmp(&self, other: &Val) -> Ordering {
+ self.0.cmp(&other.0)
+ }
+}
+
+impl qc::Arbitrary for Val {
+ fn arbitrary<G: qc::Gen>(g: &mut G) -> Self {
+ let (x, y) = <(u32, u32)>::arbitrary(g);
+ Val(x, y)
+ }
+ fn shrink(&self) -> Box<Iterator<Item = Self>> {
+ Box::new((self.0, self.1).shrink().map(|(x, y)| Val(x, y)))
+ }
+}
+
+quickcheck! {
+ fn minmax(a: Vec<Val>) -> bool {
+ use itertools::MinMaxResult;
+
+
+ let minmax = a.iter().minmax();
+ let expected = match a.len() {
+ 0 => MinMaxResult::NoElements,
+ 1 => MinMaxResult::OneElement(&a[0]),
+ _ => MinMaxResult::MinMax(a.iter().min().unwrap(),
+ a.iter().max().unwrap()),
+ };
+ minmax == expected
+ }
+}
+
+quickcheck! {
+ fn minmax_f64(a: Vec<f64>) -> TestResult {
+ use itertools::MinMaxResult;
+
+ if a.iter().any(|x| x.is_nan()) {
+ return TestResult::discard();
+ }
+
+ let min = cloned(&a).fold1(f64::min);
+ let max = cloned(&a).fold1(f64::max);
+
+ let minmax = cloned(&a).minmax();
+ let expected = match a.len() {
+ 0 => MinMaxResult::NoElements,
+ 1 => MinMaxResult::OneElement(min.unwrap()),
+ _ => MinMaxResult::MinMax(min.unwrap(), max.unwrap()),
+ };
+ TestResult::from_bool(minmax == expected)
+ }
+}
+
+quickcheck! {
+ #[allow(deprecated)]
+ fn tree_fold1_f64(mut a: Vec<f64>) -> TestResult {
+ fn collapse_adjacent<F>(x: Vec<f64>, mut f: F) -> Vec<f64>
+ where F: FnMut(f64, f64) -> f64
+ {
+ let mut out = Vec::new();
+ for i in (0..x.len()).step(2) {
+ if i == x.len()-1 {
+ out.push(x[i])
+ } else {
+ out.push(f(x[i], x[i+1]));
+ }
+ }
+ out
+ }
+
+ if a.iter().any(|x| x.is_nan()) {
+ return TestResult::discard();
+ }
+
+ let actual = a.iter().cloned().tree_fold1(f64::atan2);
+
+ while a.len() > 1 {
+ a = collapse_adjacent(a, f64::atan2);
+ }
+ let expected = a.pop();
+
+ TestResult::from_bool(actual == expected)
+ }
+}
diff --git a/third_party/rust/itertools-0.8.0/tests/test_core.rs b/third_party/rust/itertools-0.8.0/tests/test_core.rs
new file mode 100644
index 0000000000..cf97abd360
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/tests/test_core.rs
@@ -0,0 +1,246 @@
+//! Licensed under the Apache License, Version 2.0
+//! http://www.apache.org/licenses/LICENSE-2.0 or the MIT license
+//! http://opensource.org/licenses/MIT, at your
+//! option. This file may not be copied, modified, or distributed
+//! except according to those terms.
+#![no_std]
+
+#[macro_use] extern crate itertools as it;
+
+use core::iter;
+
+use it::Itertools;
+use it::interleave;
+use it::multizip;
+use it::free::put_back;
+
+#[test]
+fn product2() {
+ let s = "αβ";
+
+ let mut prod = iproduct!(s.chars(), 0..2);
+ assert!(prod.next() == Some(('α', 0)));
+ assert!(prod.next() == Some(('α', 1)));
+ assert!(prod.next() == Some(('β', 0)));
+ assert!(prod.next() == Some(('β', 1)));
+ assert!(prod.next() == None);
+}
+
+#[test]
+fn product_temporary() {
+ for (_x, _y, _z) in iproduct!(
+ [0, 1, 2].iter().cloned(),
+ [0, 1, 2].iter().cloned(),
+ [0, 1, 2].iter().cloned())
+ {
+ // ok
+ }
+}
+
+
+#[test]
+fn izip_macro() {
+ let mut zip = izip!(2..3);
+ assert!(zip.next() == Some(2));
+ assert!(zip.next().is_none());
+
+ let mut zip = izip!(0..3, 0..2, 0..2i8);
+ for i in 0..2 {
+ assert!((i as usize, i, i as i8) == zip.next().unwrap());
+ }
+ assert!(zip.next().is_none());
+
+ let xs: [isize; 0] = [];
+ let mut zip = izip!(0..3, 0..2, 0..2i8, &xs);
+ assert!(zip.next().is_none());
+}
+
+#[test]
+fn izip2() {
+ let _zip1: iter::Zip<_, _> = izip!(1.., 2..);
+ let _zip2: iter::Zip<_, _> = izip!(1.., 2.., );
+}
+
+#[test]
+fn izip3() {
+ let mut zip: iter::Map<iter::Zip<_, _>, _> = izip!(0..3, 0..2, 0..2i8);
+ for i in 0..2 {
+ assert!((i as usize, i, i as i8) == zip.next().unwrap());
+ }
+ assert!(zip.next().is_none());
+}
+
+#[test]
+fn multizip3() {
+ let mut zip = multizip((0..3, 0..2, 0..2i8));
+ for i in 0..2 {
+ assert!((i as usize, i, i as i8) == zip.next().unwrap());
+ }
+ assert!(zip.next().is_none());
+
+ let xs: [isize; 0] = [];
+ let mut zip = multizip((0..3, 0..2, 0..2i8, xs.iter()));
+ assert!(zip.next().is_none());
+
+ for (_, _, _, _, _) in multizip((0..3, 0..2, xs.iter(), &xs, xs.to_vec())) {
+ /* test compiles */
+ }
+}
+
+#[test]
+fn write_to() {
+ let xs = [7, 9, 8];
+ let mut ys = [0; 5];
+ let cnt = ys.iter_mut().set_from(xs.iter().map(|x| *x));
+ assert!(cnt == xs.len());
+ assert!(ys == [7, 9, 8, 0, 0]);
+
+ let cnt = ys.iter_mut().set_from(0..10);
+ assert!(cnt == ys.len());
+ assert!(ys == [0, 1, 2, 3, 4]);
+}
+
+#[test]
+fn test_interleave() {
+ let xs: [u8; 0] = [];
+ let ys = [7u8, 9, 8, 10];
+ let zs = [2u8, 77];
+ let it = interleave(xs.iter(), ys.iter());
+ it::assert_equal(it, ys.iter());
+
+ let rs = [7u8, 2, 9, 77, 8, 10];
+ let it = interleave(ys.iter(), zs.iter());
+ it::assert_equal(it, rs.iter());
+}
+
+#[allow(deprecated)]
+#[test]
+fn foreach() {
+ let xs = [1i32, 2, 3];
+ let mut sum = 0;
+ xs.iter().foreach(|elt| sum += *elt);
+ assert!(sum == 6);
+}
+
+#[test]
+fn dropping() {
+ let xs = [1, 2, 3];
+ let mut it = xs.iter().dropping(2);
+ assert_eq!(it.next(), Some(&3));
+ assert!(it.next().is_none());
+ let mut it = xs.iter().dropping(5);
+ assert!(it.next().is_none());
+}
+
+#[test]
+fn batching() {
+ let xs = [0, 1, 2, 1, 3];
+ let ys = [(0, 1), (2, 1)];
+
+ // An iterator that gathers elements up in pairs
+ let pit = xs.iter().cloned().batching(|it| {
+ match it.next() {
+ None => None,
+ Some(x) => match it.next() {
+ None => None,
+ Some(y) => Some((x, y)),
+ }
+ }
+ });
+ it::assert_equal(pit, ys.iter().cloned());
+}
+
+#[test]
+fn test_put_back() {
+ let xs = [0, 1, 1, 1, 2, 1, 3, 3];
+ let mut pb = put_back(xs.iter().cloned());
+ pb.next();
+ pb.put_back(1);
+ pb.put_back(0);
+ it::assert_equal(pb, xs.iter().cloned());
+}
+
+#[allow(deprecated)]
+#[test]
+fn step() {
+ it::assert_equal((0..10).step(1), 0..10);
+ it::assert_equal((0..10).step(2), (0..10).filter(|x: &i32| *x % 2 == 0));
+ it::assert_equal((0..10).step(10), 0..1);
+}
+
+#[allow(deprecated)]
+#[test]
+fn merge() {
+ it::assert_equal((0..10).step(2).merge((1..10).step(2)), 0..10);
+}
+
+
+#[test]
+fn repeatn() {
+ let s = "α";
+ let mut it = it::repeat_n(s, 3);
+ assert_eq!(it.len(), 3);
+ assert_eq!(it.next(), Some(s));
+ assert_eq!(it.next(), Some(s));
+ assert_eq!(it.next(), Some(s));
+ assert_eq!(it.next(), None);
+ assert_eq!(it.next(), None);
+}
+
+#[test]
+fn count_clones() {
+ // Check that RepeatN only clones N - 1 times.
+
+ use core::cell::Cell;
+ #[derive(PartialEq, Debug)]
+ struct Foo {
+ n: Cell<usize>
+ }
+
+ impl Clone for Foo
+ {
+ fn clone(&self) -> Self
+ {
+ let n = self.n.get();
+ self.n.set(n + 1);
+ Foo { n: Cell::new(n + 1) }
+ }
+ }
+
+
+ for n in 0..10 {
+ let f = Foo{n: Cell::new(0)};
+ let it = it::repeat_n(f, n);
+ // drain it
+ let last = it.last();
+ if n == 0 {
+ assert_eq!(last, None);
+ } else {
+ assert_eq!(last, Some(Foo{n: Cell::new(n - 1)}));
+ }
+ }
+}
+
+#[test]
+fn part() {
+ let mut data = [7, 1, 1, 9, 1, 1, 3];
+ let i = it::partition(&mut data, |elt| *elt >= 3);
+ assert_eq!(i, 3);
+ assert_eq!(data, [7, 3, 9, 1, 1, 1, 1]);
+
+ let i = it::partition(&mut data, |elt| *elt == 1);
+ assert_eq!(i, 4);
+ assert_eq!(data, [1, 1, 1, 1, 9, 3, 7]);
+
+ let mut data = [1, 2, 3, 4, 5, 6, 7, 8, 9];
+ let i = it::partition(&mut data, |elt| *elt % 3 == 0);
+ assert_eq!(i, 3);
+ assert_eq!(data, [9, 6, 3, 4, 5, 2, 7, 8, 1]);
+}
+
+#[test]
+fn tree_fold1() {
+ for i in 0..100 {
+ assert_eq!((0..i).tree_fold1(|x, y| x + y), (0..i).fold1(|x, y| x + y));
+ }
+}
diff --git a/third_party/rust/itertools-0.8.0/tests/test_std.rs b/third_party/rust/itertools-0.8.0/tests/test_std.rs
new file mode 100644
index 0000000000..b587f44706
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/tests/test_std.rs
@@ -0,0 +1,735 @@
+
+#[macro_use] extern crate itertools as it;
+extern crate permutohedron;
+
+use it::Itertools;
+use it::multizip;
+use it::multipeek;
+use it::free::rciter;
+use it::free::put_back_n;
+use it::FoldWhile;
+use it::cloned;
+
+#[test]
+fn product3() {
+ let prod = iproduct!(0..3, 0..2, 0..2);
+ assert_eq!(prod.size_hint(), (12, Some(12)));
+ let v = prod.collect_vec();
+ for i in 0..3 {
+ for j in 0..2 {
+ for k in 0..2 {
+ assert!((i, j, k) == v[(i * 2 * 2 + j * 2 + k) as usize]);
+ }
+ }
+ }
+ for (_, _, _, _) in iproduct!(0..3, 0..2, 0..2, 0..3) {
+ /* test compiles */
+ }
+}
+
+#[test]
+fn interleave_shortest() {
+ let v0: Vec<i32> = vec![0, 2, 4];
+ let v1: Vec<i32> = vec![1, 3, 5, 7];
+ let it = v0.into_iter().interleave_shortest(v1.into_iter());
+ assert_eq!(it.size_hint(), (6, Some(6)));
+ assert_eq!(it.collect_vec(), vec![0, 1, 2, 3, 4, 5]);
+
+ let v0: Vec<i32> = vec![0, 2, 4, 6, 8];
+ let v1: Vec<i32> = vec![1, 3, 5];
+ let it = v0.into_iter().interleave_shortest(v1.into_iter());
+ assert_eq!(it.size_hint(), (7, Some(7)));
+ assert_eq!(it.collect_vec(), vec![0, 1, 2, 3, 4, 5, 6]);
+
+ let i0 = ::std::iter::repeat(0);
+ let v1: Vec<_> = vec![1, 3, 5];
+ let it = i0.interleave_shortest(v1.into_iter());
+ assert_eq!(it.size_hint(), (7, Some(7)));
+
+ let v0: Vec<_> = vec![0, 2, 4];
+ let i1 = ::std::iter::repeat(1);
+ let it = v0.into_iter().interleave_shortest(i1);
+ assert_eq!(it.size_hint(), (6, Some(6)));
+}
+
+
+#[test]
+fn unique_by() {
+ let xs = ["aaa", "bbbbb", "aa", "ccc", "bbbb", "aaaaa", "cccc"];
+ let ys = ["aaa", "bbbbb", "ccc"];
+ it::assert_equal(ys.iter(), xs.iter().unique_by(|x| x[..2].to_string()));
+}
+
+#[test]
+fn unique() {
+ let xs = [0, 1, 2, 3, 2, 1, 3];
+ let ys = [0, 1, 2, 3];
+ it::assert_equal(ys.iter(), xs.iter().unique());
+ let xs = [0, 1];
+ let ys = [0, 1];
+ it::assert_equal(ys.iter(), xs.iter().unique());
+}
+
+#[test]
+fn intersperse() {
+ let xs = ["a", "", "b", "c"];
+ let v: Vec<&str> = xs.iter().map(|x| x.clone()).intersperse(", ").collect();
+ let text: String = v.concat();
+ assert_eq!(text, "a, , b, c".to_string());
+
+ let ys = [0, 1, 2, 3];
+ let mut it = ys[..0].iter().map(|x| *x).intersperse(1);
+ assert!(it.next() == None);
+}
+
+#[test]
+fn dedup() {
+ let xs = [0, 1, 1, 1, 2, 1, 3, 3];
+ let ys = [0, 1, 2, 1, 3];
+ it::assert_equal(ys.iter(), xs.iter().dedup());
+ let xs = [0, 0, 0, 0, 0];
+ let ys = [0];
+ it::assert_equal(ys.iter(), xs.iter().dedup());
+
+ let xs = [0, 1, 1, 1, 2, 1, 3, 3];
+ let ys = [0, 1, 2, 1, 3];
+ let mut xs_d = Vec::new();
+ xs.iter().dedup().fold((), |(), &elt| xs_d.push(elt));
+ assert_eq!(&xs_d, &ys);
+}
+
+#[test]
+fn all_equal() {
+ assert!(!"AABBCCC".chars().all_equal());
+ assert!("AAAAAAA".chars().all_equal());
+ for (_key, mut sub) in &"AABBCCC".chars().group_by(|&x| x) {
+ assert!(sub.all_equal());
+ }
+}
+
+#[test]
+fn test_put_back_n() {
+ let xs = [0, 1, 1, 1, 2, 1, 3, 3];
+ let mut pb = put_back_n(xs.iter().cloned());
+ pb.next();
+ pb.next();
+ pb.put_back(1);
+ pb.put_back(0);
+ it::assert_equal(pb, xs.iter().cloned());
+}
+
+#[test]
+fn tee() {
+ let xs = [0, 1, 2, 3];
+ let (mut t1, mut t2) = xs.iter().cloned().tee();
+ assert_eq!(t1.next(), Some(0));
+ assert_eq!(t2.next(), Some(0));
+ assert_eq!(t1.next(), Some(1));
+ assert_eq!(t1.next(), Some(2));
+ assert_eq!(t1.next(), Some(3));
+ assert_eq!(t1.next(), None);
+ assert_eq!(t2.next(), Some(1));
+ assert_eq!(t2.next(), Some(2));
+ assert_eq!(t1.next(), None);
+ assert_eq!(t2.next(), Some(3));
+ assert_eq!(t2.next(), None);
+ assert_eq!(t1.next(), None);
+ assert_eq!(t2.next(), None);
+
+ let (t1, t2) = xs.iter().cloned().tee();
+ it::assert_equal(t1, xs.iter().cloned());
+ it::assert_equal(t2, xs.iter().cloned());
+
+ let (t1, t2) = xs.iter().cloned().tee();
+ it::assert_equal(t1.zip(t2), xs.iter().cloned().zip(xs.iter().cloned()));
+}
+
+
+#[test]
+fn test_rciter() {
+ let xs = [0, 1, 1, 1, 2, 1, 3, 5, 6];
+
+ let mut r1 = rciter(xs.iter().cloned());
+ let mut r2 = r1.clone();
+ assert_eq!(r1.next(), Some(0));
+ assert_eq!(r2.next(), Some(1));
+ let mut z = r1.zip(r2);
+ assert_eq!(z.next(), Some((1, 1)));
+ assert_eq!(z.next(), Some((2, 1)));
+ assert_eq!(z.next(), Some((3, 5)));
+ assert_eq!(z.next(), None);
+
+ // test intoiterator
+ let r1 = rciter(0..5);
+ let mut z = izip!(&r1, r1);
+ assert_eq!(z.next(), Some((0, 1)));
+}
+
+#[allow(deprecated)]
+#[test]
+fn trait_pointers() {
+ struct ByRef<'r, I: ?Sized>(&'r mut I) where I: 'r;
+
+ impl<'r, X, I: ?Sized> Iterator for ByRef<'r, I> where
+ I: 'r + Iterator<Item=X>
+ {
+ type Item = X;
+ fn next(&mut self) -> Option<X>
+ {
+ self.0.next()
+ }
+ }
+
+ let mut it = Box::new(0..10) as Box<Iterator<Item=i32>>;
+ assert_eq!(it.next(), Some(0));
+
+ {
+ /* make sure foreach works on non-Sized */
+ let jt: &mut Iterator<Item = i32> = &mut *it;
+ assert_eq!(jt.next(), Some(1));
+
+ {
+ let mut r = ByRef(jt);
+ assert_eq!(r.next(), Some(2));
+ }
+
+ assert_eq!(jt.find_position(|x| *x == 4), Some((1, 4)));
+ jt.foreach(|_| ());
+ }
+}
+
+#[test]
+fn merge_by() {
+ let odd : Vec<(u32, &str)> = vec![(1, "hello"), (3, "world"), (5, "!")];
+ let even = vec![(2, "foo"), (4, "bar"), (6, "baz")];
+ let expected = vec![(1, "hello"), (2, "foo"), (3, "world"), (4, "bar"), (5, "!"), (6, "baz")];
+ let results = odd.iter().merge_by(even.iter(), |a, b| a.0 <= b.0);
+ it::assert_equal(results, expected.iter());
+}
+
+#[test]
+fn merge_by_btree() {
+ use std::collections::BTreeMap;
+ let mut bt1 = BTreeMap::new();
+ bt1.insert("hello", 1);
+ bt1.insert("world", 3);
+ let mut bt2 = BTreeMap::new();
+ bt2.insert("foo", 2);
+ bt2.insert("bar", 4);
+ let results = bt1.into_iter().merge_by(bt2.into_iter(), |a, b| a.0 <= b.0 );
+ let expected = vec![("bar", 4), ("foo", 2), ("hello", 1), ("world", 3)];
+ it::assert_equal(results, expected.into_iter());
+}
+
+#[allow(deprecated)]
+#[test]
+fn kmerge() {
+ let its = (0..4).map(|s| (s..10).step(4));
+
+ it::assert_equal(its.kmerge(), 0..10);
+}
+
+#[allow(deprecated)]
+#[test]
+fn kmerge_2() {
+ let its = vec![3, 2, 1, 0].into_iter().map(|s| (s..10).step(4));
+
+ it::assert_equal(its.kmerge(), 0..10);
+}
+
+#[test]
+fn kmerge_empty() {
+ let its = (0..4).map(|_| 0..0);
+ assert_eq!(its.kmerge().next(), None);
+}
+
+#[test]
+fn kmerge_size_hint() {
+ let its = (0..5).map(|_| (0..10));
+ assert_eq!(its.kmerge().size_hint(), (50, Some(50)));
+}
+
+#[test]
+fn kmerge_empty_size_hint() {
+ let its = (0..5).map(|_| (0..0));
+ assert_eq!(its.kmerge().size_hint(), (0, Some(0)));
+}
+
+#[test]
+fn join() {
+ let many = [1, 2, 3];
+ let one = [1];
+ let none: Vec<i32> = vec![];
+
+ assert_eq!(many.iter().join(", "), "1, 2, 3");
+ assert_eq!( one.iter().join(", "), "1");
+ assert_eq!(none.iter().join(", "), "");
+}
+
+#[test]
+fn sorted_by() {
+ let sc = [3, 4, 1, 2].iter().cloned().sorted_by(|&a, &b| {
+ a.cmp(&b)
+ });
+ it::assert_equal(sc, vec![1, 2, 3, 4]);
+
+ let v = (0..5).sorted_by(|&a, &b| a.cmp(&b).reverse());
+ it::assert_equal(v, vec![4, 3, 2, 1, 0]);
+}
+
+#[test]
+fn sorted_by_key() {
+ let sc = [3, 4, 1, 2].iter().cloned().sorted_by_key(|&x| x);
+ it::assert_equal(sc, vec![1, 2, 3, 4]);
+
+ let v = (0..5).sorted_by_key(|&x| -x);
+ it::assert_equal(v, vec![4, 3, 2, 1, 0]);
+}
+
+#[test]
+fn test_multipeek() {
+ let nums = vec![1u8,2,3,4,5];
+
+ let mp = multipeek(nums.iter().map(|&x| x));
+ assert_eq!(nums, mp.collect::<Vec<_>>());
+
+ let mut mp = multipeek(nums.iter().map(|&x| x));
+ assert_eq!(mp.peek(), Some(&1));
+ assert_eq!(mp.next(), Some(1));
+ assert_eq!(mp.peek(), Some(&2));
+ assert_eq!(mp.peek(), Some(&3));
+ assert_eq!(mp.next(), Some(2));
+ assert_eq!(mp.peek(), Some(&3));
+ assert_eq!(mp.peek(), Some(&4));
+ assert_eq!(mp.peek(), Some(&5));
+ assert_eq!(mp.peek(), None);
+ assert_eq!(mp.next(), Some(3));
+ assert_eq!(mp.next(), Some(4));
+ assert_eq!(mp.peek(), Some(&5));
+ assert_eq!(mp.peek(), None);
+ assert_eq!(mp.next(), Some(5));
+ assert_eq!(mp.next(), None);
+ assert_eq!(mp.peek(), None);
+
+}
+
+#[test]
+fn test_multipeek_reset() {
+ let data = [1, 2, 3, 4];
+
+ let mut mp = multipeek(cloned(&data));
+ assert_eq!(mp.peek(), Some(&1));
+ assert_eq!(mp.next(), Some(1));
+ assert_eq!(mp.peek(), Some(&2));
+ assert_eq!(mp.peek(), Some(&3));
+ mp.reset_peek();
+ assert_eq!(mp.peek(), Some(&2));
+ assert_eq!(mp.next(), Some(2));
+}
+
+#[test]
+fn test_multipeek_peeking_next() {
+ use it::PeekingNext;
+ let nums = vec![1u8,2,3,4,5,6,7];
+
+ let mut mp = multipeek(nums.iter().map(|&x| x));
+ assert_eq!(mp.peeking_next(|&x| x != 0), Some(1));
+ assert_eq!(mp.next(), Some(2));
+ assert_eq!(mp.peek(), Some(&3));
+ assert_eq!(mp.peek(), Some(&4));
+ assert_eq!(mp.peeking_next(|&x| x == 3), Some(3));
+ assert_eq!(mp.peek(), Some(&4));
+ assert_eq!(mp.peeking_next(|&x| x != 4), None);
+ assert_eq!(mp.peeking_next(|&x| x == 4), Some(4));
+ assert_eq!(mp.peek(), Some(&5));
+ assert_eq!(mp.peek(), Some(&6));
+ assert_eq!(mp.peeking_next(|&x| x != 5), None);
+ assert_eq!(mp.peek(), Some(&7));
+ assert_eq!(mp.peeking_next(|&x| x == 5), Some(5));
+ assert_eq!(mp.peeking_next(|&x| x == 6), Some(6));
+ assert_eq!(mp.peek(), Some(&7));
+ assert_eq!(mp.peek(), None);
+ assert_eq!(mp.next(), Some(7));
+ assert_eq!(mp.peek(), None);
+}
+
+#[test]
+fn pad_using() {
+ it::assert_equal((0..0).pad_using(1, |_| 1), 1..2);
+
+ let v: Vec<usize> = vec![0, 1, 2];
+ let r = v.into_iter().pad_using(5, |n| n);
+ it::assert_equal(r, vec![0, 1, 2, 3, 4]);
+
+ let v: Vec<usize> = vec![0, 1, 2];
+ let r = v.into_iter().pad_using(1, |_| panic!());
+ it::assert_equal(r, vec![0, 1, 2]);
+}
+
+#[test]
+fn group_by() {
+ for (ch1, sub) in &"AABBCCC".chars().group_by(|&x| x) {
+ for ch2 in sub {
+ assert_eq!(ch1, ch2);
+ }
+ }
+
+ for (ch1, sub) in &"AAABBBCCCCDDDD".chars().group_by(|&x| x) {
+ for ch2 in sub {
+ assert_eq!(ch1, ch2);
+ if ch1 == 'C' {
+ break;
+ }
+ }
+ }
+
+ let toupper = |ch: &char| ch.to_uppercase().nth(0).unwrap();
+
+ // try all possible orderings
+ for indices in permutohedron::Heap::new(&mut [0, 1, 2, 3]) {
+ let groups = "AaaBbbccCcDDDD".chars().group_by(&toupper);
+ let mut subs = groups.into_iter().collect_vec();
+
+ for &idx in &indices[..] {
+ let (key, text) = match idx {
+ 0 => ('A', "Aaa".chars()),
+ 1 => ('B', "Bbb".chars()),
+ 2 => ('C', "ccCc".chars()),
+ 3 => ('D', "DDDD".chars()),
+ _ => unreachable!(),
+ };
+ assert_eq!(key, subs[idx].0);
+ it::assert_equal(&mut subs[idx].1, text);
+ }
+ }
+
+ let groups = "AAABBBCCCCDDDD".chars().group_by(|&x| x);
+ let mut subs = groups.into_iter().map(|(_, g)| g).collect_vec();
+
+ let sd = subs.pop().unwrap();
+ let sc = subs.pop().unwrap();
+ let sb = subs.pop().unwrap();
+ let sa = subs.pop().unwrap();
+ for (a, b, c, d) in multizip((sa, sb, sc, sd)) {
+ assert_eq!(a, 'A');
+ assert_eq!(b, 'B');
+ assert_eq!(c, 'C');
+ assert_eq!(d, 'D');
+ }
+
+ // check that the key closure is called exactly n times
+ {
+ let mut ntimes = 0;
+ let text = "AABCCC";
+ for (_, sub) in &text.chars().group_by(|&x| { ntimes += 1; x}) {
+ for _ in sub {
+ }
+ }
+ assert_eq!(ntimes, text.len());
+ }
+
+ {
+ let mut ntimes = 0;
+ let text = "AABCCC";
+ for _ in &text.chars().group_by(|&x| { ntimes += 1; x}) {
+ }
+ assert_eq!(ntimes, text.len());
+ }
+
+ {
+ let text = "ABCCCDEEFGHIJJKK";
+ let gr = text.chars().group_by(|&x| x);
+ it::assert_equal(gr.into_iter().flat_map(|(_, sub)| sub), text.chars());
+ }
+}
+
+#[test]
+fn group_by_lazy_2() {
+ let data = vec![0, 1];
+ let groups = data.iter().group_by(|k| *k);
+ let gs = groups.into_iter().collect_vec();
+ it::assert_equal(data.iter(), gs.into_iter().flat_map(|(_k, g)| g));
+
+ let data = vec![0, 1, 1, 0, 0];
+ let groups = data.iter().group_by(|k| *k);
+ let mut gs = groups.into_iter().collect_vec();
+ gs[1..].reverse();
+ it::assert_equal(&[0, 0, 0, 1, 1], gs.into_iter().flat_map(|(_, g)| g));
+
+ let grouper = data.iter().group_by(|k| *k);
+ let mut groups = Vec::new();
+ for (k, group) in &grouper {
+ if *k == 1 {
+ groups.push(group);
+ }
+ }
+ it::assert_equal(&mut groups[0], &[1, 1]);
+
+ let data = vec![0, 0, 0, 1, 1, 0, 0, 2, 2, 3, 3];
+ let grouper = data.iter().group_by(|k| *k);
+ let mut groups = Vec::new();
+ for (i, (_, group)) in grouper.into_iter().enumerate() {
+ if i < 2 {
+ groups.push(group);
+ } else if i < 4 {
+ for _ in group {
+ }
+ } else {
+ groups.push(group);
+ }
+ }
+ it::assert_equal(&mut groups[0], &[0, 0, 0]);
+ it::assert_equal(&mut groups[1], &[1, 1]);
+ it::assert_equal(&mut groups[2], &[3, 3]);
+
+ // use groups as chunks
+ let data = vec![0, 0, 0, 1, 1, 0, 0, 2, 2, 3, 3];
+ let mut i = 0;
+ let grouper = data.iter().group_by(move |_| { let k = i / 3; i += 1; k });
+ for (i, group) in &grouper {
+ match i {
+ 0 => it::assert_equal(group, &[0, 0, 0]),
+ 1 => it::assert_equal(group, &[1, 1, 0]),
+ 2 => it::assert_equal(group, &[0, 2, 2]),
+ 3 => it::assert_equal(group, &[3, 3]),
+ _ => unreachable!(),
+ }
+ }
+}
+
+#[test]
+fn group_by_lazy_3() {
+ // test consuming each group on the lap after it was produced
+ let data = vec![0, 0, 0, 1, 1, 0, 0, 1, 1, 2, 2];
+ let grouper = data.iter().group_by(|elt| *elt);
+ let mut last = None;
+ for (key, group) in &grouper {
+ if let Some(gr) = last.take() {
+ for elt in gr {
+ assert!(elt != key && i32::abs(elt - key) == 1);
+ }
+ }
+ last = Some(group);
+ }
+}
+
+#[test]
+fn chunks() {
+ let data = vec![0, 0, 0, 1, 1, 0, 0, 2, 2, 3, 3];
+ let grouper = data.iter().chunks(3);
+ for (i, chunk) in grouper.into_iter().enumerate() {
+ match i {
+ 0 => it::assert_equal(chunk, &[0, 0, 0]),
+ 1 => it::assert_equal(chunk, &[1, 1, 0]),
+ 2 => it::assert_equal(chunk, &[0, 2, 2]),
+ 3 => it::assert_equal(chunk, &[3, 3]),
+ _ => unreachable!(),
+ }
+ }
+}
+
+#[test]
+fn concat_empty() {
+ let data: Vec<Vec<()>> = Vec::new();
+ assert_eq!(data.into_iter().concat(), Vec::new())
+}
+
+#[test]
+fn concat_non_empty() {
+ let data = vec![vec![1,2,3], vec![4,5,6], vec![7,8,9]];
+ assert_eq!(data.into_iter().concat(), vec![1,2,3,4,5,6,7,8,9])
+}
+
+#[test]
+fn combinations() {
+ assert!((1..3).combinations(5).next().is_none());
+
+ let it = (1..3).combinations(2);
+ it::assert_equal(it, vec![
+ vec![1, 2],
+ ]);
+
+ let it = (1..5).combinations(2);
+ it::assert_equal(it, vec![
+ vec![1, 2],
+ vec![1, 3],
+ vec![1, 4],
+ vec![2, 3],
+ vec![2, 4],
+ vec![3, 4],
+ ]);
+
+ it::assert_equal((0..0).tuple_combinations::<(_, _)>(), <Vec<_>>::new());
+ it::assert_equal((0..1).tuple_combinations::<(_, _)>(), <Vec<_>>::new());
+ it::assert_equal((0..2).tuple_combinations::<(_, _)>(), vec![(0, 1)]);
+
+ it::assert_equal((0..0).combinations(2), <Vec<Vec<_>>>::new());
+ it::assert_equal((0..1).combinations(1), vec![vec![0]]);
+ it::assert_equal((0..2).combinations(1), vec![vec![0], vec![1]]);
+ it::assert_equal((0..2).combinations(2), vec![vec![0, 1]]);
+}
+
+#[test]
+fn combinations_of_too_short() {
+ for i in 1..10 {
+ assert!((0..0).combinations(i).next().is_none());
+ assert!((0..i - 1).combinations(i).next().is_none());
+ }
+}
+
+
+#[test]
+fn combinations_zero() {
+ it::assert_equal((1..3).combinations(0), vec![vec![]]);
+}
+
+#[test]
+fn diff_mismatch() {
+ let a = vec![1, 2, 3, 4];
+ let b = vec![1.0, 5.0, 3.0, 4.0];
+ let b_map = b.into_iter().map(|f| f as i32);
+ let diff = it::diff_with(a.iter(), b_map, |a, b| *a == b);
+
+ assert!(match diff {
+ Some(it::Diff::FirstMismatch(1, _, from_diff)) =>
+ from_diff.collect::<Vec<_>>() == vec![5, 3, 4],
+ _ => false,
+ });
+}
+
+#[test]
+fn diff_longer() {
+ let a = vec![1, 2, 3, 4];
+ let b = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0];
+ let b_map = b.into_iter().map(|f| f as i32);
+ let diff = it::diff_with(a.iter(), b_map, |a, b| *a == b);
+
+ assert!(match diff {
+ Some(it::Diff::Longer(_, remaining)) =>
+ remaining.collect::<Vec<_>>() == vec![5, 6],
+ _ => false,
+ });
+}
+
+#[test]
+fn diff_shorter() {
+ let a = vec![1, 2, 3, 4];
+ let b = vec![1.0, 2.0];
+ let b_map = b.into_iter().map(|f| f as i32);
+ let diff = it::diff_with(a.iter(), b_map, |a, b| *a == b);
+
+ assert!(match diff {
+ Some(it::Diff::Shorter(len, _)) => len == 2,
+ _ => false,
+ });
+}
+
+#[test]
+fn minmax() {
+ use std::cmp::Ordering;
+ use it::MinMaxResult;
+
+ // A peculiar type: Equality compares both tuple items, but ordering only the
+ // first item. This is so we can check the stability property easily.
+ #[derive(Clone, Debug, PartialEq, Eq)]
+ struct Val(u32, u32);
+
+ impl PartialOrd<Val> for Val {
+ fn partial_cmp(&self, other: &Val) -> Option<Ordering> {
+ self.0.partial_cmp(&other.0)
+ }
+ }
+
+ impl Ord for Val {
+ fn cmp(&self, other: &Val) -> Ordering {
+ self.0.cmp(&other.0)
+ }
+ }
+
+ assert_eq!(None::<Option<u32>>.iter().minmax(), MinMaxResult::NoElements);
+
+ assert_eq!(Some(1u32).iter().minmax(), MinMaxResult::OneElement(&1));
+
+ let data = vec![Val(0, 1), Val(2, 0), Val(0, 2), Val(1, 0), Val(2, 1)];
+
+ let minmax = data.iter().minmax();
+ assert_eq!(minmax, MinMaxResult::MinMax(&Val(0, 1), &Val(2, 1)));
+
+ let (min, max) = data.iter().minmax_by_key(|v| v.1).into_option().unwrap();
+ assert_eq!(min, &Val(2, 0));
+ assert_eq!(max, &Val(0, 2));
+
+ let (min, max) = data.iter().minmax_by(|x, y| x.1.cmp(&y.1)).into_option().unwrap();
+ assert_eq!(min, &Val(2, 0));
+ assert_eq!(max, &Val(0, 2));
+}
+
+#[test]
+fn format() {
+ let data = [0, 1, 2, 3];
+ let ans1 = "0, 1, 2, 3";
+ let ans2 = "0--1--2--3";
+
+ let t1 = format!("{}", data.iter().format(", "));
+ assert_eq!(t1, ans1);
+ let t2 = format!("{:?}", data.iter().format("--"));
+ assert_eq!(t2, ans2);
+
+ let dataf = [1.1, 2.71828, -22.];
+ let t3 = format!("{:.2e}", dataf.iter().format(", "));
+ assert_eq!(t3, "1.10e0, 2.72e0, -2.20e1");
+}
+
+#[test]
+fn while_some() {
+ let ns = (1..10).map(|x| if x % 5 != 0 { Some(x) } else { None })
+ .while_some();
+ it::assert_equal(ns, vec![1, 2, 3, 4]);
+}
+
+#[allow(deprecated)]
+#[test]
+fn fold_while() {
+ let mut iterations = 0;
+ let vec = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
+ let sum = vec.into_iter().fold_while(0, |acc, item| {
+ iterations += 1;
+ let new_sum = acc.clone() + item;
+ if new_sum <= 20 {
+ FoldWhile::Continue(new_sum)
+ } else {
+ FoldWhile::Done(acc)
+ }
+ }).into_inner();
+ assert_eq!(iterations, 6);
+ assert_eq!(sum, 15);
+}
+
+#[test]
+fn tree_fold1() {
+ let x = [
+ "",
+ "0",
+ "0 1 x",
+ "0 1 x 2 x",
+ "0 1 x 2 3 x x",
+ "0 1 x 2 3 x x 4 x",
+ "0 1 x 2 3 x x 4 5 x x",
+ "0 1 x 2 3 x x 4 5 x 6 x x",
+ "0 1 x 2 3 x x 4 5 x 6 7 x x x",
+ "0 1 x 2 3 x x 4 5 x 6 7 x x x 8 x",
+ "0 1 x 2 3 x x 4 5 x 6 7 x x x 8 9 x x",
+ "0 1 x 2 3 x x 4 5 x 6 7 x x x 8 9 x 10 x x",
+ "0 1 x 2 3 x x 4 5 x 6 7 x x x 8 9 x 10 11 x x x",
+ "0 1 x 2 3 x x 4 5 x 6 7 x x x 8 9 x 10 11 x x 12 x x",
+ "0 1 x 2 3 x x 4 5 x 6 7 x x x 8 9 x 10 11 x x 12 13 x x x",
+ "0 1 x 2 3 x x 4 5 x 6 7 x x x 8 9 x 10 11 x x 12 13 x 14 x x x",
+ "0 1 x 2 3 x x 4 5 x 6 7 x x x 8 9 x 10 11 x x 12 13 x 14 15 x x x x",
+ ];
+ for (i, &s) in x.iter().enumerate() {
+ let expected = if s == "" { None } else { Some(s.to_string()) };
+ let num_strings = (0..i).map(|x| x.to_string());
+ let actual = num_strings.tree_fold1(|a, b| format!("{} {} x", a, b));
+ assert_eq!(actual, expected);
+ }
+}
diff --git a/third_party/rust/itertools-0.8.0/tests/tuples.rs b/third_party/rust/itertools-0.8.0/tests/tuples.rs
new file mode 100644
index 0000000000..07dba57fe6
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/tests/tuples.rs
@@ -0,0 +1,88 @@
+extern crate itertools;
+
+use itertools::Itertools;
+
+#[test]
+fn tuples() {
+ let v = [1, 2, 3, 4, 5];
+ let mut iter = v.iter().cloned().tuples();
+ assert_eq!(Some((1,)), iter.next());
+ assert_eq!(Some((2,)), iter.next());
+ assert_eq!(Some((3,)), iter.next());
+ assert_eq!(Some((4,)), iter.next());
+ assert_eq!(Some((5,)), iter.next());
+ assert_eq!(None, iter.next());
+ assert_eq!(None, iter.into_buffer().next());
+
+ let mut iter = v.iter().cloned().tuples();
+ assert_eq!(Some((1, 2)), iter.next());
+ assert_eq!(Some((3, 4)), iter.next());
+ assert_eq!(None, iter.next());
+ itertools::assert_equal(vec![5], iter.into_buffer());
+
+ let mut iter = v.iter().cloned().tuples();
+ assert_eq!(Some((1, 2, 3)), iter.next());
+ assert_eq!(None, iter.next());
+ itertools::assert_equal(vec![4, 5], iter.into_buffer());
+
+ let mut iter = v.iter().cloned().tuples();
+ assert_eq!(Some((1, 2, 3, 4)), iter.next());
+ assert_eq!(None, iter.next());
+ itertools::assert_equal(vec![5], iter.into_buffer());
+}
+
+#[test]
+fn tuple_windows() {
+ let v = [1, 2, 3, 4, 5];
+
+ let mut iter = v.iter().cloned().tuple_windows();
+ assert_eq!(Some((1,)), iter.next());
+ assert_eq!(Some((2,)), iter.next());
+ assert_eq!(Some((3,)), iter.next());
+
+ let mut iter = v.iter().cloned().tuple_windows();
+ assert_eq!(Some((1, 2)), iter.next());
+ assert_eq!(Some((2, 3)), iter.next());
+ assert_eq!(Some((3, 4)), iter.next());
+ assert_eq!(Some((4, 5)), iter.next());
+ assert_eq!(None, iter.next());
+
+ let mut iter = v.iter().cloned().tuple_windows();
+ assert_eq!(Some((1, 2, 3)), iter.next());
+ assert_eq!(Some((2, 3, 4)), iter.next());
+ assert_eq!(Some((3, 4, 5)), iter.next());
+ assert_eq!(None, iter.next());
+
+ let mut iter = v.iter().cloned().tuple_windows();
+ assert_eq!(Some((1, 2, 3, 4)), iter.next());
+ assert_eq!(Some((2, 3, 4, 5)), iter.next());
+ assert_eq!(None, iter.next());
+
+ let v = [1, 2, 3];
+ let mut iter = v.iter().cloned().tuple_windows::<(_, _, _, _)>();
+ assert_eq!(None, iter.next());
+}
+
+#[test]
+fn next_tuple() {
+ let v = [1, 2, 3, 4, 5];
+ let mut iter = v.iter();
+ assert_eq!(iter.next_tuple().map(|(&x, &y)| (x, y)), Some((1, 2)));
+ assert_eq!(iter.next_tuple().map(|(&x, &y)| (x, y)), Some((3, 4)));
+ assert_eq!(iter.next_tuple::<(_, _)>(), None);
+}
+
+#[test]
+fn collect_tuple() {
+ let v = [1, 2];
+ let iter = v.iter().cloned();
+ assert_eq!(iter.collect_tuple(), Some((1, 2)));
+
+ let v = [1];
+ let iter = v.iter().cloned();
+ assert_eq!(iter.collect_tuple::<(_, _)>(), None);
+
+ let v = [1, 2, 3];
+ let iter = v.iter().cloned();
+ assert_eq!(iter.collect_tuple::<(_, _)>(), None);
+}
diff --git a/third_party/rust/itertools-0.8.0/tests/zip.rs b/third_party/rust/itertools-0.8.0/tests/zip.rs
new file mode 100644
index 0000000000..c5c51899b8
--- /dev/null
+++ b/third_party/rust/itertools-0.8.0/tests/zip.rs
@@ -0,0 +1,65 @@
+extern crate itertools;
+
+use itertools::Itertools;
+use itertools::EitherOrBoth::{Both, Left, Right};
+use itertools::free::zip_eq;
+
+#[test]
+fn zip_longest_fused() {
+ let a = [Some(1), None, Some(3), Some(4)];
+ let b = [1, 2, 3];
+
+ let unfused = a.iter().batching(|it| *it.next().unwrap())
+ .zip_longest(b.iter().cloned());
+ itertools::assert_equal(unfused,
+ vec![Both(1, 1), Right(2), Right(3)]);
+}
+
+#[test]
+fn test_zip_longest_size_hint() {
+ let c = (1..10).cycle();
+ let v: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
+ let v2 = &[10, 11, 12];
+
+ assert_eq!(c.zip_longest(v.iter()).size_hint(), (std::usize::MAX, None));
+
+ assert_eq!(v.iter().zip_longest(v2.iter()).size_hint(), (10, Some(10)));
+}
+
+#[test]
+fn test_double_ended_zip_longest() {
+ let xs = [1, 2, 3, 4, 5, 6];
+ let ys = [1, 2, 3, 7];
+ let a = xs.iter().map(|&x| x);
+ let b = ys.iter().map(|&x| x);
+ let mut it = a.zip_longest(b);
+ assert_eq!(it.next(), Some(Both(1, 1)));
+ assert_eq!(it.next(), Some(Both(2, 2)));
+ assert_eq!(it.next_back(), Some(Left(6)));
+ assert_eq!(it.next_back(), Some(Left(5)));
+ assert_eq!(it.next_back(), Some(Both(4, 7)));
+ assert_eq!(it.next(), Some(Both(3, 3)));
+ assert_eq!(it.next(), None);
+}
+
+
+#[should_panic]
+#[test]
+fn zip_eq_panic1()
+{
+ let a = [1, 2];
+ let b = [1, 2, 3];
+
+ zip_eq(&a, &b).count();
+}
+
+#[should_panic]
+#[test]
+fn zip_eq_panic2()
+{
+ let a: [i32; 0] = [];
+ let b = [1, 2, 3];
+
+ zip_eq(&a, &b).count();
+}
+